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Assyr Abdulle 1, Weinan E 2, Björn Engquist 3, Eric Vanden-Eijnden 4

Abstract

The heterogeneous multiscale method (HMM), a general framework for designing mul-
tiscale algorithms, is reviewed. Emphasis is given to the error analysis that comes naturally
with the framework. Examples of finite element and finite difference HMM are presented.
Applications to dynamical systems and stochastic simulation algorithms with multiple time
scales, spall fracture and heat conduction in microprocessors are discussed.
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1 Introduction

The heterogeneous multiscale method (HMM) is a general framework for designing multiscale
algorithms for a wide variety of applications [62, 63, 64]. The word “heterogenous” was used
in order to emphasize the fact that the algorithm may involve macro and micro models of very
different nature, for example, the micro model may come from molecular dynamics and the
macro model may come from continuum theory. In fact, at a very rough level, HMM can be
thought of as a way of blending together models of very heterogeneous nature.

Most problems that we encounter in nature have a multiscale character. The multiscale
character can come in a variety of ways. Take, for example, problems from material science. It
could be that the material property, such as conductivity, has a multiscale nature. This is the case
for composites. It could also be that the material can be viewed at different levels of detail: as a
continuous medium in which case one naturally applies the principles of continuum mechanics;
or it can also be seen at the atomic scale, in which case one naturally applies various atomistic
models coming either from molecular dynamics or quantum mechanics. Each viewpoint has its
merits and drawbacks. Continuum models are quite efficient but sometimes their accuracy is
inadequate, particularly when defects are involved. Atomic models are typically more accurate.
But they are much less efficient. This situation is not limited to material science but is quite
common in most all areas of science and engineering. One of the main motivation for multiscale
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modeling is to develop models that have an accuracy close to that of microscopic models and
efficiency close to that of macroscopic models.

From the viewpoint of numerical algorithms, we are interested in extracting useful infor-
mation from the microscopic model which in principle has the required accuracy. If we use a
traditional viewppoint, then we would have to solve the microscopic model in full detail which
is practically impossible for engineering applications. In terms of computational complexity, the
best one can do with such an approach is to have linear scaling algorithms: The complexity
scales no less than the number of microscopic degrees of freedom. However, in many cases,
we are not interested in the full microscopic solution or we can not afford the cost of getting
the microscopic solution. Instead, we are only interested in the behavior of some macroscopic
variables and/or the microscopic behavior in very small parts of the system, for example, near
defects. The question is: Can we develop much more efficient algorithms such as sublinear scal-
ing algorithms, that would give us such information? To develop these new types of algorithms,
we not only have to compress the operators, as has been done in multi-grid methods, but also
the variables. We have to be contend with getting information about only part of the system
variables. These types of algorithms can not be completely general: One has to explore special
features of the problem in order to construct such algorithms.

From the viewpoint of analysis, many analytical techniques have been developed in order
to derive simplified models. Examples include averaging methods, homogenization methods,
matched asymptotics, WKB methods, geometric optics approximations, renormalization group
methods, etc [61]. The principles of such techniques are quite general, but in practice, they only
give us explicit analytical models in very limited situations. In other situations, it is natural to
ask whether one can devise efficient computational techniques based on these principles. This is
the case that we are interested in and was one of the main motivations for developing HMM.

This was the background over which HMM was proposed. Of course, prior to HMM, there
were already many techniques of a similar spirit in many different fields. Well-known examples
include:

• the Car-Parrinello molecular dynamics in which electronic structure models are used to-
gether with molecular dynamics in order to predict the dynamics of the nuclei [45];

• the quasicontinuum method in which atomistic models are used to analyze the mechanical
deformation of crystalline solids [133];

• superparametrization models in which cloud-resolving models are used in order to capture
the large scale tropical dynamics of the atomsphere [84, 140].

HMM was proposed as a general framework that can be used on a variety of problems. It
was not the only attempt. Other notable examples include the extended multi-grid method
and the equation-free approach [40, 93]. A common theme of these approaches is that the
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microscopic models are used throughout the computational process. These should be contrasted
with techniques such as model reduction methods, wavelet-based homogenization, variational
multiscale methods, etc, in which the microscale model is only used in the beginning of the
computation to obtain compressed effective operators.

Inspite of the competing efforts, HMM was the only general attempt based on a top-down
philosophy, which at the time, was not the most popular viewpoint. In fact, at the early days of
multiscale modeling, most efforts were devoted to a bottom-up approach, seeking strategies that
would give us the needed information by working only with the microscale model, without any
prior information about the system at the macroscale. This certainly sounds very attractive and
at a first sight, may seem to be the only right thing to do. In a way, a key insight in HMM was
the recognition that the bottom-up approach was bound to have technical difficulites and will
for some time be limited to rather simple applications. One can appreciate such difficulties by
noticing the fact even if the effective macroscale model is explicitly available, designing stable
and accurate numerical algorithms for such macroscale models is still a very non-trivial task.
Important constraints such as conservation properties, upwinding, etc, have to be implemented
in order to guarantee that the algorithms give rise to the right numerical solutions. Implementing
such constraints at the level of microscale models in the absence of any explicit knowledge about
the macroscale model seems to be next to impossible. Therefore compromises have to be made,
i.e., for many problems, one has to make a guess about the form of the macroscale models to begin
with. Fortunately, in many cases, one does have some prior knowledge about the macroscale
behavior of the system under consideration, and this knowledge is often enough for us to make
the adequate guess.

Since multiscale modeling is a vast subject, touching almost all aspects of modeling, we will
not be able to do justice to all the work that has been done on this subject. Instead we will
focus on HMM. For a general introduction to multiscale modeling, we refer to the monograph
[61].

2 The HMM framework

2.1 The main components of HMM

We will use U to describe the set of macroscopic variables, and u the set of microscopic
variables. They are related by:

U = Q(u), (2.1)

Q is called the compression operator. Any operator that reconstructs u from U is called a
reconstruction operator:

u = R(U). (2.2)
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For consistency, Q and R should satisfy the relation

Q(R(U)) = U. (2.3)

In HMM, we assume that we have an incomplete macroscale model to begin with:

F (U,D) = 0, (2.4)

Here D represents the missing part of the model. For example, if this is a model in continnum
mechanics, then D might be the constitutive relation for the stress. If this is a model for molec-
ular dynamics, then D might be the inter-atomic forces. If this is a model for heat conduction
in composite materials, then D might be the macroscale effective conductivity tensor.

HMM proceeds by estimating the missing data on the fly using the microscale model, at
each location where some missing data is needed. To do this, the microscale model has to be
constrained so that its macro state is the same as the macro state we are interested in.

f(u, d(U)) = 0. (2.5)

Here d(U) represents the constraint for the microscale model. For example, if the microscale
model is the NV T ensemble of molecular dynamics, d might be the average density, momentum
and energy.

Figure 1: Schematics of the HMM framework

If we use H and h to denote the macro and micro numerical parameters such as mesh size,
one can write HMM abstractly in the following form:

FH(UH , DH(uh)) = 0, (2.6)

fh(uh, dh(UH)) = 0.

In practical terms, the basic components of HMM are:
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1. A macroscopic solver. Based on whatever knowledge that is available on the macroscale
behavior of the system, we make an assumption about the form of the macroscale model,
from which we select a suitable macroscale solver. For example, if we are dealing with a
variational problem, we may use a finite element method as the macroscale solver.

2. A procedure for estimating the missing macroscale data D using the microscale model. This
is typically done in two steps:

(a) Constrained microscale simulation: At each point where some macroscale data is
needed, perform a series of microscopic simulations which are constrained so that
they are consistent with the local value of the macro variable.

(b) Data processing: Use the results from the microscopic simulations to extract the
macroscale data needed in the macroscale solver.

For dynamical problems, we can write down the HMM procedure formally as follows. At
each macro time step:

1. Given the current state of the macro variables Un, reinitialize the micro-variables:

un,0 = RUn. (2.7)

2. Evolve the micro variables for some micro time steps:

un,m+1 = Sδt(un,m;Un), m = 0, · · · ,M − 1; (2.8)

3. Estimate D:
Dn = DM(un,0, un,1, · · · , un,M); (2.9)

4. Evolve the macro-variables for one macro time step using the macro-solver:

Un+1 = S∆t(U
n;Dn). (2.10)

Here R is some reconstruction operator which plays the same role as the interpolation or pro-
longation operators in the multi-grid method, Sδt is the micro solver, which also depends on
Un through the constraints, as indicated. DM is some data processing operator which in gen-
eral involves spatial/temporal/ensemble averaging. This is sometimes referred to as the data
estimator. Finally S∆t is the macro solver.

For static problems, the procedure is very similar, particularly in the context of iterative
algorithms: One just has to replace macro time step by macro iteration step.

For dynamic problems, there are two important time scales that we need to consider. The
first, denoted by tM , is the time scale for the dynamics of the macro-variables. The second,
denoted by τε, is the relaxation time for the microscopic model. We will need to distinguish
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two different cases. The first is when the two time scales are comparable, i.e. τε ∼ tM . In
this case, from the viewpoint of numerical efficiency, there is not much room to play with as
far as time scales are concerned. We just have to evolve the microscale model along with the
macroscale model. The second case is when τε � tM . This is the case we will focus on. The
general guideline in this case is:

1. Choose ∆t to accurately resolve the tM time scale.

2. Choose M such that Mδt covers sufficiently the τε time scale to allow equilibration to take
place in the micro model.

2.2 Simple examples

Examples of such a setup include the following:

• ODEs with disparate time scales, where U is a complete set of slow variables, u is the
full set of variables. In this case, the macroscale model could just be an ODE system
for U , the missing data could just be the force. If we know that the macroscale system
has additional structure, then we can take that into account when selecting the macro-
solver. For example, if the macroscale system is a Hamiltonian system, then we can use a
symplectic integrator as the macro-solver.

• Elliptic equations with multiscale coefficients such as the ones that arise in the modeling
of the behavior of composite materials, where U is the averaged displacement field, u is
the microscale displacement field. In this case, the macroscale model is still an elliptic
equation, the missing data could be the coefficients in the macroscale model. If we use the
finite element method as the macro-solver, then the missing data could just be the stiffness
matrix, which has to be evaluated with the help of the full microscale model.

• Molecular dynamics models of complex fluids such as polymer fluids. Here U is the set of
hydrodynamic variables, which in the simplest case would be the field of mass, momentum
and energy densities. u is the set of microscopic variables, i.e. the position and momentum
of all of the participating particles in a molecular dynamics model. The macroscale model
might be the set of local conservation laws for U . The missing data might be the fluxes in
these conservation laws.

• Microscopic pore-scale models of the pressure distribution in a porous medium. Here U
is the macroscale pressure distribution. u is the set of variables in the pore-scale model,
which could be a network-based model. The macroscale model is a Darcy-law type of
model. The missing data are the coefficients in this model.
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• Microscale models of the moving contact line. Here U is the set of macroscopic variables
(velocity and pressure fields, position of the interface between the fluid phases). u is the set
of variables in the microscopic description, say using molecular dynamics, of the contact
line region. The macroscale model might just be the standard model in two-phase flows.
The missing data might be the boundary conditions at the contact line.

Example 1. Stiff ODEs. Consider
dx

dt
= f(x, y),

dy

dt
= −1

ε
(y − ϕ(x)).

(2.11)

Here U = x, u = (x, y). The macroscale should of course again be an ODE, which can be written
as

dx

dt
= F (x) = f(x, ϕ(x)). (2.12)

The missing data is F which should be: F (x) = f(x, ϕ(x)) (we are pretending that this is hard
to calculate analytically).

Let us choose the simplest solver for (2.12), the forward Euler method. HMM would then
proceed as follows:

1. Initialize the micro-solver, e.g. yn,0 = yn−1,M ;

2. Apply the micro-solver for M micro steps:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)), (2.13)

m = 0, 1, · · · ,M − 1.

3. Estimate F (x):
F n = f(xn, yn,m); (2.14)

4. Apply the macro-solver:
xn+1 = xn + ∆t F n. (2.15)

Example 2. Stiff stochastic ODEs. Consider the stochastic ODE:
dx

dt
= f(x, y),

dy

dt
= −1

ε
(y − ϕ(x)) +

√
2

ε
ẇ,

(2.16)

where ẇ(t) is the standard white noise. The averaging theorems suggest that the effective
macroscale equation should again be of the form of an ODE:

dx

dt
= F (x). (2.17)

HMM with forward Euler as the macro-solver proceeds as follows:
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1. Initialize the micro-solver, e.g. yn,0 = yn−1,M ;

2. Apply the micro-solver for M micro steps:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)) +

√
2δt

ε
ξn,m, (2.18)

m = 0, 1, · · · ,M − 1. Here the {ξn,m}’s are independent normal random variables with
mean 0 and variance 1;

3. Estimate F (x):

F n =
1

M

M∑
m=1

f(xn, yn,m); (2.19)

4. Apply the macro-solver:
xn+1 = xn + ∆t F n. (2.20)

Example 3. Elliptic PDE with with multiscale coefficients. Consider

−∇ · (aε(x)∇)uε(x) = f(x). (2.21)

Abstract homogenization theory tells us that the macroscale model should be of the form

−∇ · (a0(x)∇)U(x) = f(x) (2.22)

The missing data are the coefficients a0(x). Naturally, as the macroscale solver, we choose
standard finite element methods, e.g. the piecewise linear finite element method, over a coarse
mesh. The data that need to be estimated is the stiffness matrix for the finite element method. If
a0 = a0(x) were known, we would simply follow standard practice and use numerical quadrature
to compute the elements in the stiffness matrix. Since a0 is not known, we set up a microscale
simulation around each quadrature point in order to estimate the needed function value at that
quadrature point. The details of this procedure will be discussed later.
Example 4. The parabolic homogenization problem Consider

∂tu
ε = ∂x · (a(x,

x

ε
, t)∂xu

ε), (2.23)

where a(x, y, t) is a smooth function and is periodic in y, say with period 1. The macroscale
model is of the form

∂tU = ∂x ·D, (2.24)

D = 〈a(x,
x

ε
, t)∂xu

ε〉, (2.25)

where 〈·〉 means taking spatial averages.
We will choose a finite volume method as the macro-solver. then D needs to be evaluated at

the cell boundaries [9]. We will make the assumption that the flux D depends on the local values
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of U and ∂xU only. Consequently for the micro model, we will impose the boundary condition
that uε(x, t)− Ax is periodic where A = ∂xU is evaluated at the location of interest.

Denote the micro-solver as:
un+1 = Sδτ,δx(un;A). (2.26)

Assuming that we have the numerical approximation {Un
j } (where tn = n∆t, Un

j ∼ U(n∆t, j∆x))
at the n-th macro time step, we obtain the numerical approximation at the next macro time
step by the following procedure:

1. For each j, let Anj = (Un
j − Un

j−1)/∆x.

2. Reinitialize the micro-solver, such that u0
j(x)− Anj x is periodic for each j.

3. Apply the micro-solver M steps:

un,m+1
j = Sδτ,δx(un,mj ;Anj ),

with m = 0, 1, · · · ,M − 1.

4. Compute
Dn+1
j−1/2 = 〈a(x,

x

ε
, tn)∂xu

n,M
j 〉, (2.27)

5. Evolve the macro-state variables using

Un+1
j = Un

j + ∆t
Dn+1
j+1/2 −D

n+1
j−1/2

∆x
, (2.28)

Example 5. Incompressible polymeric fluid flow. Here U is the macroscale velocity field.
The macroscale model should be of the form:

ρ0(∂tU + (U · ∇)U) = ∇ · σ,

∇ · U = 0.

These are simply statements of the conservation of momentum and mass, for a fluid of constant
density ρ0. The missing data is the stress field σ: D = σ.

Let us assume that the micro model is a molecular dynamics model for the particles that
make up the fluid:

mj
d2yj
dt2

= fj, j = 1, 2, · · · , N (2.29)

Here mj, yj are respectively the mass and position of the j-th particle, fj is the force acting on
the j-th particle. u is the set of variables in this model.

Given that the macroscale model is in the form of an incompressible flow equation, it is
natural to select the projection method as the macro-solver [49]. In the implementation of the
projection method, we will need the values of σ at the appropriate grid points. These are the
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data that need to be estimated. At this point, we have to make an assumption about what σ
depends on, this enters in the constraints that we put on the microscale model. Let us assume
that

σ = σ(∇U). (2.30)

We will constrain the molecular dynamics in such a way that the average strain rate is given
by the value of ∇U at the relevant grid point. In general, implementing such constraints is the
most difficult step in HMM. For the present example, one possible strategy is discussed in [126].

From the results of molecular dynamics, we need to extract the values of the needed com-
ponents of the stress. For this purpose, we need a formula that expresses stress in terms of
the output of the molecular dynamics. This can be obtained by modifying the Irving-Kirkwood
formula [90]. These details will be explained in Section 5. We refer to [126] for some numerical
results obtained using this strategy.

2.3 Error analysis

The basic idea, as was explained in [63], is to compare the HMM solution with the solution
of the selected macroscale solver for the effective macroscale model. Their difference is caused
by an additional error in the HMM solution due to the error in the data estimation process.
This new error term is called the HMM error, denoted by e(HMM). We will assume that both
the HMM and the macro-solver for the effective macroscale model can be expressed in the form

Un+1
HMM = Un

HMM + ∆tF ε(Un
HMM, U

n−1
HMM, · · · ), (2.31)

Ūn+1
H = Ūn

H + ∆tF̄ (Ūn
H , Ū

n−1
H , · · · ). (2.32)

Note that
||Quε − UHMM|| ≤ ||Quε − Ū ||+ ||ŪH − Ū ||+ ||UHMM − ŪH ||, (2.33)

where Ū is the solution of the macroscale model, ŪH is the numerical solution to the effective
macroscale model computed using (2.32), Uhmm is the HMM solution. The first term on the
right hand side of (2.33) is due to the error of the effective model; the second term is due to
the error in the macroscale solver; the third term is the HMM error, due to the error in the
estimated data. Normally we expect that estimates of the following type hold:

||Quε − Ū || ≤ Cεα, (2.34)

||Ū − ŪH || ≤ C(∆t)k, (2.35)

where k is the order of accuracy of the macro-solver. In addition, define

e(HMM) = max
U
‖F̄ (Un, Un−1, · · · )− F ε(Un, Un−1, · · · )‖. (2.36)
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Then under general stability conditions, one can show that [63]:

||UHMM − ŪH || ≤ Ce(HMM), (2.37)

for some constant C. Therefore, we have

||Quε − UHMM|| ≤ C(εα + (∆t)k + e(HMM)). (2.38)

The key in getting concrete error estimates and thereby giving guidelines to designing multi-
scale methods lies in the estimation of e(HMM). This is specific to each problem. But typically,
e(HMM) contains several contributions:

• the relaxation error, due to the influence of the transients;

• the sampling error, due to the fact empirical averages are used in order to estimate the
ensemble average;

• the size effect, due to the fact that a computational domain of much smaller size is used
to estimate quantities on domains of much bigger size.

Examples of these error components will be discussed in subsequent sections.

2.4 Difficulties with HMM

The most significant shortcoming of HMM is that it is based on a preconceived macroscale
model. If the form of the macroscale model is chosen incorrectly, one cannot expect the resulting
HMM procedure to produce accurate results. For example, if the effective macroscale model
should be a stochastic ODE, but one makes the assumption that it is a deterministic ODE, then
the stochastic component of the macroscale solution will not be captured correctly by an HMM
based on such an assumption.

There is a important reason for starting with the macro-solver: Even for problems for which
we do have a sufficiently accurate macroscale model, finding an effective numerical algorithm
for that macroscale model may still be a significant task. Indeed this has been the focus of the
computational mathematics community for more than 50 years. One example is Euler’s equation
in gas dynamics whose solutions typically contain shocks, i.e. discontinuities [100]. In this case,
the numerical algorithms have to satisfy certain constraints in order to be able to solve Euler’s
equation accurately. Obviously this should also be a concern for multiscale methods.

For practical problems of interest, we often have accumulated some knowledge about what
the macroscale model should be like. Such information can be used when making assumptions
about the macroscale model used in HMM. In cases when one makes a wrong assumption, one
can still argue that HMM produces an “optimal approximation” for the macroscale behavior of
the solution in the class of the models considered. In this sense, HMM is a way of addressing
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the following question: What is the best one can do given the knowledge we have about the
problem at all scales?

Another difficulty is that HMM, as was presented, is not very seamless for two reasons:

• It requires knowing a complete set of macroscale variables to begin with.

• It require converting back and forth between the macro- and micro-states of the system.
This can become rather difficult in actual implementations, particularly when construct-
ing discrete micro-states (needed for example in molecular dynamics) from continuous
macroscale variables.

The seamless strategy proposed in [69] is intended to overcome the second difficulty. This will be
explained next. The first difficulty is more significant. It can be dealt with in various situations
with different levels of satisfaction, as we explain in the section 3.1.2.

2.5 Seamless HMM

To motivate the seamless algorithm, let us consider the stiff ODE example (2.11). If we want
an efficient algorithm for capturing the behavior of x without resolving the detailed behavior
of y, we can simply change the small parameter ε to a bigger value ε′, the size of which is
determined by the accuracy requirement

dx

dt
= f(x, y)

,
dy

dt
= − 1

ε′
(y − ϕ(x)).

(2.39)

This is then solved using standard ODE solvers. This idea of boosting the parameters is very
simple, but it can also be quite useful, as in Car-Parrinello molecular dynamics [45].

We can look at this differently. Instead of changing the value of ε, we may change the clock
for the microscale model, i.e. if we use τ = tε/ε′ in the second equation in (2.39), then (2.39)
can be written as: 

dx

dt
= f(x, y)

,
dy

dτ
= −1

ε
(y − ϕ(x)).

(2.40)

If we discretize this equation using standard ODE solvers but with different time step sizes for
the first and second equations in (2.40), we obtain the following algorithm:

yn+1 = yn − δτ

ε
(yn − ϕ(xn)), (2.41)

Dn+1 = yn+1, (2.42)

xn+1 = xn + ∆′tf(xn, Dn+1). (2.43)
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Here yn ∼ y(nδτ) and xn ∼ x(n∆′t). The value of δτ is the time step size we would use if we
attempt to solve (2.40) accurately. If (2.40) were the molecular dynamics equations, then δτ

would be the standard femtosecond time step size. ∆′t is the time step one would use for (2.39).
It satifies

∆′t

ε′
=
δτ

ε
. (2.44)

In general, ∆′t should be chosen such that one not only resolves the macro time scale, but also
allows the micro state to sufficiently relax, i.e. to adjust to the changing macroscale environment.
For example, if ∆t is the time step size required for accurately resolving the macroscale dynamics
and if τε is the relaxation time of the microscopic model, then we should choose ∆′t = ∆t/M

where M � τε/δτ .
The advantage of this second viewpoint is that it is quite general, and it does not require

tuning parameters in the microscopic model. In a nutshell, the basic idea is as follows.

1. Run the (constrained) micro solver using its own time step δτ .

2. Run the macro solver at a pace that is slower than a standard macro model: ∆′t = ∆t/M .

3. Exchange data between the micro- and macro-solvers at every step.

Because data is exchanged at every time step, there is no need to reconstruct new microscale
states to initialize the microscale simulation. Intuitively, what one does is to force the microscale
model to accommodate the changes in the macroscale environment (here the change in x) at a
much faster pace. This is illustrated in Figure 2.

Figure 2: Illustration of HMM (upper panel) and the seamless algorithm (lower panel). Middle
panel: rescaling the micro time scale.

The general form of the seamless algorithm can be written as follows:
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1. Given the current state of the micro variables u(τ) and the macro variables U(t), evolve
the micro variables for one time step

u(τ + δτ) = Sδτ (u(τ);U(t)); (2.45)

2. Estimate D:
D = D(u(τ + δτ)); (2.46)

3. Evolve the macro variables

U(t+ ∆′t) = S∆′t(U(t);D). (2.47)

In this algorithm, we alternate between the macro- and micro-solvers, each running with its own
time step (therefore the micro- and macro-solvers use different clocks). At every step, the needed
macroscale data is estimated from the results of the micro-model (at that step) and is supplied
to the macro-solver. The new values of the macro-state variables are then used to constrain the
micro-solver.

From the consideration of time scales alone, the computational savings in the seamless algo-
rithm come from the fact that effectively the system evolves on the time step ∆′t. In the case
when the time-scales are disparate, ∆′t can be much larger than δτ . Therefore one can define
the savings factor:

CS =
∆′t

δτ
=

∆t

Mδτ
. (2.48)

For example, assume that the microscopic model is molecular dynamics, and the time step size
is femtoseconds (δτ = 10−15 seconds), to simulate one second of physical time, one needs to run
the simulation for 1015 steps. On the other hand, assume that the relaxation time is on the
order of picoseconds (10−12 seconds) which is about 103 micro time steps, then M = 105 is a
reasonable choice. Simulating one second of physical time using the seamless algorithm requires
105 steps. This is a saving by a factor 1010. The price to be paid is that we no longer obtain
accurate dynamic information at the level of microscopic detail: we can only hope to get the
distribution of the fast variables accurately.

The price we pay is that at the level of the microscopic details, the information we get is not
as accurate as the full microscopic simulation.

A slightly different interpretation of the seamless algorithms will be given in the next section.

Example: SDEs with multiple time scales Going back to the SDE (2.16), the seamless
algorithm with forward Euler scheme is simply:

yn+1 = yn − δτ

ε
(yn − φ(xn)),+

√
2δτ

ε
ξn (2.49)

xn+1 = xn + ∆′t f(xn, yn+1), (2.50)
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where the {ξn}’s are independent normal random variables with mean 0 and variance 1. Note
that for HMM, we have xn ∼ x(n∆t), but for the seamless algorithm, we have xn ∼ x(n∆′t) =

x(n∆t/M).

2.6 HMM for type A problems

There are two major types of multiscale problems: type A problems for which multiscale
modeling is needed to resolve local defects or singularities and type B problems for which mul-
tiscale modeling is needed to supply constitutive relations at the macroscale [63]. HMM is most
easily formulated for type B problems, and so far the formulations we have discussed are mostly
for these problems. But HMM can also be used for type A problems, particularly in situations
for which the relaxation time scale for the local structure near defects is much faster than the
macroscopic dynamic time scale. In that case, the effect of the microscale structure near defects
can be viewed as providing effective boundary conditions for the macroscale model at the defects.

One example is the moving contact line problem. There the macroscale model is simply the
continuum two-phase flow model. The missing data are the boundary conditions at the contact
line, which is then extracted from a molecular dynamics simulation of the local structure around
the contact line.

3 ODEs and dynamical systems

3.1 General considerations

3.1.1 Standard HMM scheme

It is useful to revisit the ideas discussed in the last section in the context of more general
stiff ODEs. Consider a generic multiscale system of the type

dxε

dt
= f(xε, yε),

dyε

dt
=

1

ε
g(xε, yε),

(3.1)

and let us assume that in the limit as ε → 0 the dynamics of this system can be described by
the parametric distribution

µX(t)(dy), (3.2)

where µx(dy) is the invariant distribution of

dY

dt
= g(x, Y ), (3.3)

with x viewed as a fixed parameter, and X(t) in (3.2) solves

dX

dt
= F (X(t)), (3.4)
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where
F (x) =

ˆ
f(x, y)µx(dy). (3.5)

In other words, we assume that, as ε → 0, xε converges pathwise to X whereas yε converges in
law to Y , in a way that is captured by the distribution (3.2). This way of pharsing the limit
theorem encompasses all the situations of interest to HMM: for example, (3.1) may be a set of
stiff ODEs with a slow manifold structure, in which case µx(y) is atomic on this manifold (i.e.
for any x, µx(dy) = δy(x)(dx) for some y(x)); a set of SDEs, in which case µx(y) is typically
broad; etc [61].

The standard HMM scheme starts with an integrator for (3.4). We will denote the numerical
map associated with this integrator by ηFt : here the superscript F makes explicit the dependency
of this map on the function F defined in (3.5), which we do not know explicitly – the aim of
aim of HMM is to approximate it on-the-fly. Note that ηFt could depend on the derivatives of F
besides this function itself, in which case the HMM scheme will have to estimate these as well:
below we will denote collectively by (F (x), DF (x), ...) the input about F needed in the map ηFt .
In order to obtain this input, let us denote by ζxt the numerical map associated with (3.3), where
now x enters as a parameter. Finally, given the output (ζxδt(y0), (ζxδt)

o2(y0), . . . , (ζxδt)
oN(y0)) of

this map for N micro-steps of size δt starting from the initial condition Y (0) = y0, let us denote
by

(F̃ (x), DF̃ (x), ...) = F
(
ζxδt(y0), (ζxδt)

o2(y0), . . . , (ζxδt)
oN(y0)

)
, (3.6)

the estimator for (F (x), DF (x), ...). The HMM scheme then iterates upon the following proce-
dure:

1. Microscale solver: Given Xm∆t, generate

(ζXm∆t
δt (y0), (ζXm∆t

δt )o2(y0), . . . , (ζXm∆t
δt )oN(y0)).

2. Estimator: Use these data to estimate

(F̃ (Xm∆t), DF̃ (Xm∆t), ...) = (ζXm∆t
δt (y0), (ζXm∆t

δt )o2(y0) . . . , (ζXm∆t
δt )oN(y0)).

3. Macroscale solver: Set
X(m+1)∆t = ηF̃∆t(Xm∆t).

Note that in the microsolver step, an initial data y0 is needed. A natural choice is to use the
last update of the previous iteration, i.e. at iteration m+ 1 take ym+1

0 = (ζXm∆t
δt )oN(ym0 ).

3.1.2 Seamless HMM schemes

Let us now revisit the question of developing seamless HMM schemes that was already
discussed in Section 2.5. To this end, consider again the generic multiscale system (3.1) and let
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us denote by φt a map that approximate numerically the solution of
dX

dt
= f(X, Y ),

dY

dt
= 0,

(3.7)

and by ψt a map that approximate numerically the solution of
dX

dt
= 0,

dY

dt
= g(X, Y ),

(3.8)

Note that the map ψt associated with (3.8) leaves the slow variables xε unchanged and could
e.g. be used in the microsolver of HMM: in the notations of the last section ψt(x, y) = (x, ξxt (y)).
In terms of these maps, a vanilla splitting scheme for (3.1) with timestep δt would for example
iterate upon

φδt ◦ ψδt/ε. (3.9)

Alternatively, we could take advantage of the fact that the map associated with (3.7) probably
remains stable with larger time steps than that associated with (3.8) and use

φMδt ◦ ψ◦Mδt/ε. (3.10)

instead of M iterates of (3.9) to advance time by Mδt.
It is interesting to revisit the HMM within these notations. Suppose that as estimator in the

HMM we simply pick the last value of the fast variables after M steps of size δt, then take a
macro-timesep of size ∆t. The resulting scheme can be written compactly as

φ∆t ◦ ψ◦Mδt/ε. (3.11)

This scheme has exactly the same cost as (3.10) but it advances the variables by ∆t instead of
Mδt, thereby resulting in a efficiency gain if

∆t > Mδt, (3.12)

If (3.1) were a stiff system of ODEs, the estimator we just picked to derive (3.11) is the standard
one, and so we already know why HMM works. Remarkably, it works in the general case.
To see why, note that (3.11) can alternatively be interpreted as a time splitting scheme for
(compare (3.1)) 

dxε
′

dt
= f(xε

′
, yε

′
),

dyε
′

dt
=

1

ε′
g(xε

′
, yε

′
),

(3.13)
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where ε′ = ε∆t/Mδt. Indeed (3.11) is consistent with (3.13) in the limit

∆t→ 0, δt→ 0 with ∆t/Mδt→ α ∈ (1,∞), (3.14)

where we used the inequality (3.12) to restrict the range of α. Thus (3.13) is a version of the
original system (3.1) in which ε has been boosted to the higher value ε′ = εα > ε, thereby making
it less stiff. The key observation that this re-interpretation permits is this: As long as

ε∆t�Mδt ⇔ ε′ = εα� 1, (3.15)

the limit theorem we used to justify the HMM scheme guarantees that the solution to (3.13)
remains close to that of the original system (3.1) in the sense that xε′ ≈ xε pathwise, and the
stationary distribution of yε′ conditional on the current value of xε′ approximates that of yε

conditional on the current value of xε. This also implies that the numerical solution generated
by (3.11) gives an approximation to the solution of the original system (3.1) which is accurate in
the same sense. Thus, inequalities (3.12) and (3.15) give the conditions necessary for the scheme
to provide an efficiency gain and remain accurate, respectively.

To make the link with the discussion in Section 2.5, note that (3.13) can also be interpreted
as a system in which ε remains the same but the clock of the fast variables has been changed
consistent with the time-rescaling τ = tε/ε′.

In practice, the values of ∆t for which (3.15) remain valid may be too large for the scheme (3.11)
to be stable, which seems to put an unnecessary cap on the efficiency gain achievable by the
scheme. In these cases, letting ∆′t = ∆t/M , we can use the following scheme whose cost is close
to that of (3.11) and also advances the variables by ∆t at every iterate (i.e. provides the same
efficiency boost) without suffering from the same stability limitations:(

φ∆′t ◦ ψδt/ε
)◦M

. (3.16)

In terms of ∆′t, (3.15) becomes

∆′t� δt

ε
, (3.17)

and if the numerical error of the vanilla time-spliting scheme (3.9) is C(δt/ε)a for some C > 0,
then that of the scheme (3.16) is

C(∆′t/ε′)a + C̄ε′b = C(δt/ε)a + C̄(ε∆′t/δt)b, (3.18)

where C̄ > 0 and the exponent b depends on the rate of convergence of the solution of (3.1)
towards its limit as ε → 0. Note that in order to be useful, the constant C in the error
estimate (3.18) needs to be independent of ε. This property is not standard for time dependent
problems, but is expected to hold if the map ψt for (3.8) is chosen appropriately and takes
advantage of the fact that the fast variables reach a stable (statistical) steady state conditional
on the slow variables being fixed. (3.16) was first introduced in [75] and further developed in
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[69]. It is a seamless version of HMM in which the slow and the fast variables are evolved
concurrently, and no reinitialization of the fast variables is required. This last feature comes
especially handy in situations where the values that the fast variables can take are constrained
by those of the slow variables, a situation that arise e.g. in molecular dynamics simulations (for
applications in this context see e.g. [106, 107, 21]).

The scheme (3.16) is so simple, both in its implementation and interpretation, that it may
seems like a trivilization of HMM – just boost the value of ε in the original system (3.1), adjust
the time step accordingly, and be done! Yet, it opens the door to more sophisticated strategies.
Indeed, since C̄(ε∆′t/δt)b is the only extra term appearing in the error estimate (3.18), and this
term is controlled by the rate of convergence of (3.1) towards its limit as ε→ 0, this suggests to
modify (3.1) in such a way that the limit is unchanged but convergence to it is faster. How to
do so concretely should be examined on a case by case basis.

The seamless version of HMM also opens the door to schemes in which the slow variables do
not need to be identified beforehand, as was first noted in [137]. To see why, suppose that (3.1)
is replaced by

dzε

dt
= F (zε) +

1

ε
G(zε), (3.19)

and let us assume that there exists some diffeomorphism that maps zε onto the variables (xε, yε)

satisfying (3.1). More specifically, we require that xε = θ(zε) for some θ such that

Dθ(z)G(z) = 0, (3.20)

so that
dxε

dt
= Dθ(zε)F (zε), (3.21)

i.e. the variable xε = θ(zε) are indeed slow. We also require that no other (hidden) slow variable
exists, i.e. xε = θ(zε) are those entering the limit theorem which the HMM scheme is built upon.
Even if we do not know the explicit form of θ we can make use of its existence. To see how,
denote by Φt the map that approximates the solution to

dZ

dt
= F (Z), (3.22)

and by Ψt the map that approximates the solution to

dZ

dt
= G(Z), (3.23)

In terms of these maps a vanilla time-splitting integrator for (3.19) would e.g. read (com-
pare (3.9))

Φδt ◦Ψδt/ε, (3.24)

or (compare (3.10))
ΦMδt ◦Ψ◦Mδt/ε. (3.25)
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This last scheme updates the variables byMδt at every iterate, and the discussion above suggests
to replace it instead by (compare (3.11))

Φ∆t ◦Ψ◦Mδt/ε, (3.26)

or (
Φ∆′t ◦Ψδt/ε

)◦M
, (3.27)

where again ∆′t = ∆t/M . In the limit (3.14), both (3.26) and (3.27) are consistent with a
version of (3.19) where ε has been boosted to a higher value ε′ = εα = ε∆t/Mδt,

dzε
′

dt
= F (zε

′
) +

1

ε′
G(zε

′
), (3.28)

which can again be used to explain why the scheme is accurate – basically (3.15) needs to hold
and if the numerical error of the vanilla time-spliting scheme (3.24) is C(δt/ε)a for some C > 0,
then that of the scheme (3.27) is again given by (3.18).

The scheme (3.27) was first proposed in [137]. Later a very close variant of this scheme was
proposed in [134] under the name of FLAVORS. Specifically, if we denote by χ1/ε

t the map that
approximates numerically the solution of (3.19), and assume that we can control the size of ε in
this map, then the scheme proposed in [134] is (in our notations)(

χ0
∆′t−δt ◦ χ

1/ε
δt

)◦M
. (3.29)

As can be seen, compared to (3.27), this scheme amounts to a slight modification of the way
the time-spliting is implemented: (3.27) evolves the variables using first the term G/ε for a step
of δt, then the term F for a step ∆′t, whereas (3.29) evolves the variables using first the full
F + G/ε for a step of δt, then the term F alone for a step ∆′t − δt. In terms of accuracy, this
modification is inconsequential – like (3.27), (3.29) is consistent with (3.28) in the limit (3.15).
It also leads to no significant change in cost.

3.2 ODEs with oscillatory solutions

One advantage of the HMM framework is that sophisticated data estimation techiques can
be used in the estimator step in order to improve its performance. This is most easily seen in the
context of ODEs with highly oscillatory solutions. The examples discussed here also illustrate
the subtleties involved in knowing or not knowing the slow variables. To be consistent with the
existing literature, we will also use slightly different notations here.

Ordinary differential equations (ODEs) with highly oscillatory solutions are naturally chal-
lenging for numerical simulation. Several different numerical approaches have been suggested,
each appropriate to some class of ODEs. For harmonic oscillatory problems, traditional numeri-
cal approaches attempt to either filter out or fit fast, ε-scale oscillations to some known functions
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in order to reduce the complexity, e.g. [77, 95, 131], or use some notion of Poincaré map to de-
termine slow changes in the orbital structure [79, 122]. A general class of approaches aiming
at Hamiltonian systems are geometric integration schemes that preserve a discrete version of
certain invariance. We refer the readers to [85] and [99] for more extensive list of literature.
These types of algorithms require O(ε−1) number of time steps. In certain applications, special
considerations are given to the expensive cost of evaluating non-local potential in large systems,
see e.g. the impulse method and its derivatives [99]. For a recent review on numerical methods
for highly oscillatory systems see [53].

Substantial progress has been made in the proposed direction of HMM style integration
during the past few years. See e.g. [67, 69], [41, 42, 46, 130][27], and [134].

3.2.1 A kernel averaging theorem

In the present context, the appropriate HMM is best illustrated by Figure 3: the upper
directed axes represent the grid used for U imposed by the macro-solver, and the lower axes
represent the finer grids on which solutions of the microscopic equation are constructed by the
micro-solver, with initial conditions determined from the values of U . The downward pointing
arrows symbolize the determination of a consistent initial condition for the microscale equation
from U at tn; this process is referred to as reconstruction. The upward pointing arrows relate
the evaluation of the effective equation from the time history of microscale variables computed
in a short time interval η; this process is referred to as data estimation. Data estimation includes
an evaluation of dU/dt as well as the values of U at different times. The process of evaluating
a consistent value of Uat time t∗ from the time history of the microscopic variables is referred
to as compression. Typically, this evaluation is accomplished through filtering with a chosen
compactly supported kernel K.

Hence we may present the above procedures algorithmically as follows:

1. Force estimation:

(a) Reconstruction: at T = tn, U
n 7→ x0

n = RUn.

(b) Solve
dxn
dt

= fε(xn, t), x(tn) = x0
n,

for t ∈ [tn, tn + η].

(c) Compression: U∗ = Q[xn(·)].

(d) Estimate force: f̄(tn + δt∗) ∼ f̃(tn + δt∗) = K ∗ fε(xn).

(e) (If n = 0, prepare (reset) the initial data by K̃:U0 = K̃ ∗ xn.)

2. Evolve the macro variables: {U j}nj=0, U
∗, f̄(tn + δt∗) −→ Un+1, T = tn+1.
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Figure 3: Two typical structures of the proposed multiscale algorithm. The structure on the left
is for time reversible problems.

3. Repeat

In this subsection, the reconstruction operator R will be taken to be the identity operator; i.e.
RUn = Un, and the compression Q[xn(·)] = xn(tn + δt∗).

The two diagrams in Figure 3 differentiate the general structures of the HMM ODE solvers.
There are two types of schemes being depicted there. In both schemes, the top axis represents
the macro-grid on which we solve for the values of U (step 2), and under each grid node on the
top axes, there corresponds a micro-grid over which step 1(b) takes place. The arrow pointing
from each macro-grid point tn down to a micro-grid denotes the action taken in step 1(a), while
the arrows pointing from each micro-grid up towards the macro axis represent steps 1(c) and
1(d).

The schemes depicted in Figure 3 allows f̄ and U∗ (see steps 1 and 2) to be evaluated at the
time location tn + δt∗. The structure depicted on the left in Figure 3 requires δt∗ = 0, and thus
is suitable for implementing a linear multistep method as macro-solver. In this type of schemes,
the effective force is usually evaluated at the left end of each fine scale evolution, therefore, a
nonsymmetric kernel is used. In comparison, in the structure on the right, δt∗ = η/2 , and a
one-step method such as Runge-Kutta can be used as a macro-solver. Due to this particular
structure, a symmetric kernel can be used. In what follows, we use H and h for the discrete
time steps used in the macro- and micro-grid respectively.

Force estimation by specialized kernels

In our formulation, we need to estimate the effective force locally at a point using the mi-
croscale data (Step 1(b)-(d)). Motivated by the analytic averaging techniques, see e.g. [61], we
hypothesize that the effective force of a system of interest can be defined by

f̄(t) = lim
δ−→0

[
lim
ε−→0

1

δ

ˆ t+δ

t

fε(τ)dτ

]
.
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We assume that f̄ is slowly varying in the sense that∣∣∣∣ dpdtp f̄(t)

∣∣∣∣ ≤ C, for 0 ≤ p ≤ s,

for some constant C independent of ε. Our goal in this section to show that time filtering using
a kernel d Kp,q

η , defined below, with η = η(ε) −→ 0 as ε −→ 0 converges to f̄ :

Kp,q
η ∗ fε = Kp,q

η ∗
(
f̄ + gε(t)

)
−→ f̄ as ε −→ 0. (3.30)

In many situations, fε or gε assumes special forms such as fε(t) = fε(t, t/ε) that are periodic
in the second variable. For example,

du

dt
= fε(u, t) =

i

ε
λu+ φ(t),

has solution

u(t) = eiε
−1λt(u0 +

ˆ t

0

e−iε
−1λsφ(s)ds).

The force fε(t) = fε(u, t) = i
ε
λu+ h(t) is of the form fε(t, t/ε). In this case, we define

f̄(t) =

ˆ 1

0

f(t, s)ds,

and
gε(t) = g(t,

t

ε
) = fε − f̄(t).

We will use Kp,q to denote the kernel space discussed here. K ∈ Kp,q(I) if K ∈ Cq
c (R) with

supp(K) = I , and ˆ
R
K(t)trdt =

1, r = 0;

0, 1 ≤ r ≤ p.

Furthermore, we will use Kη(t) to denote the scaling of K:

Kη(t) :=
1

η
K

(
t

η

)
.

For convenience, we will also use Kp,q to denote a function in Kp,q(I) . We use K ∈ Kp,q([−1, 0])

if δt∗ = 0 in step 1 of the algorithm described abovev, and K ∈ Kp,q([−1, 1]) if δt∗ = η/2.

Theorem. Let fε(t) = f(t, t/ε), where f(t, s) 1-periodic in the second variable and ∂rf(t, s)/∂tr

is continuous for r = 0, · · · , p − 1,For any K ∈ Kp,q, there exists constants Cf̄ ,gεand Cgε , inde-
pendent of ε and η, such that

E = |Kη ∗ fε(t)− f̄(t)| ≤ Cf̄ ,gεη
p + Cgε

(
ε

η

)q
.

Furthermore, the error is minimized if η is chosen to scale with εq/(p+q).

24



3.2.2 Problem with hidden slow variables

We start by considering a class of system that has an explicit slow-fast grouping in the
solution’s components: dx

dt
= 1

ε
f(x, y, t) + g(x, y, t),

dy
dt

= h(x, y, t).
(3.31)

Here the x components stay bounded but are highly oscillatory, and the y components are called
the slow variables of the system, since their time derivatives are formally bounded. This would be
the case for Hamiltonian systems written in the action and angle coordinates [61]. If x(t) yields
an invariant measure on some fixed manifoldM, then y(t) can be consistently approximated in
any constant time interval by an averaged equation

dȳ

dt
= h̄(y, t) :=

ˆ
M
h(x, y, t)dµ(x). (3.32)

Such systems are widely studied to build multiscale scale methods. See e.g. [136][60]. In this case,
it is reasonable to use y as the macroscopic variable; i.e. U = ȳ ' y, and R(U,DR) = (x∗, y)

where DR gives the value x∗ ∈ M. For example, x∗ may be taken from the x values in the
previous microscale simulation. The compression Q may simply be Q(x, y) = y.

However, if there are resonances among the oscillations, x(t) is likely not to remain on a
fixed invariant manifold [95], and more sophistication in the algorithm is needed. One can see
the essence of this problem from the simple example,dx

dt
= i

ε
x+ g(x), x(0) = 1,

dy
dt

= h(x), y(0) = y0.
=⇒

dw
dt

= e−
i
ε
tg(e

i
ε
tw), x(t) = e

i
ε
tw(t),

dy
dt

= h(e
i
ε
tw), y(0) = y0.

Let us formally decompose e−
i
ε
tg(e

i
ε
tw) = ḡ(w) + α(e

i
ε
t, w), where ḡ does not depend on any

fast oscillations. If ḡ ≡ 0, w(t) stays close to 1, due to strong self-averaging in α. Thus (3.32)
corresponds to averaging h over the unit circle, and dµ is the arc-length element. Resonance in
this system corresponds to the case where ḡ is non-zero. Consequently, the averaging has to be
performed with the correct measure

dȳ

dt
= h̄(y, t) :=

ˆ
M(t)

h(x, y, t)dµ(x; t).

For example, if g(x) = x, then ḡ(w) = w, and α ≡ 0. Consequently, M(t) is a circle with
radius equal to w(t) = exp(t). Without the knowledge of w(t), it is impossible to define a
consistent reconstruction operator R, and consequently, it is impossible to build a convergent
multiscale algorithm. In some literature, the issue caused by resonance is referred to as the
system having hidden slow variables [75, 73, 24][134]. It is essential that a multiscale method
computes accurately the effect of the hidden slow variables.
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It is possible to design multiscale algorithms that compute the effective behavior of highly
oscillatory dynamical systems by using slow variables, [25]. We continue our discussion using
the previous example, but instead, we rewrite the equation for x as a system in R2 :dx1

dt
= 1

ε
x2 + x1,

dx2

dt
= −1

ε
x1 + x2,

with initial conditions (x1(0), x2(0)) = (0, 1). Thus (x1(t), x2(t)) = (et sin ε−1t, et cos ε−1t).
Taking I = x2

1 + x2
2, we notice that I has a bounded derivative along the trajectory of the

solution; i.e., I ′ := (d/dt)I(x1(t), x2(t)) = 2I is independent of ε. For this particular example
one can easily solve for I, I(t) = I(0)e2t. In fact, the uniform bound on I ′ indicates the slow
nature of I(x1(t), x2(t)) when compared to the fast oscillations in (x1(t), x2(t)). This type of
characterization of the effective dynamics of highly oscillation systems are commonly used in
the literature. In this example it was easy to find the slow quantity I. In general it is difficult
and the proposed research aims at avoiding this difficulty. In classical mechanics, I is referred
to as the action variable and correspondingly there is an angle variable whose gradient is τ .

We say that ξ : D0 ⊂ Rd 7→ R has a bounded derivative for 0 < ε < ε0 along xε(t) if

sup
xε∈D0,ε∈(0,ε0)

|∇ξ(xε) · ẋε| ≤ C. (3.33)

Such functions are commonly referred to as slow variables of the system. See for example
[94, 95, 96, 75, 78, 25, 26]. Other approaches to find slow variables includes, e.g. [29, 30].

Typically, one may expect that the trace of a slow variable along the dynamical system’s
solutions, ξ ◦ xε, converge to a smooth curve as ε → 0. We shall denote this limit as ξ̄(t;x0).

In designing multiscale algorithms for this type of problems, it is often convenient to aim at
constructing accurate approximation of ξ̄ by suitable filtering of the oscillations in xε(t).

3.2.3 Algorithm with hidden slow variables

Consider an ODE system of the general form

dx

dt
=

1

ε
f(x) + g(x), x(0) = x0, (3.34)

where 0 < ε ≤ ε0 is a small parameter that characterizes the separation of time scales in the
problem. Let ζ(t) denote the solution of

dζ

dt
= F̄ (ζ) =

ˆ
S1

F (ζ, σ, γ = 0)dσ, ζ(0) = ξ(0). (3.35)

The first step in our algorithm is to identify the slow variables ξ(x). The slow variables can
be determined analytically or numerically by identifying coefficients ina predetermined form.
For detail, see [25]. Then, the ODE (3.34) is integrated using a two level algorithm; each level
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corresponds to the integration of (3.34) in a different time scale. The first is a Macro-solver,
which integrates the averaged equation (3.35). The second level is a micro-solver that is invoked
whenever the Macro-solver calls for it. Each time the micro-solver is invoked, it computes a
short time solution of (3.34) using a suitable initial data.

1. Construction of slow variables:
Find functions ξ1(x), . . . , ξr(x) such that|∇xξẋ| ≤ C0 and rank(∂ξ/∂x) = r. See [25] for
details.

2. Multiscale evolution:

(a) Initial conditions: x(0) = x0 and n = 0.

(b) Force estimation:

i. microscale solver: Solve (3.34) in t ∈ [tn, tn + 2η] with initial conditions xn.

ii. averaging: approximate ξ̇(tn + η) by

〈ξ̇〉η(tn + η) = (Kη ∗ ξ̇)(tn + η) = (−K̇η ∗ ξ)(tn + η).

(c) macroscale solver (forward Euler example):
xn+1 = x

M/2
n +Hδx, where δx is the least squares solution to the linear system

δx · ∇ξi = F̄i(ξ) = 〈ξ̇i〉η,

for all i = 1 . . . r.

(d) n = n+ 1. repeat steps (b) and (c) to time T .

Note that there is no need to actually change the original ODE (3.34) to a form with explicit
use of the slow variables.

3.2.4 A Fermi-Pasta-Ulam model

The Fermi-Pasta-Ulam model [76] is a simple system of unit mass particles connected by
springs. The springs alternate between stiff linear and soft non-linear ones. Recently, this
model was considered by Hairer et. al. [85] as a benchmark problem for studying the long-time
properties of numerical solutions to stiff ODEs using geometric integrators. The model is derived
from the Hamiltonian

H(p, q) =
1

2

2k∑
i=1

p2
i +

1

4
ε−2

k∑
i=1

(q2i − q2i−1)2 +
k∑
i=0

(q2i+1 − q2i)
4. (3.36)

The following linear change of variables is convenient, since it separates the elongations of the
stiff springs and associated momentum:

xi = ε−1(q2i−1 − q2i)/
√

2 , vi = (p2i−1 − p2i)/
√

2, (3.37)
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and a second set of variables associated with the soft springs:

yi = (q2i−1 + q2i)/
√

2 , ui = (p2i−1 + p2i)/
√

2, (3.38)

Defining y0 = x0 = y2k+1 = x2k+1 = 0, the equations of motion become
ẏi = ui,

ẋi = ε−1vi,

u̇i = −(yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3,

v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3.

(3.39)

Typical initial conditions are x1 = y1 = v1 = u1 = 1 and zero otherwise, which means that
initially k− 1 of the stiff springs are at rest. The system admits 4k− 1 slow variables. First are
all the degrees of freedom which are related to the soft springs: yi and ui, i = 1 . . . k. Second, the
total energy (kinetic + potential) of the stiff springs, Ii = x2

i + v2
i . Finally, the relative phases

between the different stiff springs, φk = x1xi + v1vi, i = 1 . . . k − 1.
On the O(1) time scale the system can be evolved using the HMM algorithm described above.

Figure 4a depicts our results for systems with three stiff springs, k = 3, and with ten springs,
k = 10, in Figure 5a. Simulation parameters for k = 3 are ε = 10−4, h = ε/15, and H = 0.02

and η = 15.4ε. For k = 10 we used ε = 10−4, h = ε/15, and H = 0.02 and η = 20.4ε. On
the O(ε−1) time scale the dynamics become more interesting as the energies Ii begin to change
[76, 85].
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Figure 4: Comparison of the HMM approximation for the solution of the Fermi-Pasta-Ulam
equations of motion (3.39) with 3 stiff springs, k = 3, to the one obtained using the Verlet
method with step size of the order of ε. (a) soft variables on a O(1) time scale and (b) I1, I2

and I3 on a O(ε−1) scale. With the above parameters the HMM algorithm runs an order of
magnitude faster than the Verlet one. The ratio between running times increases with smaller
ε.

3.3 Stochastic simulation algorithms

Chemical kinetics can either be described using the rate equations or stochastic simulation
algorithms. The former is suited for situations when the volume (or number) of the participating
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Figure 5: The HMM approximation for the solution of the Fermi-Pasta-Ulam equations of motion
(3.39) with 10 stiff springs, k = 10. (a) y1, u1, y10 and u10 on a O(1) time scale and (b) I1 . . . I10

on a O(ε−1) scale. The Verlet method takes too long to integrate.

species is large. The latter is necessary for situations when stochastic and/or discrete effects are
important. This is particularly the case in biological applications. Since the rate of reactions
often depend exponentially on physical parameters such as temperature, it is quite common that
these rates are very disparate. Hence the rate equations are typically very stiff and the stochastic
simulation algorithms often have a pronounced multiscale nature.

In this subsection, we discuss how HMM can be used to overcome the difficulties associated
with the disparity of the rates in stochastic simulation algorithms. We begin with the general
setup.

Let us assume that we have a total of N species of molecules, denoted by S1, · · · , SN . The
number of molecules of species Sk is denoted by xk. The state vector is then given by x =

(x1, · · · , xN). We will denote by X the state space where x lives in. Assume that there are M
reaction channels, each described by its reaction rate and stoichiometric vector:

Rj = (aj, νj), R = {R1, . . . , RM}. (3.40)

Given the state x, the occurrence of the reactions on an infinitesimal time interval dt is inde-
pendent for different reactions and the probability for the reaction Rj to happen during this
time interval is given by aj(x)dt. After reaction Rj, the state of the system changes to x + νj.
In the chemistry and biology literature, this is often called the stochastic simulation algorithm
(SSA) or Gilliespie algorithm [81], named after an algorithm that realizes this process exactly
(see [81]).

Let X(t) be the state variable at time t, and denote by Ex the expectation conditional on
X(0) = x. Consider the observable u(x, t) = Exf(X(t)). u(x, t) satisfies the following backward
Kolmogorov equation:

∂u(x, t)

∂t
=
∑
j

aj(x) (u(x+ νj, t)− u(x, t)) = (Lu)(x, t). (3.41)

The operator L is the infinitesimal generator of the Markov process associated with the chemical
kinetic system we are considering.
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SSA proceeds as follows. Let

a(x) =

MR∑
j=1

aj(x). (3.42)

Assume that the current time is tn, and the system is at state Xn. We perform the following
steps:

1. Generate independent random numbers r1 and r2 with uniform distribution on the unit
interval (0, 1]. Let

δtn+1 = − ln r1

a(Xn)
, (3.43)

and let kn+1 be the natural number such that

1

a(Xn)

kn+1−1∑
j=0

aj(Xn) < r2 ≤
1

a(Xn)

kn+1∑
j=0

aj(Xn), (3.44)

where a0 = 0 by convention.

2. Update the time and the state of the system by

tn+1 = tn + δtn+1, Xn+1 = Xn + νkn+1 . (3.45)

Then repeat.
In this algorithm, r1 is used to update the clock and r2 is used to select the particular reaction

to be executed.
Assume now the rate functions have the following form

a(x) =

(
as(x),

1

ε
af (x)

)
, (3.46)

where ε� 1 represents the ratio of the fast and slow time scales of the system. The corresponding
reactions and the associated stoichiometric vectors can be grouped accordingly:

Rs = {(as, νs)}, Rf = {(1

ε
af , νf )}. (3.47)

We call Rs the slow reactions and Rf the fast reactions. We have made the simplifying assump-
tion that the rates are divided into two groups. Clearly the algorithm can be easily extended to
situations when there are multiple groups. The more serious assumption here is that the groups
of slow and fast reactions do not change in time. Some adaptive strategies have to be introduced
in order to remove this restriction.

Our interest is on the dynamics of the slow processes, not the detailed dynamics of the fast
processes. To this end, an effective system can be derived using standard averaging methods
[97, 121]. For this purpose it is helpful to introduce an auxiliary process, called the virtual
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fast process [44]. This auxiliary process retains the fast reactions only, all slow reactions are
turned off. Intuitively, each realization of the SSA consists of a sequence of realizations of the
virtual fast process, punctuated by occasional firing of the slow reactions. Due to the time scale
separation, with high probability, the virtual fast process has enough time to relax to equilibrium
before another slow reaction takes place. Therefore the effective slow rates for the slow dynamics
should simply be the original slow rates averaged over the equilibrium distributions associated
with the virtual fast process.

Denote by µx the equilibrium distribution of the virtual fast process when it is initialized at
x, and let

ãsi (x) =
∑
z∈X

asi (z)µx(z). (3.48)

It can be shown that the effective dynamics is governed by the set of reactions:

R̄ = (ās(x), ν̄s). (3.49)

The effective master equation is given by:

∂u

∂t
(x, t) =

Ms∑
i=1

ãsi (x) (u(x+ νsi , t)− u(x, t)) , (3.50)

We will discuss an algorithm proposed in [65] which is a simple modification of the original
SSA, by adding a nested structure according to the time scale of the rates. The process at
each level of the time scale is simulated with an SSA with some effective rates. Results from
simulations on fast time scales are used to compute the rates for the SSA at slower time scales.

Let tn, Xn be the current time and state of the system respectively. The two-level nested
SSA proceeds as follows:

1. Microscale solver – the inner SSA: Pick an integer N . Run N independent replicas
of SSA with the fast reactions Rf = {(ε−1af , νf})} only, for a time interval of T0 + Tf .
During this calculation, compute the modified slow rates for j = 1, · · · ,Ms

ãsj =
1

N

N∑
k=1

1

Tf

ˆ Tf+T0

T0

asj(X
k
τ )dτ, (3.51)

where Xk
τ is the result of the k-th replica of this auxiliary virtual fast process at virtual

time τ whose initial value is Xk
t=0 = Xn, and T0 is a parameter we choose in order to

minimize the effect of the transients to the equilibrium in the virtual fast process.

2. Macroscale sovler – the outer SSA: Run one step of SSA for the modified slow
reactions R̃s = (ãs, νs) to generate (tn+1, Xn+1) from (tn, Xn).
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Then repeat.
This algorithm is called the nested stochastic simulation algorithm (nested SSA). Unlike

standard examples of HMM, here we do not need to know what the slow and fast variables are,
in order to carry out the computation. The algorithm is formulated in terms of the original
variables.

Convergence and efficiency of the nested SSA
The original SSA is an exact realization of the stochastic chemical kinetic system. The nested

SSA, on the other hand, is an approximation. The errors in the nested SSA can be analyzed
using the general strategy for analyzing HMM. The details can be found in [66].

Let f be a smooth function. Denote by X̃t the solution of the nested SSA. Consider the
observable v(x, t) = Exf(Xt) where the expectation is taken with respect to the randomness in
the outer SSA only. Let u(x, t) be the solution of the effective equation (3.50) with u(x, 0) = f(x).
The following result is proved in [65, 66]:
Theorem. For any T > 0, there exist constants C and α independent of (N, T0, Tf ) such that,

sup
0≤t≤T,x∈X

E |v(x, t)− u(x, t)| ≤ C

(
ε+

e−αT0/ε

1 + Tf/ε
+

1√
N(1 + Tf/ε)

)
. (3.52)

This result can be used to analyze the efficiency of the nested SSA. Given a chemical kinetic
system with R = {(aj, νj)}, we assume that the total rate a(x) =

∑
aj(x) does not fluctuate a

lot in time: a(x) ∼ O(ε−1). Given an error tolerance λ, we choose the parameters in the nested
SSA such that each term in (3.52) is less than O(λ). One possible choice of the parameters is

T0 = 0, N = 1 + ε−1Tf =
1

λ
. (3.53)

The total cost for the nested SSA over a time interval of O(1) is

Cost = O(N(1 + T0/ε+ Tf/ε)) = O
(

1

λ2

)
. (3.54)

In comparison, the cost for the direct SSA is

Cost = O
(

1

ε

)
. (3.55)

since the time step size is of order ε. When ε� λ2, the nested SSA is much more efficient than
the direct SSA.

Next we discuss the influence of the other numerical parameters on the efficiency. The
parameter T0 which plays the role of numerical relaxation time does not influence much the
efficiency. Given the same error tolerance λ, for the last term in the error estimate (3.52) to be
less than O(λ), we need to have

N

(
1 +

ε

Tf

)
≥ O

(
1

λ2

)
. (3.56)
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Therefore
Cost ≥ O(N

(
1 +

ε−1

Tf

)
) = O

(
1

λ2

)
. (3.57)

which is the same as (3.55) regardless the value of T0. The above argument also implies that
the optimal cost for the nested SSA is O

(
1
λ2

)
to achieve an error tolerance of λ.

Turning now to the effect of parameter N , the number of realizations for inner SSA, let us
see what happens when we take N = 1. For the error estimate (3.52) to satisfy the same error
tolerance λ, we have to choose

1 +
ε

Tf
=

1

λ2
. (3.58)

The cost of the nested SSA is given by

Cost = O(N

(
1 +

ε

Tf

)
) = O

(
1

λ2

)
, (3.59)

which is the same as the cost if we use multiple realizations. This means that using multiple real-
izations in the inner SSA does not increase the efficiency of the overall scheme either. Obviously,
using multiple realizations is advantageous for implementation on parallel computers.

Other versions of the nested SSA are discussed in [128, 127]. Although they appear to be
quite different, it can be shown that they are essentially the same as the nested SSA discuss
here.

A numerical example: A virus infection model
As a concrete example, we discuss a virus infection model studied in [65, 86]. The model was

originally proposed in [132] as an example of the failure of modeling reacting networks with de-
terministic dynamics. The reactions considered in this model are listed in Table 1 with MR = 6.
The species that need to be modeled are genome, struct, template and virus (Ns = 4). Genome
is the vehicle of the viral genetic information which can take the form of DNA, positive-strand
RNA, negative-strand RNA, or some other variants. Struct represents the structural proteins
that make up the virus. Template refers to the form of the nucleic acid that is transcribed and
involved in catalytically synthesizing every viral component. The nucleotides and amino acids
are assumed to be available at constant concentrations.

When template > 0, the production and degradation of struct, which are the third and fifth
reactions marked with ∗ in table 1, are faster than the others. From the reaction rates, we can see
that the ratio of time scales is about ε = 10−3. In a system that consists of only the fast reactions,
struct has an equilibrium distribution which is Poisson with parameter λ = 500× template such
that

Ptemplate(struct = n) =
(500× template)n

n!
exp(−500× template). (3.60)

Notice that struct only shows up in the last slow reaction. The reduced dynamics in the form
of the slow reactions (a1,2,4,6) with the rates averaged with respect to the quasi-equilibrium of
the fast reactions (a3,5) can be given as a system with 4 reactions, shown in table 2. The initial
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nucleotides
a1=1.×template

−−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome

−−−−−−−−−−−−−−−−−−−−−−−→ template

nucleotides + aminoacids
a3=1000×template

−−−−−−−−−−−−−−−−−−−−−−−−→ struct ∗

template
a4=.25×template

−−−−−−−−−−−−−−−−−−−−−−−→ degraded

struct
a5=1.9985×struct

−−−−−−−−−−−−−−−−−−−−−−−→ degraded/secreted ∗

genome + struct
a6=7.5d−6×genome×struct

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Table 1: Reaction channels of the virus infection model

condition is chosen to be:

(struct, genome, template, virus) = (0, 0, 10, 0). (3.61)

The mean value and the variance of template at time T = 20 are used as benchmark. A
computation of these values by a direct SSA using N0 = 106 realizations led to

template = 3.7170± 0.005, var(template) = 4.9777± 0.005. (3.62)

For the nested SSA, we make a series of simulations in which we choose the size of the ensemble
and the simulation time of the inner SSA according to

(N, T0, T/ε) = (1, 0, 22k), (3.63)

for different values of k = 0, 1, 2, 3, . . .. The error estimate in (3.52) then implies that the error
δ should decay with the rate:

δ = O(2−k). (3.64)

which is consistent with the results in Figure 6. Table 3 gives the total CPU time and the ob-
tained values of template and var(template) with the parameters of inner SSA chosen according
to (3.63) and using N0 = 106 realizations of the outer SSA (same as in the direct SSA).

nucleotides
a1=1.×template

−−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome

−−−−−−−−−−−−−−−−−−−−−−−→ template

template
a4=.25×template

−−−−−−−−−−−−−−−−−−−−−−−→ degraded

genome + struct
a6=3.75d−3×genome2×struct

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Table 2: The reduced virus infection model
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Figure 6: Relative errors of template using the nested SSA for the virus infection model (courtesy
of Di Liu)

Tf/ε 1 4 16 64 “exact′′

CPU 154.8 461.3 2068.2 9190.9 34806.4

template 4.027 3.947 3.796 3.757 3.717± 0.005

var(template) 5.401 5.254 5.007 4.882 4.978± 0.005

Table 3: Efficiency of the nested SSA for the virus infection model

4 Finite element HMM

Finite element heterogeneous multiscale methods (FE-HMM) for homogenization problems
first proposed in [63] have been developed in [2, 68, 3, 16] for elliptic problems, in [3] for elastic
problems, in [112, 19] for parabolic problems, in [11] for wave problems and in [1, 87] for ad-
vection diffusion problems. Further developments for elliptic problems include coupling of FEs
macroscopic method with spectral methods [10], with reduced basis methods [8], FE-HMM with
special quadrature formulas [59], discontinuous Galerkin FE-HMM [4, 7].

Various numerical methods have been derived the past few years for multiscale partial differ-
ential equations, mostly for elliptic problems. We do not attempt here to review the literature on
the subject and just give a few references. Numerical approaches for homogenization problems
were pioneered by Babuška [31] for static problems and Engquist [71] for dynamic problems. For
multiscale elliptic problems, an important early development is the generalized finite element
method proposed by Babuška and Osborn [32], where the idea to adapt the finite element space
to the particular fine-scale features of the problem is developed. Dorobantu, Engquist and Run-
borg [58],[72] proposed a method based on multi-resolution analysis, Neuss, Jäger and Wittum

35



[115] combined the multigrid method with homogenization in the coarsening process, Hou and
co-workers proposed the multiscale finite element method (MsFEM) based on modified basis
functions obtained from the finescale equations [89] (see [70] for a review), Babuška, Matache
and Schwab developed the two-scale FEM [108],[109], Viet Ha Hoang and Schwab proposed the
high dimensional FEM [88]. We also mention the huge literature in the structural mechanics and
engineering communities concerned with micro-macro methods based on representative volume
elements (RVEs). Such methods have been proposed for various type of problems, however, of-
ten without convergence analysis. We mention the methods of Terada, Kikuchi and co-workers
[135], Miehe and co-workers [110] and Geers, Kouznetsova and Brekelmans [80].

4.1 General methodology

We start by explaining the methodology of the FE-HMM. We consider a general multiscale
problem of the form

Lε(uε, aε) = f in Ω,

where Lε is a differential operator, aε denotes the data of the problem, Ω is an open bounded
subset of Rd, f : Ω→ R is given and uε : Ω̄→ R is the solution of the above problem for which
appropriate boundary conditions are specified. To emphasize the multiscale nature of the data
of the above problem, we put a superscript ε (representing the typical size of a small scale in
the considered problem) on a, L and u. Here for simplicity, in view of numerical discretization,
we assume that Ω ⊂ Rd (d = 1, 2, 3) is a polygonal domain. The effective problem, assumed to
exist, is of the form

L0(u0, a0) = f in Ω,

with u0 : Ω̄→ R, the effective solution. One can think of u0 as being the limit (in an appropriate
sense) of the solution uε as ε→ 0. The weak solutions of any of the above problems are assumed
to belong to an appropriate Sobolev space, denoted by H(Ω). The FE-HMM can be summarized
by the following steps.

• Macroscale solver.

– Macro triangulation: define a macroscopic partition of Ω,
⋃
K∈TH K = Ω and a macro-

scopic finite dimensional subspace of H(Ω) denoted by S(Ω, TH).

– Macro method: define uH ∈ S(Ω, TH) solution of LH(uH) = f, where LH is an
unknown approximation of the effective differential operator L0.

• Microscale solver.

– Constrained micro simulations: for every K ∈ TH consider a suitable quadrature for-
mula {xKj , ωKj}Jj=1, and sampling domainsKδj = xKj +δI, I = (−1/2, 1/2)d (δ ≥ ε).

Define a micro triangulation
⋃
T∈Th T = Kδj and a micro finite dimensional space
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S(Kδj , Th). Compute micro solutions uh ∈ S(Kδj , Th) constrained by the macro vari-
able using the original fine scale operator.

– Data processing: recover locally LH(uH)|K by suitable average of uh in Kδj .

Th

TH

K

T
Kδj

h

H

Figure 7: Sketch of the FE-HMM algorithm: macro triangulation TH (quadrilateral and sim-
plicial elements) with sampling domains within the macro elements. A zoom on the sampling
domains shows the micro triangulation Th chosen here to be quadrilaterals.

We notice that the method described here could be used to solve problems with a right-hand
side also depending on ε (e.g., f ε) with minor changes (see [16]).

4.2 Model problem

To describe the method, we consider Lε(uε, aε) = −∇ · (aε∇uε), i.e., the linear elliptic
homogenization problem already seen in Section 2

−∇ · (aε∇uε) = f in Ω, uε = 0 on ∂Ω, (4.1)

where the family of tensors aε(x) ∈ (L∞(Ω))d×d (indexed by ε) are assumed to be uniformly
elliptic and bounded, i.e.,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x)ξ · ξ, |aε(x)ξ| ≤ Λ|ξ|, ∀ξ ∈ Rd,∀ε, a.e. x ∈ Ω, (4.2)

where ε is a microscopic scale that characterizes the multiscale nature of the tensor aε(x). Here
we take zero Dirichlet boundary conditions for simplicity. 5 We also assume that f ∈ L2(Ω)

(f ∈ H−1(Ω) would also be possible). By the Lax-Milgram theorem, owing to the uniform el-
lipticity and boundedness of the tensor aε, the weak form of (4.1) possesses for each ε a unique
solution and we can thus consider a family of solutions {uε} (indexed by ε) which are bounded
in H1

0 (Ω) by the same constant.

Homogenization results. The goal of homogenization theory is to find an “averaged equa-
tion" corresponding to (4.1). Without further assumptions on the heterogeneities of the tensor
aε(x) it is possible to show, using H convergence theory [113] (or G convergence theory in the

5The algorithm and results stated in this chapter are valid for other boundary conditions (non-zero Dirichlet,
Neumann, mixed, etc.) with obvious changes.
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symmetric case [56]), that there exists a tensor a0(x) (again uniformly elliptic and bounded) and
a subsequence of {uε} which weakly converges in H1

0 (Ω) to a function u0 ∈ H1
0 (Ω), solution of

the (effective) equation

−∇ ·
(
a0∇u0

)
= f in Ω, u0 = 0 on ∂Ω. (4.3)

Going back to the general description of Section 4.1, we see that here, L0(u0, a0) = −∇·(a0∇u0) .

If aε(x) has a more specific structure, for example if aε(x) = a(x, x/ε) and is periodic in its
second argument, then classical results show that the whole sequence {uε} weakly converges to
u0 ∈ H1

0 (Ω) and the homogenized tensor a0(x) at x ∈ Ω can be characterized as the average
of the solutions of “cell problems” (i.e., d boundary value problems on a domain of size εd in-
volving the finescale tensor aε(x) = a(x, x/ε)). We refer for example to [35, 92, 51] for details.
Notice that even in this fortunate case, one still has in general an infinite number of cell prob-
lems to solve, due to the slow variation in the tensor. Classical numerical approaches consist
in pre-computing an approximation of the effective tensor a0(xi) at predefined sampling points
xi ∈ Ω, i = 1, . . . , p and using a standard FEM based on these pre-computed data. Although
straightforward, this sequential strategy does not allow for a natural way to derive a priori or a
posteriori error control of the overall discretization (as it depends on the accuracy of the numer-
ically pre-computed homogenized tensors). This procedure does also not give a straightforward
discretization for non-periodic or nonlinear problems, and makes it difficult to switch locally to
a finescale approximation (desirable in some applications).

4.3 FE-HMM: algorithm

In this section we give a detailed description of the FE-HMM. We restrict ourselves to the
model problem (4.1). In Section 4.3.3, generalizations to more involved problems (e.g., nonlinear
problems) will be described.

4.3.1 Macroscale solver

We denote by TH a family of (macro) partitions6 of Ω in simplicial or rectangular elements
K. The diameter of an element K ∈ TH is denoted by HK and we set H = maxK∈TH HK . We
then consider a macro FE space

S`0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH}, (4.4)

whereR`(K) is the space P`(K) of polynomials onK of total degree at most ` ifK is a simplicial
FE, or the space Q`(K) of polynomials on K of degree at most ` in each variable if K is a
rectangular FE. For everyK we consider the quadrature formula {xKj , ωKj}Jj=1 (described further
in Section 4.3.2), and sampling domains Kδj , defined as Kδj = xKj + δI, I = (−1/2, 1/2)d (δ ≥

6By macro partition we mean that H � ε is allowed.
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ε).

Multiscale method. Find uH ∈ S`0(Ω, TH) such that

BH(uH , vH) =

ˆ
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (4.5)

where for arbitrary vH , wH ∈ S`0(Ω, TH) the bilinear form BH(·, ·) is defined by

BH(vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

ˆ
Kδj

aε(x)∇vh,Kj · ∇wh,Kjdx, (4.6)

where vh,Kj = RKj(vH), wh,Kj = RKj(wH) and RKj = R|Kj is the reconstruction operator (in
the terminology of Section 2) restricted to the sampling domain Kδj . In the notation of Section
4.1, we have LH : S`0(Ω, TH) −→ L2(Ω), where

(LH(vH), wH) = BH(vH , wH),

and (·, ·) is the L2 inner product. In order to assemble the bilinear form BH(vH , wH) one needs
to compute the functions RKj(vH), RKj(wH) as described in the next section.

4.3.2 Microscale solver

The location of the sampling domains Kδj and the choice of the weights ωKj (j = 1, . . . , J)
in the definition of BH(·, ·) rely on the definition of appropriate quadrature formulas (QF). We
consider K̂ the reference element and for every element of the triangulation the mapping FK (a
C1-diffeomorphism) such that K = FK(K̂). For every K we consider the quadrature formula
xKj = FK(x̂j), ωKj = ω̂j|det(∂FK)|, j = 1, . . . , J, where {x̂j, ω̂j}Jj=1 is a quadrature formula
on K̂. We then consider a (micro) partition Th of each sampling domain Kδj in simplicial or
rectangular elements T and define a micro FE space

Sq(Kδj , Th) = {zh ∈ W (Kδj); zh|T ∈ Rq(T ), ∀ T ∈ Th}, (4.7)

where h = maxT∈Th hT (hT is the diameter of the element T ) and W (Kδj) is a given Sobolev
space.

Coupling. Various spaces W (Kδj) can be chosen for the micro numerical method. For example

W (Kδj) = W 1
per(Kδj) = {z ∈ H1

per(Kδj);

ˆ
Kδj

zdx = 0}, (4.8)

for a periodic coupling, or
W (Kδj) = H1

0 (Kδj), (4.9)
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for a coupling through Dirichlet boundary conditions. Other coupling conditions, constraining
the averaged gradient of a microscale solution can be used. We refer to [143] for further discus-
sion.

Micro method. For each vH ∈ S`0(Ω, TH) we define a microfunction vh,Kj , satisfying (vh,Kj −
vH,lin) ∈ Sq(Kδj , Th) and solution of

ˆ
Kδj

aε(x)∇vh,Kj · ∇zhdx = 0, ∀zh ∈ Sq(Kδj , Th), (4.10)

where vH,lin|Kδj = vH(xKj) + (x − xKj) · ∇vH(xKj) is the linearisation of vH at the quadrature
point xKj . As explained in Section 4.4.1, the bilinear form (4.6) can be rewritten as

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
K(xKj)∇vH(xKj) · ∇wH(xKj),

where a0
K(xKj) is the macroscale data (effective tensor) at the quadrature point xKj recovered

by the microscale simulations. This is the data processing step mentioned in Section 4.1 that is
implicitly computed by defining the bilinear form through the quantities 1

|Kδj |

´
Kδj

aε(x)∇vh,Kj ·
∇wh,Kjdx.

Remark 1. Requirements on the quadrature formula are needed to ensure that the optimal
convergence rates for elliptic FEM are obtained when using numerical quadrature. We make the
following classical assumptions on the quadrature formula {x̂j, ω̂j}Jj=1 on the reference element
K̂ (see [50])

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j|∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

, ∀p̂(x̂) ∈ R`(K̂), λ̂ > 0;

(Q2)
´
K̂
p̂(x̂)dx̂ =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2`− 2, `) if K̂ is a simplicial

FE, or σ = max(2`− 1, `+ 1) if K̂ is a rectangular FE.

4.3.3 Implementation and numerical illustration

The macro-micro methodology described in Section 4.3 allows for an easy implementation
and to design a code whose structure follows the classical finite element implementation at the
macro level. In particular, elementwise assembly for each macro element K can be computed to
find the additive contribution from (4.6) to the macroscopic stiffness matrix. In [13] a short (less
than 200 lines) and flexible MATLAB implementation has been proposed, capable of handling
2 and 3 dimensional elliptic and parabolic problems. All the numerical experiments presented
in this sections have been made with the code presented in [13] or a variation of it (e.g., [17]).
These codes are publicly available at http://anmc.epfl.ch. Additional numerical experiments
can be found in [5, 111].
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Macro-micro meshes refinement. Some care is needed to set appropriately the macroscopic
mesh TH (a triangulation of the physical domain Ω) and the microscopic mesh Th (a triangulation
of the sampling domainKδj). TakingNmic elements in each space dimension for the discretization
of the sampling domain Kδj , we have we have h = δ/Nmic and thus ĥ := h/ε = (δ/ε) · (1/Nmic).
Since δ scales with ε, typically δ = Cε (where C is a constant of moderate size), we have
ĥ = C/Nmic. We denote by Mmic = O(ĥ−d) the number of degrees of freedom (DOF) for the
micro FEM and by Mmac, the number of DOF of the macro FEM. For quasi-uniform macro
meshes, the macro meshsize H (sometimes denoted H = 1/Nmac) and the micro meshsize ĥ are
related to Mmac and Mmic as

H = O(M−1/d
mac ), ĥ = O(M

−1/d
mic ).

A priori error analysis for the fully discrete method (4.5), first given in [2], gives an insight in
this meshing problem and reveals that the optimal refinement of the micromesh read

ĥ :=
h

ε
' H

`
2q (H1 norm), ĥ :=

h

ε
' H

`+1
2q (L2 norm).

The corresponding complexity in term of macro DOF reads

H−d︸︷︷︸
Mmac

·H
−d`
2q︸ ︷︷ ︸

Mmic

·ns = (Mmac)
1+ `

2q · ns for the H1 norm,

H−d︸︷︷︸
Mmac

·H
−d(`+1)

2q︸ ︷︷ ︸
Mmic

·ns = (Mmac)
1+ `+1

2q · ns for the L2 norm,

where ns denotes the number of sampling domains per macro element K ∈ TH .7 For example,
using piecewise linear polynomials on simplicial FEs, assuming quasi-uniform macro and micro
meshes, and that the complexity is proportional to the total DOF we obtain a cost of O(M

3/2
mac)

(H1 norm) and O(M2
mac) (L2 norm). These convergence rates are illustrated in Figure 8 on a

very simple multiscale problem for which a reference solutions with high precision can easily
be computed (see [2]). In contrast, the memory demand is proportional to Mmac + Mmic only,
as the micro problem, being independent of one another, can be solved one at a time. Finally,
we note that by using spectral methods or high order FEM for the micro solvers, it is possible
to reduce the total cost of the FE-HMM to log-linear complexity in the macro DOF. This was
investigated in [10]. Such an approach requires however high regularity of the oscillating tensor
aε which may not hold for some applications as for example in material science.

Example 1: homogenization problem with non-periodic tensor. We consider the Prob-
lem (4.1), with a log-normal conductivity tensor aε (taken from [13]). The domain Ω consists of
a semi circle and a rectangle, meshed with 1137 nodes using 576 triangles and 784 quadrilaterals,
respectively (see Figure 9a). We use the moving ellipse average method [139, Section 4.1] to

7Notice that as the micro problems are solved independently, the method is well suited for parallel implemen-
tation which can reduce significantly the complexity of the FE-HMM.
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Figure 8: Error with respect to the homogenized solution u0 for the FE-HMM applied to a 2D
periodic problem (L2 error left Figure, H1 error right Figure). The horizontal axis represents
the macro mesh size (decreasing from left to right). Each curve represents the error obtained by
macromesh refinement for fixed micromeshes h/ε = 1/2, 1/4, 1/10, 1/22, 1/46, 1/94. Horizontal
curves indicate a dominant micro error.

generate the realization of the log-normal stochastic field with mean zero and variance σ = 1.
The correlation lengths of the stochastic field are set to be ε1 = 0.01 and ε2 = 0.02 in the x, y
direction, respectively. A snapshot of this tensor is shown in Figure 9a.

Nmic 4 8 16 32 64 finescale

δ = 0.02 0.2352 0.2415 0.2439 0.2449 0.2454 0.2583
δ = 0.06 0.2313 0.2454 0.2520 0.2551 0.2567 0.2583

Table 4: Energy norms of the FE-HMM and finescale solutions of the problem described in
Example 1 with a random tensor. FE-HMM results are given for various micro sampling-domain
sizes δ × δ and DOF N2

mic of the micro problems (Nmic = 1/ĥ).

As this problem does not have an explicit analytical solution, we compute a finescale solution
using a standard FEM with a fine mesh with about 106 degrees of freedom (DOF) in order to
resolve the micro scale for a given realization (see Figure 9b). We compare this reference solution
with the FE-HMM on the coarse macro grid with about 1100 DOF for the same realization.
For the FE-HMM we present results for various sizes of the sampling domains (δ = 0.02 and
δ = 0.06). We can see in Figures 9c and 9d, that the FE-HMM solution is closer to the
reference solution as the sampling domain contains more correlation length of the random field.
This observation can also be seen in Table 4 when comparing the energy norm of the various
solutions obtained with the FE-HMM to the energy norm of the reference solution.
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(d) FE-HMM with NMic = 64 and micro do-
main size δ = 0.06 on a macro grid with 1100
DOF.

Figure 9: FE-HMM and finescale solution of the random problem described in Example 1.
Snapshot of the tensor and comparison of the finescale solution with FE-HMM solutions with
different size of sampling domains.

Example 2: a nonlinear problem, the Richards equation. We consider the steady-state
Richards equation that describes the fluid pressure u(x, t) in an unsaturated porous medium

−∇ · (aε(uε(x))∇(uε(x)− x2)) = f(x) in Ω = (0, 1)2, (4.11)

where x2 is the vertical coordinate, and f corresponds to possible sources or sinks. Here aε is
a multiscale permeability tensor that depends on the pressure uε, hence Equation (4.11) is a
nonlinear nonmonotone problem. The application of the FE-HMM to such problems has first
been considered in [68]. A complete analysis has recently been given in [18, 17] and is summarized
in Section 4.4.2. The FE-HMM for such problem reads: find uH ∈ S`0(Ω, TH) such that

BH(uH ;uH , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH), (4.12)
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where

BH(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

ˆ
Kδj

aε(x, uH(xKj))∇v
uH(xKj )

h,Kj
(x) · ∇w

uH(xKj )

h,Kj
(x)dx, (4.13)

and v
uH(xKj )

h,Kj
(and similarly w

uH(xKj )

h,Kj
) is a solution of a linear micro problem similar to (4.10).

For the parameter s = uH(xKj) it reads: find vsh,Kj such that (vsh,Kj − vH,lin) ∈ Sq(Kδj , Th) and
ˆ
Kδj

aε(x, s)∇vsh,Kj(x) · ∇zh(x)dx = 0, ∀zh ∈ Sq(Kδj , Th). (4.14)

We observe that while the macro problem (4.12) is nonlinear, the micro problems (4.14) are
linear. Indeed, in the implementation s = uH(xKj) is given by the current (available) state
of the macro solution (e.g., using a Newton method for solving the macro problem). For the

(a) FE-HMM 64 macro DOF. (b) FE-HMM macro 256 DOF. (c) FE-HMM macro 1024 DOF.

(d) FEM 1024 DOF. (e) Resolved FEM 1.5·106DOF.

Figure 10: Richards problem (4.11) with mixte boundary conditions (Dirichlet and Neumann).
Top pictures: level curves of the FE-HMM solutions with Nmic = Nmac. The macro DOF are
indicated. The picture (d) and (e) represent the level curves of a standard FEM with respectively
unresolved (1024 DOF) and resolved (1.5 · 106 DOF) meshes for the given micro scale.

numerical simulation of (4.11) we set f(x) ≡ 0 for simplicity and consider the following boundary
conditions

uε(x) = −1.9x2
1 on ∂ΩD = [0, 1]× {1},

n · (aε(uε(x))∇(uε(x)− x2)) = 0 on ∂ΩN = {0, 1} × [0, 1] ∪ [0, 1]× {0},
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and an exponential model for the permeability tensor aε similar to the one in [48, Sect. 5.1],

aε(x, s) = αε(x)eα
ε(x)s where αε(x) =

1/117.4

2 + 1.8 sin(2π(2x2/ε− x1/ε))
. (4.15)

Numerical solutions are reported in Figure 10. Figures 10a-10c are solutions of the FE-HMM
with P1-triangular FEs and a decreasing size of macromeshes (uniform macromeshes with
H = 1/8, 1/16, 1/32). The meshes of the micro solver are refined according to the “optimal
L2 refinement strategy" h/ε ' H. The numerical results obtained with the FE-HMM are com-
pared to a reference solution of the problem (4.11) (obtained by a resolved standard FEM)
plotted in Figure 10e (for ε = 10−2, ∼ 106 degrees of freedom are used). We also plot for com-
parison in Figure 10d, the result obtained by a standard FEM on a coarse 32×32 mesh that does
not resolve the fine oscillations. We observe that this unresolved FEM does not give a correct
qualitative result. In contrast, the FE-HMM captures the correct behavior of the problem at a
much lower computational cost.

Example 3: a crack problem and adaptive FE-HMM.
In our next experiment we consider a crack problem in a heterogeneous medium, characterized

by a highly oscillating conductivity tensor

−∇ · (aε (x)∇uε) = 1 in Ω, (4.16)

uε = gD on ΓD = ∂Ω, (4.17)

on a domain Ω = {|x|+ |y| < 1} \ {0 ≤ x ≤ 1, y = 0} with a crack along the positive x-axis (see
Figure 11). As the solution of the homogenized problem is not in H2(Ω), it is well-known that
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Figure 11: FE-HMM solution and mesh after 10 iterations for the crack-problem described in
Example 3 using highly oscillating locally periodic coefficients (left and middle Figs.) Rate of
decay for various errors and for the error indicator in the H1 norm (right Fig.).

a standard piecewise linear FEM for the effective problem will give sub-optimal convergence
rates. In this situation, adaptive mesh refinement is needed. By using local error indicators,
one identifies, marks and refines those elements that contribute the most to the global error in
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order to better equidistribute the error in the FE mesh. Overall the procedure consists in the
following cycle:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

An energy based a posteriori error analysis for a standard FEM relies usually on local error
indicators ηh that comprise two components: the jump residual that measures the discontinuity
of the normal flux across elements interfaces and the element residual, a measure of the accuracy
of the solution inside each element. Both quantities depend on the (conductivity) tensor of the
elliptic problem. Residual based adaptive FE-HMM for the energy norm have been proposed and
analyzed in [14, 12] and also in [120], where an a posteriori error estimate in a “two-scale norm"
has been derived. For the FE-HMM, data involved in the usual error indicator are not available

Figure 12: Sketch of the ingredients for the jump of multiscale fluxes defined in (4.18).

beforehand but computed during the integration process. An important ingredient for adaptive
FE-HMM is an effective jump based on “multiscale fluxes" first defined in [4, 7]. Let TH denote
a conformal mesh and let EH be the set of interfaces. Two elements sharing an interface e ∈ EH
are labeled K+ and K−. Consider the micro functions uh,K+ and uh,K− solutions of (4.10) in
the two sampling domains K+

δ and K−δ of the elements K+ and K−, respectively, constraint by
the macro solution uH of (4.5). The jump of multiscale fluxes is then defined as (see Figure 12)

Jaε (x)∇uhKe :=

(
1∣∣K+
δ

∣∣ ˆ
K+
δ

aε (x)∇uh,K+ dx− 1∣∣K−δ ∣∣
ˆ
K−δ

aε (x)∇uh,K− dx

)
· ne, (4.18)

where the unit outward normal ne is chosen to be ne = n+. We omit the index Kδ for the micro
solutions uh in Jaε (x)∇uhKe as the jump over e involves two sampling domains in adjacent
elements. We also assume for simplicity that (4.5) is solved using a piecewise linear macro FE
space (see [15] and [117] for a generalization of the “the jump of multiscale fluxes" and the a
posterior error analysis for higher order macro FEs). Then, the local error indicator ηH (K) on
an element K is defined by [14, 12]

ηH (K)2 := H2
K ‖fH‖

2
L2(K) +

1

2

∑
e⊂∂K

He

∥∥ Jaε∇uhKe
∥∥2

L2(e)
, (4.19)

where fH is a piecewise constant approximation of f . The quantity ηH (K)2 is a measure of
the local error ‖u0− uH‖2

H1(K) and is used to identify the elements that contributes most to the
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error. These elements are then marked for refinement. In order to prove the reliability and the
efficiency of an a posteriori error estimate, rigorous upper and lower bounds of the error in terms
of the residual have been derived in [14, 12]. For such bounds, one needs to introduce the data
approximation error ξH (K) on an element K by

ξH (K)2 := H2
K ‖fH − f‖

2
L2(K) +

∥∥(a0
K − a0 (x)

)
∇uH

∥∥2

L2(K)
, (4.20)

where a0 (x) is the unknown homogenized tensor of problem (4.3) and a0
K is the effective macro

tensor (in the macro element K) that is recovered by the FE-HMM (see Lemma 3 of section
4.4). In order to control the data approximation error, the quantity ‖(a0

K − a0 (x))∇uH‖2
L2(K)

needs to be quantified. Under suitable assumptions [14, 12] (e.g., (H1), (H2) of Section 4.4)
one can prove that

sup
x∈K

∥∥(a0
K − a0 (x)

)
∇uH

∥∥
L2(K)

≤ C

(
HK +

(
h

ε

)2
)

+ eMOD, (4.21)

where eMOD is a quantity independent ofH, h. This shows that the micro-macro mesh refinement
described at the beginning of Section 4.3.3 should now be performed locally. In turn, this local

ĥ 1/8 1/16 1/24 1/32 1/40 1/48

adaptive FE-HMM, 10th iteration 278 218 60 24 28 40
uniform FE-HMM, 4th iteration - - - 16384 - -

Table 5: Number of micro problems with various ĥ = h/ε resolution to obtain an error of∥∥eH∥∥
H1(Ω)

≤ 0.07 for the crack problem described in Example 3 (computation with a periodic
tensor).

refinement has an important consequence on the complexity of the FE-HMM. While for uniform
refinement one needs to refine every sampling domain of each macro element, in an adaptive
mesh refinement strategy, the micromesh will be refined only in the sampling domains of a macro
element marked for refinement (at the above rate h

ε
=
√
HK). All other computations in the

sampling domains, i.e., all the microfunctions computed in a previous iteration can be re-used
in the next iteration in unrefined macro elements. The saving in computational complexity
is illustrated in Table 5, where we observe that only a small fraction of the micro problems
computed via uniform refinement needs to be computed using adaptive and local refinement as
described above.

We present in Figure 11 the decay of the error after several iterations of the adaptive FE-
HMM applied to the crack problem of Example 3. In order to have an exact homogenized
solution for comparison purpose, we choose a periodic tensor in our computation (details can
be found in [14, Sect. 6.2]). Example with random tensors can also be found in [14, 117].
The rate of convergence of the error and the error indicator, reported in Figure 11, confirm
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the theoretical rate of O
(
M
−1/d
mac

)
, where we recall that Mmac denotes the macro degrees of

freedom. We also see that the local error indicator ηH decays with the right slope and the
effectivity index ηH(Ω)/‖u0 − uH‖H1(Ω) is comparable to the effectivity index for single scale
residual based adaptive FEM [74]. We also illustrate in Figure 11 the use of uniform refinement
and adaptive FE-HMM without micro refinement. Both strategies give the wrong convergence
rate for this problem.

Finally, we briefly mention another type of adaptivity, often more interesting for engineers,
namely adaptivity in quantities of interest. Suppose that we are interested in a quantity of
interest of the exact solution J (u0) , where J denotes a linear bounded functional and u0 is
the homogenized solution of a given multiscale problem (e.g., (4.1)). The question is now: is it
possible to refine the numerical solution of a multiscale method, say the FE-HMM, to have an
approximation of the quantity of interest J (uH) ' J (u0) ?

Figure 13: Illustration of the goal-oriented FE-HMM that allows to specify a confidence interval,
the shaded area, where the exact quantity of interest (here a regularized pointwise derivative) is
expected to be.

For single scale problems, such “goal-oriented adaptivity" has been studied in [123, 118, 34,
116, 22]. We mention also the related work of Oden and co-worker on adaptive control of model
[119]. In the context of numerical homogenization, the numerical analysis literature seems rather
scarce on the topic. In [15] a posteriori error estimates in quantities of interest for the FE-HMM
are discussed. The quantity J(u0 − uH) is shown to have an exact representation in terms of
the local error estimator and the data approximation error. Provided that certain higher order
approximation term can be neglected (see [116, 22] for a discussion on this issue), it is possible to
find a “confidence interval" for the estimation of the error in the given quantity of interest. This
is illustrated in Figure 13, where the quantity of interest is a regularized pointwise derivative of
an effective solution corresponding to a multiscale elliptic problem. The solution uH is obtained
from the FE-HMM with goal-oriented adaptive refinement. We refer to [15] for details.

Example 4: three-dimensional problems. In our last example, we consider the heat dis-
tribution in a microprocessor. The model considered in our computations depicted in Figure 14
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consist of a silicon IC chip, a lead frame, that acts as a heat spreader, and a mold resin encap-
sulation (the packaging covering the IC chip for protection). Due to the increasing packaging
density in such devices and the resulting temperature growth, the use of composite materials
with high thermal conductivity is crucial. The microstructure of the composite materials, whose
representative size is denoted by ε, is responsible for the multiscale behavior of the associated
heat conductivity problem. The application of the FE-HMM to this example has first been
considered in [13], where additional 3D examples are also discussed (see also [117]).

Moulded resin 
  IC chip                               Lead frame

Figure 14: Model of microprocessor used for the numerical computation of Example 4

Geometry and mesh. The size of the full processor model is 12.2× 12.2× 1 mm3. We use a
macromesh generated by CUBIT [129] that consists of 81,000 grid points with a maximum tetra-
hedron volume of 1.4 ·10−3mm3 (see Figure 15). Scale resolution for a composite with ε = 10−6m

as used below, with about 10 grid points per oscillation (in each spatial direction) would result
in a mesh with 1012 grid points and thus computationally unfeasible with a standard FEM. In
contrast, numerical experiments with realistic values of ε can be computed without difficulties
with the FE-HMM. For numerical comparisons, we also present numerical experiments with a
relatively large value of ε, ε = 5 ·10−4m. For this value we compute a reference finescale solution
that involves 3.9 million grid points and about 22 million tetrahedra. The heat transfer by
conduction is modeled by Problem (4.1). Convective heat transfer with the surrounding air is
modeled by the Robin and Neumann boundary conditions

n · (aε∇uε) + αuε = gR on ∂ΩR, (4.22)

n · (aε∇uε) = gN on ∂ΩN , (4.23)

where Ω is the domain of the considered object and ∂ΩR and ∂ΩN are the surfaces of the three
dimensional object with Robin and Neumann boundary conditions, respectively. The right hand
side of the Robin boundary condition is given by gR = q0 + αuamb.

In practice, conductivity tensors for realistic materials could be obtained via imaging tech-
niques (our computational strategy could accommodate such data). Here we use simplified
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Figure 15: macromesh of the 3D microprocessor problem of Example 4 81,000 grid points and
430,000 tetrahedra (left Figure) with zoom on the macromesh used for the lead frame (right
Figure).

tensors (one for each material). The tensor corresponding to the lead frame aεleadframe is cho-
sen as to have a non-periodic slow variation to mimic a change in the material structure from
the center of the lead frame to the periphery. For the resin, we chose aεresin to be oscillating,
anisotropic with a larger conductivity in the z-direction, while the tensor corresponding to the
chip aεchip is assumed to be constant (see [13] for details). Other data are defined as follows: the
power of the chip is set to Pchip = 0.125 W and the chip size is chosen to be V = 2×2×0.2 mm3.
This yields an external heat flux f in (4.1) of f = P

V
= 1.875 · 108 W

m3 . The room temperature
(in Kelvin) is set to uamb = 293.15 K and the heat transfer coefficient to α = 20 W

m2K
, a rough

estimate for the effect of air cooling.

Nmic = 4 Nmic = 8 Nmic = 16 finescale average
ε = 5 · 10−4 ‖u‖A 0.3906 0.4961 0.5514 0.5189 0.3122
ε = 10−6 ‖u‖A 0.3894 0.4963 0.5512 - 0.3122

Table 6: Energy norm of various solutions of the heat transfer problem in a microprocessor
(FE-HMM solution, resolved solution, solution obtained using arithmetic average for the various
tensors). Here micro DOF are on the sampling domains are given by Nd

mic.

In Figure 16 we compare (for ε = 5 · 10−4m) the results obtained by the FE-HMM with
a finescale (resolved) solution. For the FE-HMM two different resolutions of the micro FEM
are used. A good qualitative agreement between the FE-HMM and the finescale solutions is
observed. For comparison we also plot a solution obtained on the same macro grid as the FE-
HMM but with a standard FEM using a naive averaging procedure for the microstructure (here
the arithmetic average). We observe that the conductivity is overestimated in this situation,
leading to a wrong qualitative behavior of the heat distribution in the microprocessor. To get a
rough estimate of the quality of the various experiments performed in this section, we provide
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Figure 16: Steady state heat distribution in the 3D microprocessor problem of Example 4 with
ε = 5 ·10−4m, 81000 DOF in the macromesh. Comparison of various solutions. Left Figure aver-
aged tensor (arithmetic mean), 81000 DOF, middle Figure FE-HMM solution with 81000 macro
DOF, right Figure finescale solution 3.9 · 106 DOF. The color bar represents the temperature in
Kelvin [K].

in Table 6 the value of the energy norm of the FE-HMM calculation (for various resolutions of
the microstructure) and the energy norm of the resolved solution.

Figure 17: Steady state heat distribution in the 3D microprocessor problem of Example 4, with
ε = 10−6m, 81000 DOF in the macromesh. Comparison of FE-HMM solutions with different
resolutions of the micro problems (Nmic = 4, 8, 16 from left to right). The color bar represents
the temperature in Kelvin [K].

Finally, we present in Figure 17 computations with a realistic value of ε, (ε = 10−6m). We
notice that, a computation with this value of ε is not more expensive than previous computa-
tions with a coarser value of ε (recall that the FE-HMM capture the effective solution). The
computational cost however depends on the resolution of the microstructure in the sampling
domains, i.e., the number of points per wavelengths. Indeed, as can be seen in Figure 17, the
effect of the micro error at the macro scale is not negligible (see again [2] and Section 4.4 for an
analysis of this behavior).
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4.3.4 More sophisticated coupling

In all of the above examples, we used standard FEM at the micro and the macro levels.
The structure of the FE-HMM algorithm that couples the macro and micro solvers only trough
constraints, allows to use other type of methods.

For many problems, local conservation properties in the numerical approximation and flexi-
bility in meshing (e.g., hanging nodes, local refinements) are desirable. For single scale problems,
these requirements have triggered the development of discontinuous Galerkin (DG) FEMs. Such
methods have been extensively studied for hyperbolic problems, advection-diffusion and diffusion
problems (see [28] for a review). While a large body of literature is available for DG methods
applied to single scale problems, the construction and analysis of multiscale DG methods have
rarely been addressed. In the context of the HMM, a DG methods for hyperbolic and parabolic
one-dimensional scalar problems has been proposed in [47]. For multiscale elliptic problems, a
DG method based on HMM has been proposed in [4, 7].

Another issue, as seen in Section 4.3.3, is the cost of the repeated micro solutions in sampling
domains in the FE-HMM. If the microstructure is regular enough, one can take advantage of
fast micro solvers (e.g., based on spectral methods) to considerably speed-up the computation
time. The simultaneous refinement of macro and micromeshes can be avoided in this situation
(see [10]).

If in contrast there is only low regularity of the micro solutions, one can try yo avoid repeated
micro problems by suitable interpolation of the micro solutions in a few representative sampling
domains. Provided that there is some smoothness in the micro solution with respect to the
macro variable, this strategy can be successful. The use of reduced basis techniques for numerical
homogenization was first explored in [38] and recently integrated in the HMM methodology in
[8], where a reduced basis FE-HMM has been proposed and analyzed.

4.4 Error estimates

In this section we discuss a priori and a posteriori error analysis for the FE-HMM. We present
the main steps of the a priori error analysis for linear elliptic problems in Section 4.4.1. We only
discuss the analysis for the FE-HMM based on macro and micro FEMs, and we refer to [10] for an
analysis using micro pseudo-spectral methods, to [7] for an analysis using discontinuous Galerkin
macro methods and to [8] for an analysis incorporating reduced basis methods at the micro level.
In Section 4.4.2 we briefly mention how the results obtained in the linear case can be generalized
for a class of nonlinear problems. For details on the analysis of such problems, we refer to [18, 17].
Finally we also discuss a posteriori error analysis for the FE-HMM in Section 4.4.3, following
[14, 12]. Unless otherwise specified, we shall assume that the macroscopic triangulation TH that
is conformal and shape regular.
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4.4.1 A priori error analysis

We collect here a few preliminary results that are useful for the analysis of the FE-HMM.

Energy equivalence and coercivity (see [2, 68, 5]). As an application of the following
lemma, we deduce the coercivity of the bilinear form (4.6), hence the existence and uniqueness
of the problem (4.5).

Lemma 2. Let vH ∈ S`0(Ω, TH) and let vh,Kj be the corresponding solution of (4.10) in Sq(Kδj , Th)
with boundary conditions given by (4.8) or (4.9). Assume that (4.2) hold. Then we have

‖∇vH,lin‖L2(Kδj ) ≤ ‖∇vh,Kj‖L2(Kδj ) ≤ C‖∇vH,lin‖L2(Kδj ), (4.24)

where vH,lin is defined in Section 4.3.2.

Reformulation of the FE-HMM (see [5, 7, 68]). The bilinear form (4.6) can be reformu-
lated in the following form.

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
K(xKj)∇vH(xKj) · ∇wH(xKj). (4.25)

In order for the expression (4.6) to be equal to the expression (4.25), we see that the following
identity must hold

1

|Kδj |

ˆ
Kδj

aε(x)∇vh,Kj · ∇wh,Kjdx =
1

|K|

ˆ
K

a0
K(xKj)∇vH,lin · ∇wH,lindx, (4.26)

for all vH , wH ∈ S`0(Ω, TH) and for all vh,Kj (resp. wh,Kj) solutions of problem (4.10). The
following lemma gives an appropriate definition for a0

K(xKj) so that the above equality is valid
(see [7]).

Lemma 3. For ei, i = 1, . . . , d (the canonical basis of Rd) consider the following problem: find
ψih,Kj ∈ S

q(Kδj , Th) such that
ˆ
Kδj

aε(x)∇ψih,Kj · ∇zhdx = −
ˆ
Kδj

aε(x)ei · ∇zhdx, ∀zh ∈ Sq(Kδj , Th), (4.27)

where Sq(Kδj , Th) is defined in (4.7) with either periodic or Dirichlet boundary conditions. If
a0
K(xKj) is defined as

a0
K(xKj) =

1

|Kδj |

ˆ
Kδj

aε(x)
(
I + JTψh,Kj

(x)
)
dx, (4.28)

where Jψh,Kj (x) is a d× d matrix with entries
(
Jψh,Kj (x)

)
i`

=
∂ψih,Kj
∂x`

(x), then the equality (4.26)
holds true.
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Remark 4. We observe that a standard FEM with numerical quadrature for the effective problem
(4.3) reads (see [50]): find u0,H ∈ S`0(Ω, TH) such that

B0,H(u0,H , vH) =

ˆ
Ω

fvHdx, ∀vH ∈ S`0(Ω, TH), (4.29)

where

B0,H(vH , wH) =
∑
K∈TH

J∑
j=1

ωj,Ka
0(xKj)∇vH(xKj) · ∇wH(xKj). (4.30)

Thus, (4.6) can be seen as a FEM with numerical quadrature for a modified effective problem.
We expect (4.25) to be close to (4.30), hence uH to be close to u0,H , if the procedure to recover
the macro data from the microscale computation is accurate enough. This will be seen in the
error analysis presented below.

The first theorem gives the macroscopic error of the FE-HMM (see [1, 6, 68]). It does not
rely on structure assumption (e.g., periodicity) of the multiscale problem (4.1), but requires
sufficient smoothness of the data and the solution of the effective problem (4.3). For a given
natural number ` and µ = 0 or 1, we assume that the solution u0 and the tensor a0 of (4.3)
satisfy

(H1) u0 ∈ H`+1(Ω), a0
ij ∈ W `+µ,∞(Ω) for i, j = 1, . . . , d.

We notice that hypothesis (H1) is the usual assumption in order for a FEM with numerical
quadrature to converge with optimal rate H` and H`+1 in the H1 and L2 norms, respectively.

Theorem 5 (Macro error). Let u0, uH be the solutions of problems (4.3),(4.5), respectively.
Suppose that (4.2), (Q1), (Q2) and (H1) hold. 8 Then we have the following estimates

‖u0 − uH‖H1(Ω) ≤ C
(
H l + e(HMM)

)
, (4.31)

‖u0 − uH‖L2(Ω) ≤ C
(
H l+1 + e(HMM)

)
, (4.32)

where C is independent of H and h and

e(HMM) = sup
K∈TH ,xKj∈K

‖a0(xKj)− a0
K(xKj)‖F , (4.33)

where a0
K(xKj) is defined in (4.28) and ‖ · ‖F is the Frobenius norm.

Proof. Let u0,H be the solution of (4.29). It is proved in [50] that provided (4.2), (Q1), (Q2)
and (H1) hold, we have

‖u0 − u0,H‖H1(Ω) ≤ CH l, (4.34)

‖u0 − u0,H‖L2(Ω) ≤ CH l+1, (4.35)

8In hypothesis (H1), µ = 0 for the estimate (4.31) and µ = 1 for the estimate (4.32).
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where C is independent of H. Using the coercivity of the bilinear form (4.30) (which follows
from (Q1)), we obtain

‖u0,H − uH‖H1(Ω) ≤ C sup
wH∈S`0(Ω,TH)

|B0,H(uH , wH)−BH(uH , wH)|
‖wH‖H1(Ω)

.

In view of (4.30),(4.25) and (Q2), using the Cauchy-Schwarz inequality we see that

|B0,H(uH , wH)−BH(uH , wH)| ≤ C sup
K∈TH ,xKj∈K

‖a0(xKj)− a0
K(xKj)‖F‖uH‖H1(Ω)‖wH‖H1(Ω).

The above estimates together with (4.34) and (4.35) give the claimed result.

The next task is to estimate the quantity e(HMM). It is convenient to further decompose
this quantity. We therefore consider for each macro element K ∈ TH and each sampling domain
Kδj ⊂ K

ā0
K(xj,K) =

1

|Kδj |

ˆ
Kδj

aε(x)
(
I + JTψKj

(x)
)
dx, (4.36)

a tensor defined similarly as in (4.36) but here
(
JψKj (x)

)
i`

=
∂ψiKj
∂x`

(x) and ψiKj is the (exact)
solution of (4.27) in (4.8) or (4.9). Then obviously,

e(HMM) ≤ eMIC + eMOD,

where

eMIC := sup
K∈TH ,xKj∈K

‖ā0
K(xKj)− a0

K(xKj)‖F , (4.37)

eMOD := sup
K∈TH ,xKj∈K

‖a0(xKj)− ā0
K(xKj)‖F . (4.38)

For symmetric tensors, the quantity eMIC has first been analyzed in [1] and the quantity eMOD

in [68]. To analyze eMIC appropriate regularity of the oscillating tensor is required. As we use
standard a priori results of FEMs in the sampling domain, we also need appropriate regularity
of ψiKj . However, the coefficient aε is allowed to be discontinuous (at the macroscopic level)
through smooth interfaces. We therefore make the following assumption

(H2) for q ∈ N we assume that |ψiKj |Hq+1(Kδj ) ≤ C ε−q
√
|Kδj |, with C independent of ε, of the

quadrature points xKj and the domain Kδj .

Remark 6. If one assumes aε ∈ W 1,∞(Ω) and that |aεij|W 1,∞(Ω) ≤ Cε−1 for i, j = 1, . . . , d, then
(H2) can be proved for q = 1 and W (Kδj) = H1

0 (Kδj) following classical H2 regularity results
[98, Chap. 2.6] (notice that in fact we only need local regularity for aεij). If aε = a(x, x/ε) =

a(x, y) Y -periodic in y, δ/ε ∈ N, and W (Kδj) = W 1
per(Kδj), then (H2) can be established for a

given q, provided that the tensor aε is smooth enough (this follows classical regularity results for
solutions of periodic boundary value problems, e.g., [36, Chap. 3]).
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The following theorem has first been obtained in [1] for elliptic problem and in [3] for problem
in elasticity (see also [5, 7] for generalizations). In [59] the estimate has been extended to non-
symmetric tensors (see also [17, Lemma 4.6] for a short alternative proof).

Theorem 7 (Micro error). Assume that (4.2) and (H2) hold. Then

eMIC ≤ C

(
h

ε

)2q

, (4.39)

where C is independent of H, h and ε.

As first observed in [1, 5] we see that a fixed number of grid points per wavelength of
the smallest oscillation of the problem does not ensure a robust convergence of the FE-HMM.
Indeed, the above theorem shows that for fixed micromeshes, the error due to the micro solver are
dominant for fine enough macromeshes. Comparing the rate of convergence of the macro solver
(Theorem 5) with the rate of convergence of the micro solver (see Theorem 7) gives a criterion
to obtain optimal (macro) convergence rate with the minimal computational cost. Indeed, if the
macro problem (4.5) is solved in S`0(Ω, TH) with micro problems (4.10) solved in Sq(Kδj , Th),
then, assuming uniform macro and micromeshes, we have with ĥ = h

ε

ĥ ' H
`
2q (optimal refinement in H1 norm), (4.40)

ĥ ' H
`+1
2q (optimal refinement in L2 norm). (4.41)

We recall here that ĥ = h/ε is independent of ε (see Section 4.3.3).
The last task is to estimate the modeling error. Here structure assumptions on the tensor

such as local periodicity or random stationarity are required. For deterministic tensor we assume

(H3) aε(x) = a(x, x/ε) = a(x, y) is Y -periodic in y,

aij(x, y) ∈ C
(
Ω̄;W 1,∞

per (Y )
)
, for all i, j = 1, . . . , d,

where we set Y = (0, 1)d for simplicity. For such a tensor the variables x and y are usually referred
to as slow and fast variables, respectively. We first mention the following result obtained in [16].

Lemma 8. Assume (H3) and micro problems (4.10) solved in Sq(Kδj , Th) ⊂ W 1
per(Kδj) with

δ/ε ∈ N. Assume further that the slow variable tensor a(x, x/ε) is collocated at the quadrature
points xKj , i.e., a(xKj , x/ε) is used in the problem (4.10) and in the bilinear form (4.6). Then,
eMOD = 0.

A consequence of this result is that the FE-HMM converges with a robust rate (i.e. inde-
pendent of ε) to the homogenized solution In a more general situation, when for example the
size of the period is unknown, a modeling error due to a mismatch of the sampling domain size
and ε (e.g., δ/ε /∈ N) and to artificial boundary conditions arise. This error is often called cell
resonance in the literature (see e.g., [89]). The following result has been obtained in [68] (see
also [143]).
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Theorem 9 (Modeling error). Assume (H3) and that the micro problems (4.10) are solved
in Sq(Kδj , Th) ⊂ H1

0 (Kδj) with δ > ε. Then

eMOD ≤ C
(ε
δ

+ δ
)
,

where C is independent of H, h and ε.

We conclude this section by mentioning that recently, a new approach to cell resonance has
been proposed in [82]. By modifying the cell problem (4.10) and adding a zeroth order term,
one gets a micro problem with better decay of the error due to artificial boundary conditions
(due to a faster decaying Green function associated with the problem). The bias introduced by
modifying the cell problem can be controlled by tuning the constant associated with the zeroth
order term. A rate of

(
ε
δ

)p
, p < 4 is reported in [82]. Numerical experiments however show

that this asymptotic rate is only obtained for δ � ε. Nevertheless, this constitutes a promising
approach for the issue of cell resonance error.

Elliptic problems with random coefficients. The FE-HMM for elliptic problems with
random conductivity tensors has been investigated in [68], where the modeling error eMOD

has been analyzed under a stationarity assumption. Convergence rates have been derived for
dimensions d = 1 and d = 3 under the additional assumption that the random tensors satisfy a
uniform mixing condition [144].

4.4.2 Example of a priori analysis for nonlinear problems

We consider a class of nonlinear nonmonotone multiscale problems described in Example 2

−∇ · (aε(x, uε(x)))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω, (4.42)

with a d × d tensor aε(x, s) satisfying (4.2) with entries aεij(x, s) that are continuous functions
on Ω× R and uniformly Lipschitz continuous with respect to s and ε, i.e.,

∃Λ1 > 0, |aεij(x, s1)− aεij(x, s2)| ≤ Λ1|s1 − s2|, (4.43)

∀ε,∀x ∈ Ω,∀s1, s2 ∈ R,∀ 1 ≤ i, j ≤ d.

For such problems, it is known (see e.g., [37]) that there exists a subsequence of {aε(·, s)} (again
indexed by ε) such that the corresponding sequence of solutions {uε} converges weakly to u0 in
H1(Ω), where u0 is solution of the so-called homogenized problem

−∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, u0(x) = 0 on ∂Ω, (4.44)

with a homogenized tensor a0(x, s) which can be shown to have similar properties as assumed for
aε(x, s). The numerical method for computing an effective solution of (4.42) has been described
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in (4.12). The coerciveness of the bilinear form BH(zH ; ·, ·) can be established similarly as in the
linear case. Then, the existence of a solution of problem (4.12) relies on the Brouwer fixed point
theorem applied to the nonlinear map SH : S`0(Ω, TH) → S`0(Ω, TH) defined for zH ∈ S`0(Ω, TH)

as the solution SHzH of the linear problem

BH(zH ;SHzH , wH) =

ˆ
Ω

fwHdx, ∀wH ∈ S`0(Ω, TH). (4.45)

We refer for example to [91] for details. In contrast the uniqueness is much more involved (see
below). For deriving a priori error estimates and rates of convergence for the error ‖u0−uH‖H1(Ω),
we follow the methodology described in the linear case. There is however one main difference:
a priori error analysis for FEMs with numerical quadrature such as the results in [50] used
in the linear case need to be derived. Such results, that are quite technical in the nonlinear
nonmonotone case, have been derived in [18, 20]. Using the results in [20] it is then possible to
show (see [20] for a proof)

Theorem 10. Let u0, uH be the solutions of problems (4.44) and (4.12), respectively. Let ` ≥ 1.
Let µ = 0 or 1. Assume (Q1), (Q2) and (H1) 9 hold. In addition, assume that u0 ∈ W 1,∞(Ω),
∂ua

0
mn ∈ W 1,∞(Ω × R), and that the coefficients a0

mn(x, s) are twice differentiable with respect
to s, with the first and second order derivatives continuous and bounded on Ω × R, for all
m,n = 1 . . . d.

Then, there exist r0 > 0 and H0 > 0 such that, provided

H ≤ H0 and e(HMM) ≤ r0, (4.46)

any solution uH of (4.12) satisfies

‖u0 − uH‖H1(Ω) ≤ C(H` + e(HMM)) if µ = 0, 1, (4.47)

‖u0 − uH‖L2(Ω) ≤ C(H`+1 + e(HMM)) if µ = 1 holds, (4.48)

where e(HMM) is given in (4.49). Here, the constants C are independent of H and e(HMM).

Remark 11. Notice that we assume that the macroscopic family of triangulations {TH} satisfies
the inverse assumption H

HK
≤ C for all K ∈ TH and all TH in the above theorem (such a condition

is often used for the FE analysis of nonlinear problems [141]). We also assume (for simplicity)
the convexity of the domain Ω for the L2 bound. Such a condition on the domain allows to infer
suitable regularity to use an Aubin-Nitsche type duality argument. A weaker condition on the
adjoint of the linearized problem associated to (4.44) (see [18, Equ. (5)]) is sufficient. This
condition is usually assumed for L2 estimates of linear FEM with numerical quadrature (see
[125, Equ. (2.11)]).

9Here a0ij ∈W `+µ,∞(Ω× R) for i, j = 1, . . . , d.
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The proof of Theorem 10 is more involved than the similar theorem in the linear case. We
note that the additional assumptions compared to the linear case (Theorem 5), i.e., the W 1,∞

assumption on u0, the smoothness of s 7→ a(x, s), are already used for the analysis of FEM for
single scale nonlinear problems of the type (4.44) (see for example [91]). The inverse assumption
is also used in [91] for the proof of the uniqueness of a numerical solution. The quantity e(HMM)

is defined by
e(HMM) := sup

K∈TH ,xKj∈K,s∈R
‖a0(xKj , s)− a0

Kj
(s)‖F , (4.49)

where a0 is the homogenized tensor of (4.44) and a0
Kj

is the tensor defined similarly as (4.28) by
replacing aε(x) with the nonlinear tensor aε(x, s) (s playing here the role of a parameter), ψih,Kj
with ψi,sh,Kj and Jψh,Kj (x) with Jψsh,Kj (x). A nice feature of the analysis in [17]) is that micro and
modeling errors can be analyzed, thank to Theorem 10, following the analysis obtained for the
linear case (estimates with similar rate of convergence can be derived, see [17, Thms. 3.6,3.7].)
The proof of the uniqueness of a numerical solution of Problem (4.12) is quite involved but can
be derived without any structure assumption on the oscillation provided

s ∈ R 7→ aε(·, s) ∈ (W 1,∞(Ω))d×d is of class C2 and |∂kuaε(·, s)|W 1,∞(Ω) ≤ Cε−1, k ≤ 2, (4.50)

where C is independent of s and ε (see [17, Thm. 3.3]). Here we present a simpler uniqueness
result that can be stated solely in terms of the size of the macro and micromeshes (see [17,
Corollary 3.4])

Theorem 12. In addition to the hypothesis of Theorem 10 assume (H2) and (H3’) and (4.50).
Assume W (Kδj) = W 1

per(Kδj) (periodic coupling conditions), δ/ε ∈ N and that the slow variable
of the tensor a(x, x/ε, s) is collocated at the quadrature points xKj in the problem (4.14) and in
the form (4.13). Then, there exists a positive constant H0 such that for all

(h/ε)2q ≤ H ≤ H0,

the solution uH of (4.12) is unique.

Here (H3’) is defined similarly as (H3) for the nonlinear tensor aεij(x, s) = aij(x, x/ε, s),

where aij(x, y, s) is Y -periodic in y, and the map (x, s) 7→ aij(x, ·, s) is Lipschitz continuous and
bounded from Ω× R into W 1,∞

per (Y ).

4.4.3 A posteriori error analysis

The goal of the residual based a posteriori analysis is to give upper and lower bounds of
the error eH := u0 − uH in the H1 norm for a given solution uH of the problem (4.5) in terms
of residual and data approximations, ηH (Ω) , ξH (Ω) defined in (4.19) and (4.20), respectively.
As mentioned in Section 4.3.3 (see Example 3), we will concentrate here on piecewise linear
simplicial macro FEs. Compared to classical residual based a posteriori error analysis, we have
here two additional difficulties
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• the data of the effective problem (4.3) (entering in the residual ηH) are not available
beforehand;

• “variational crimes" (see [39]) are committed by replacing the true bilinear form by the
bilinear form of the FE-HMM.

The first issue can be dealt with by introducing the jump of multiscale fluxes for the modeling of
(4.19). For the second issue, the following representation formula derived in [14, 12] is crucial.
Let B0(·, ·) be the bilinear form corresponding to the variational formulation of (4.3). Then,
we can relate the bilinear form B0(·, ·) evaluated at eH to the actual numerical solution uH , the
multiscale flux and data approximation as follows. Here for simplicity we consider piecewise
linear macroscopic FE functions.

Lemma 13 (Error representation formula). For all v ∈ H1
0 (Ω), we have

B0(eH , v) =

ˆ
Ω

fvdx−
∑
e∈EH

ˆ
e

Jaε (x)∇uhKevds+
∑
K∈TH

ˆ
K

(
a0
K(xK)− a0 (x)

)
∇uH ·∇vdx, (4.51)

where EH denotes the set of interfaces of the conformal mesh TH , uH is the solution of (4.5) and
where the jump of multiscale fluxes Jaε (x)∇uhKe is defined in (4.18).

Using the above formula we obtain for v = u0 − uH

B0 (eH , eH) =

ˆ
Ω

fH (eH − IHeH) dx+

ˆ
Ω

(f − fH) (eH − IHeH) dx

−
∑
e∈EH

ˆ
e

Jaε (x)∇uhKe (eH − IHeH) ds

+
∑
K∈TH

ˆ
K

(
a0
K(xK)− a0 (x)

)
∇uH · ∇eH dx,

where a0
K(xK) is defined in (4.28), IH denotes the Clément interpolation operator (see [52]). It

is a linear operator IH : H1 (Ω) → S(Ω, TH) having the property that for all v ∈ H1 (Ω) and
K ∈ TH

‖v − IHv‖L2(K) ≤ CHK ‖∇v‖L2(N(K)) (4.52)

and
‖∇ (v − IHv)‖L2(K) ≤ C ‖∇v‖L2(N(K)) , (4.53)

where N (K) is a neighborhood of K that consists of all elements of TH which have a non-
empty intersection with K. Using the properties of the Clément interpolation operator, Cauchy-
Schwarz and Poincaré inequalities, the coercivity of B0(·, ·) and the finite overlapping property
of the neighborhoods N (K), we can derive (see [14] for a complete proof)
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Theorem 14 (Upper bound). Let u0, uH be the solutions of problems (4.3) and (4.5), respec-
tively. Then ∥∥u0 − uH

∥∥2

H1(Ω)
≤ C

(
ηH (Ω)2 + ξH (Ω)2) ,

where C only depends on the shape regularity constant, the coercivity and continuity bounds
(4.2), the dimension d and the constant of the Poincaré inequality.

To derive a lower bound, bubble functions can be used as in the classical theory [138]. We
recall the construction of such functions. Let T̃H be a refinement of TH such that every K ∈ TH
has an interior node x̃K ∈ K\∂K in T̃H , and every edge e of TH not on the boundary ∂Ω has an
interior node x̃e ∈ e\∂e in T̃H . Based on the triangulation T̃H we define a piecewise linear FE
space S1

0(Ω, T̃H) ⊃ S1
0(Ω, TH).

We start by estimating the so-called interior residual. For any K ∈ TH consider an interior
bubble function, i.e., a function ψK ∈ S1

0(Ω, T̃H) such that 0 ≤ ψK ≤ 1, ψK (x̃K) = 1 and
ψK ≡ 0 on Ω\K. Using the representation formula (4.51) with a test function given by v :=

ψKfH ∈ H1
0 (Ω) one can estimate the so-called interior residual

H2
K ‖fH‖

2
L2(K) ≤C

(
‖∇eH‖2

L2(K) +H2
K ‖f − fH‖

2
L2(K)

+
∥∥(a0

K(xK)− a0 (x)
)
∇uH

∥∥2

L2(K)

)
. (4.54)

Next, we estimate the so-called jump residual. Let e ∈ EH be an interior interface and let
K1 ∈ TH and K2 ∈ TH be such that K1 ∩K2 = e. Furthermore, let x̃e ∈ e be an interior node
and ψe ∈ S1

0(Ω, T̃H) a bubble function such that ψe (x̃e) = 1 and ψe ≡ 0 on Ω\(K1 ∪K2). Using
the representation formula (4.51) with v := ψe we find

He

∥∥∥Jaε (x)∇uhKe
∥∥∥2

L2(e)
≤ C

(
‖∇eH‖2

L2(ωe)
+H2

ωe ‖f − fH‖
2
L2(ωe)

+
∥∥(a0

K(xK)− a0 (x)
)
∇uH

∥∥2

L2(ωe)

)
, (4.55)

where Hωe = maxi=1,2Hi, ωe = K1 ∪K2. Using the estimates (4.54),(4.55) on the interior and
jump residuals, respectively, allows to derive the following lower bound (see [14] for a complete
proof)

Theorem 15 (Lower bound). Let u0, uH be the solutions of problems (4.3) and (4.5), respec-
tively. Denote by ωK the domain which consist of all elements sharing at least one side with K.
Then

ηH (K)2 ≤ C
(∥∥u0 − uH

∥∥2

H1(ωK)
+ ξH (ωK)2

)
,

where C only depends on the shape regularity constant, the coercivity and continuity bounds
(4.2), the dimension d and the constant of the Poincaré inequality.
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5 Finite volume methods

5.1 The algorithm

In this section we discuss the application of HMM in the setting of finite volume methods.
Finite volume methods are generally preferred when the macroscopic models are in the form of
conservation laws. In fluid and solid mechanics, the macroscale models are often derived from
the conservation laws of mass, momentum and energy:

∂tρ+∇ · q = 0,

∂tq +∇ · τ = 0,

∂tE +∇ · J = 0.

(5.1)

Here ρ is the mass density of the system, q = ρv is the momentum density with v being the
velocity, and E is the total energy density. τ and J are the momentum and energy fluxes
respectively. In conventional continuum models, empirical relations are sought to express these
fluxes in terms of the conserved densities. In HMM, the fluxes are computed directly from some
underlying microscopic models.

An example of the microscopic model that one can consider is that of molecular dynamics,
i.e. Newton’s equations of motion for the constituting atoms, ẋi = vi,

miv̇i =
∑
j 6=i

f
(
xi(t)− xj(t)

)
. (5.2)

Here mi is the mass of the i-th particle and f(r) = −∇φ(r) is the force exerted on the particles
with interatomic potential φ(r). Here we have assumed that the particles interact via a pair-wise
potential even though the algorithms discussed here can be easily adapted to the situation when
general inter-atomic potentials are used.

To see how the microscopic model can be linked with the macroscopic model, observe that
for (5.2), we can also write down the analogs of the equations (5.1) by defining,

ρ̃(x, t) =
∑
i

miδ
(
x− xi(t)

)
,

q̃(x, t) =
∑
i

mivi(t)δ
(
x− xi(t)

)
,

Ẽ(x, t) =
1

2

∑
i

[
mi|vi|2 +

∑
j 6=i

φ
(
xi(t)− xj(t)

)]
δ
(
x− xi(t)

)
,

(5.3)
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and

τ̃(x, t) =
∑
i

mivi ⊗ viδ
(
x− xi(t)

)
(5.4a)

+
1

2

∑
i

∑
j 6=i

f
(
xi − xj

)
⊗ (xi − xj)

×
ˆ 1

0

δ
(
x−

(
xj + λ(xi − xj)

))
dλ

J̃(x, t) =
∑
i

vi

[1

2
mi|vi|2 +

1

2

∑
j 6=i

φ
(
xi(t)− xj(t)

)]
δ
(
x− xi(t)

)
(5.4b)

+
1

4

∑
j 6=i

(
vj(t) + vi(t)

)
· f
(
xj(t)− xi(t)

)
(xi − xj)

×
ˆ 1

0

δ
(
x−

(
xj + λ(xi − xj)

))
dλ.

One can easily verify that, from (5.2), we have
∂tρ̃+∇x · q̃ = 0,

∂tq̃ +∇x · τ̃ = 0,

∂tẼ +∇x · J̃ = 0.

(5.5)

An important factor to be considered is the scale separation: microscopic processes usually
take place at the length scale of nanometers (10−9m) and time scale of femto- or pico-seconds on
which one can neglect the variation of the macroscale variables. Locally, one can then think of
the atomistic system as been constrained by the local macroscopic quantities, namely the local
mass, momentum and energy densities. In addition, the atomistic system will stay close to local
equilibrium since there is sufficient time for relaxation to take place. Consequently, one may
view the models (5.1) as being the ensemble averages of (5.2). This is the ideal situation for
HMM to be used.

A HMM strategy for this setting has been developed in [103, 126]. Our presentation here
follows that of [103].

Macroscale solver. Since the macroscopic model (5.1) is in the form of conservation laws,
it is natural to choose as the macroscale solver a finite volume method. Although there are
many different finite volume methods that are available for conservation laws e.g. [100, 83],
many involve the computation of the Jacobian for the flux functions. These are less suited for
the present problem since the flux function is not explicitly given to us. An exception is the
central scheme of Lax-Friedrichs type, such as [114], which is formulated over a staggered-grid.
As it turns out, this method can be easily coupled with molecular dynamics.

To be more specific, we first rewrite the conservation laws in a generic form,

∂tu+ ∂xf = 0, (5.6)
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We will confine our discussion to macroscopically one dimensional problems since the extension
to higher dimension is straightforward. The first order central scheme represents the solutions
by piece-wise constants, which are the average values over each cell:

unk =
1

∆x

ˆ xk+1/2

xk−1/2

u(x, tn)dx.

Time integration over [xj, xj+1]× [tn, tn+1) leads to the following scheme,

un+1
k+1/2 =

unk + unk+1

2
− ∆t

∆x

(
fnk+1 − fnk

)
, (5.7)

with numerical flux,

fnk =
1

∆t

ˆ tn+1

tn
f(xk, t)dt,

which is taken to be fnk = f(xk, t
n) in central scheme.

(5.1) is still incomplete since we still do not know the fluxes. Next we describe how this
information can be extracted from MD or other atomistic models.

Microscale solver. We first discuss the case when the microscopic model is MD. At each
point where numerical fluxes are needed, we perform a local MD simulation to estimate the
fluxes. The atomistic simulation will be constrained by the local macroscopic variables, which
are the local density, momentum and energy. To initialize the MD simulation, we first arrange
a trial configuration of the atoms according to the local density. From the local total energy,
momentum and potential energy V of the trial configuration, we can compute the thermal energy
Kθ by

Kθ = E − V − 1

2
ρv2,

If Kθ is negative, the trial configuration is rejected and another trial configuration with the
same number of atoms is generated. Otherwise it is accepted, and a local initial temperature is
computed from Kθ. The velocities of the atoms are then given by

vi = v + v′i,

where v′i is thermal velocity given by the Maxwell-Boltzmann distribution with the given local
temperature.

The set of ODEs (5.2) can be solved by standard finite difference scheme such as Verlet’s
method. For the present analysis, however, we will assume that the ODEs are solved exactly
to avoid unnecessary complication. After the MD system equilibrates, we obtain the needed
quantities by averaging. Specifically let j̃ be the spatial average over the simulation box of a
local flux whose expression was given in (5.4),

J̃ = J̃(X), X = (x1, x2, · · · , xN , v1, v2, · · · , vN), (5.8)

64



then we obtain the corresponding macroscale quantity by time averaging,

J =
1

T

ˆ τ+T

τ

J̃
(
X(t)

)
dt, (5.9)

where τ is the starting point when the time averaging begins, and T is the duration of the time
averaging. An additional ensemble averaging can also be used if desired. For detailed discussion
on the setup of the MD as well as boundary conditions, see [103].

The overall numerical procedure is shown schematically in Figure 18. At each time step,
the scheme (5.7) requires as input the fluxes at grid point xj to complete the time integration.
These flux values are obtained by performing local MD simulations that are consistent with the
local macroscale state (ρ, q, E). Once these values are computed, one can advance to the next
macro time step using (5.7).

Figure 18: A schematic illustration of the numerical procedure: starting from piece-wise constant
solutions unk , one integrates 5.6 in time and in the cell xk, xk+1. The time step ∆t is chosen in such
a way that the waves coming from xk+1/2 will not reach xk, and thus for t ∈ [tn, tn+1], u(xk, t) = unk .
If f(u) at xk is found to be unknown, we perform a MD simulation using unk to invoke and restrict
the microscopic process. The needed flux is then extracted from the simulation and the integration is
completed. Analogously one can embed the MD simulation to higher order macro-schemes or higher
dimensions.

One result from such a method is shown in Figure 19. Here the setup for the macroscale
model is a Riemann problem for one-dimensional wave propagation in solids. The result of
HMM is compared with that of a direct MD simulation. The microscale model is MD with
Lennard-Jones potential.
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Figure 19: Numerical test on shock formation and propagation. 200 macro-grid points are used and
each local MD simulation consists of 40 × 10 atoms and 104 steps of time integration. The solution is
displayed after 40 steps of integration over macro time steps. Solid line: computed solution; dashed
line: full atom simulation (one realization). Top: strain, middle: velocity, bottom: displacement.

5.2 Error analysis

As we have seen before, error estimates for HMM proceed in two steps. The first is to
estimate the “HMM error”, i.e. the the error in the estimated data. The second step is to obtain
the overall error estimate.

We will take as the exact solution the solution for the case when the fluxes are given by the
averaged quantities for the equilibrium distribution with parameters given by the local values of
the macroscale variables (density, momentum, energy).

First, let us look at the HMM error. Let

e(HMM) = E
[
|J − J̄ |

]
, (5.10)

where J denotes the value of the flux computed by HMM, J̄ is the exact value for the flux:

J̄ =

ˆ
J̃(X)dµ∞, (5.11)

with µ∞ being the local equilibrium distribution.
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Let L be the size of the microscale simulation box and d be the dimension of the problem.
Denote by µtL the particle distribution for the MD system at time t, and let µL be the equilibrium
particle distribution for a system of size L. In addition, define two quantities α(L) and τ0(L) by
the following ∣∣∣∣ˆ f(X)d(µL − µtL)

∣∣∣∣ ≤ Ce
− t
τ0(L)‖f‖w,∞, (A1)

and ∣∣∣∣ˆ f(X)d(µL − µ∞)

∣∣∣∣ ≤ Cα(L)‖f‖w,∞, (A2)

for any continuous function f that satisfies,

‖f‖w,∞ ≤ ∞,

where,
‖f‖w,∞ = sup

X

(
1 + |X|2)−p/2|f(X)|,

for p ≥ 2. τ0(L) can be regarded as the relaxation time for system of size L, and α(L) measures
the error due to the finite size effect.

Now let
J tL =

ˆ
J̃(X)dµtL, (5.12)

A(t, s) = E

[(
J̃(t)− J tL

)(
J̃(s)− JsL

)]
, (5.13)

where the expectation is w.r.t. µ0
L, the initial distribution. We further assume that,
ˆ +∞

0

A(t, s)ds ≤ C0, ∀t ≥ 0. (A3)

This amounts to assuming that the correlation decays in time sufficiently fast.
With (A1), (A2), we have,∣∣∣∣J̄ − 1

T

ˆ τ+T

τ

J tLdt

∣∣∣∣ ≤ C(α(L) + T−1e
− t
τ0(L) ). (5.14)

Combined with (A3), we have,

E

[(
J − 1

T

ˆ τ+T

τ

J tLdt

)2
]

=
1

T 2
E

[ ˆ τ+T

τ

ˆ τ+T

τ

(J̃(t)− J tL)(J̃(s)− JsL)dtds

]
,

≤ C0

T
,

Hence, we have

e(HMM) ≤ C

(
α(L) + T−1e

− τ
τ0(L) +

1√
T

)
. (5.15)
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If ensemble averaging is also used, for example, with M independent copies, the above estimate
becomes,

e(HMM) ≤ C

(
α(L) + T−1e

− τ
τ0(L) +

1√
TM

)
. (5.16)

We clearly see that e(HMM) is controlled by the behavior of α(L) and τ0(L). In general one
expects that

α(L) ∼ L−d/2, (5.17)

from a central limit theorem type of argument, and

τ0(L) ∼ Lr, (5.18)

with r > 0.
From (5.17) and (5.18), we see the confliciting effects of choosing the size of the MD system:

when L is increased, the finite size error is reduced while the relaxation time τ0 is increased.
Similarly when L is decreased, τ0 decreases but α(L) will increase.

The macroscopic models considered in this paper have the following properties: They are
hyperbolic and they have a strictly convex entropy function. To avoid irrelevant complictions,
we will further assume that the numerical solutions at the macroscale level are bounded and the
exact solution is piecewise Lipschitz continuous.

Assume that (5.6) is solved by the three-point conservative scheme,

un+1
j = unj −

∆t

∆x

(
fnj+1/2 − fnj−1/2

)
, (5.19)

where fj+1/2 = F (uj, uj+1) and we have omitted the superscript. For Lax-Friedrichs type of
schemes, which are the ones considered in the following analysis, the numerical flux fj+1/2 is
given by,

F (uj, uj+1) =
1

2

(
f(uj) + f(uj+1)

)
− a

2

(
uj+1 − uj

)
. (5.20)

The constant a is chosen to be bigger than the eigenvalues of ∇f

a ≥ max |λ(∇f)|,

to ensure stability. Since the time step and the grid size are always proportional in the scheme,
we will use ∆x to indicate the discretization error.

The HMM solution can be written as:

un+1
j = unj −

∆t

∆x

(
gj+1/2 − gj−1/2

)
, (5.21)

gj+1/2 = G(uj, uj+1), (5.22)

with,

G(uj, uj+1) =
1

2

(
g(uj) + g(uj+1)

)
− a

2

(
uj+1 − uj

)
. (5.23)
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Define the intermediate variable:

wn+1
j = unj −

∆t

∆x

(
hj+1/2 − hj−1/2

)
, (5.24)

hj+1/2 = F (uj, uj+1) (5.25)

then,
‖wn+1 − un+1‖ ≤ Ce(HMM), (5.26)

with some constant C. The distance between {wn+1
j } and {vnj }, however, is directly related to

the stability of the numerical methods.
Theorem. Let v be the exact solution to the PDEs (5.6) and uHMM = {unj }, then we have

∥∥v − uHMM

∥∥
L2
≤ C∆x+

√
C∆x+ C

e(HMM)

∆x
. (5.27)

5.3 Application to spall fracture

Spall fractures, which, in its simplest form, occurs when two strong shock waves under
strain condition interact to produce a region of tension in the interior of a material body. The
interacting waves arise, for example, when the system is subject to high velocity impacts. The
shock waves lead to deformation of material at the highest possible rate, and the inertial effects
become extremely important.

Experimental studies on the fracture initiation due to rapid loadings have been well doc-
umented [23, 54]. However, computational approach remains a challenge due to the processes
occurring on multiple physical scales.

Figure 20: A coupled model.

This problem was studied by Xiantao Li using
HMM, by integrating conventional methods for contin-
uum models of solids, with an atomic level description –
the molecular dynamics model. The coupling is shown
in figure 20. This method treats the crack tip area by
explicitly incorporating the atomic interactions, to de-
scribe the interaction with the shock waves. Meanwhile,
the integration with continuum models allows one to
capture shock waves, and simulate materials of realistic
size.

In the continuum region, one solves the conventional
computational model of the elastodynamics equation,

ρ0
∂u

∂t
= ∇ · σ. (5.28)

Here ρ0 is the initial density, σ is the stress tensor.
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The model is often combined with Griffith type of criteria to simulate crack growth, e.g. see
[43, 142]. However, many of the fundamental properties of cracks are determined by the detailed
atomic interactions. Therefore, one introduces an atomistic region around the crack, where the
system is modeled by molecular dynamics (MD).

In [101]. Roe’s scheme was used as the macro-solver away from the crack tip. Around the
crack tip, numerical fluxes were evaluated via the help of MD. When the finite volume method
is applied to the microscale model, the average momentum in a cell is determined by the total
traction along the cell edges, which can be written as,

t =
∑
i,j

fij. (5.29)

Here fij is the force between two atoms that lie on two sides of the interface. Such a coupling
method maintains the continuity of the fluxes across the interface. The coupling scheme is
illustrated in the Fig. 20.

Another critical issue is the boundary condition for the atomistic region. This issue has been
extensively studied in [102, 105, 104].

Numerical results. As the first application, Xiantao Li studied cracks in pure iron ma-
terial at low temperature. The interatomic potential is the EAM model [55]. The system is a
rectangular sample with size 0.78µm × 0.78µm. The condition plain strain was assumed. For
the MD model, this is enforced by a periodic boundary condition in the third direction with
period equal to one atomic spacing. In the first experiment, tensile stress is rapidly applied
from the top and bottom boundary of the specimen. This generates two shock waves, which
later propagate to the center of the system to interact with a pre-existing crack. Below certain
threshold, no crack growth is observed after the two shocks collide. Instead of shock collisions,
reflections off the crack faces are observed behind the crack tip. Above certain threshold, one
begins to observe crack growth, followed by a sequence of high frequency lattice waves, the first
two of which are of elliptical and diamond shapes. Experimental observation shows that the
spallation does not occur instantaneously when the tension exceeds the spallation strength. It
occurs after a brief incubation period. This was also observed in our numerical experiments. A
sequence of snapshots are shown in Fig. 21.

Figure 21: An open crack under mode I shock loading.

In the second experiment, Li studied the response of a crack to loadings along the crack
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faces. These results are shown in Fig. 22. In this case, the shocks are no longer of longitudinal
type, and they propagate with much slow speed. The magnitude required to produce fractures
is much higher.

Figure 22: An open crack subject to face loading.

Figure 23: The onset of crack initiation.

Figure 23 summarizes the results under the impact of shocks of different magnitude. The goal
is to investigate the strength of the material under various type of extreme loading conditions.
The curve in the figure indicates the onset of the crack growth. In particular, for a given impact
duration, the point on the curve indicates the magnitude for which the shock impact leads to
fracture. For instantaneous shock loads, only very strong shocks are able to produce a growing
crack. For continuing (slow) impacts, the threshold is much lower, and the curve approaches
to a plateau, which agrees with linear elasticity analysis. The results can be compared to the
classical experimental results [124].
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6 Conclusion

When designing multiscale methods, there are two important factors to consider:

1. From a modeling viewpoint, one would like to eliminate ad hoc modeling assumptions as
much as possible.

2. From a numerical viewpoint, the algorithms have to be practical, and satisfy the standard
requirements for numerical algorithms such as stability and accuracy.

These two issues are not always consistent with each other. Therefore compromises have to be
made. This is one lesson that we have learned in the past decade in multiscale modeling. HMM
provides a general framework that allows us to make such compromises and make progress.

Although HMM has shown a lot of promises, much work remains to be done in order to fully
realize its potential. One has to note though that serious obstacles remain in order to apply
HMM to more challenging problems. For type A problems, i.e. problems involving local defects
or singularities, the macro states around the defects or singularities have to be inhomogeneous,
and there are difficulities in formulating constrained microscopic models in order for them to
be consistent with inhomogeneous macro states. In addition, near defects or singularities, the
local macroscale solutions are often singular also. Therefore for numerical efficiency, local mesh
refinements are needed. This is a technical problem that need to be addressed. For type B
problems, i.e. problems for which microscopic models are needed to supplement constitutive
relations, the main obstacle is still the cost associated in running the microscopic models.

A major issue for multiscale methods is the effect of fluctuations. This is manifested in several
ways. Fluctuation effects are almost always present in microscopic models such as molecular
dynamics or Monte Carlo models. They are also present in detailed models of random media.
However, they are absent in most effective macroscale models. In cases when the fluctuation
effects are important, these effective macroscale models have to be remedied to take into account
the fluctuations [57]. How to do this is still very much of an open question. In particular,
in HMM, in order to save cost, one would like to perform the microscopic simulations on as
small domains as possible. But central limit theorem tells us that fluctuations are inversely
proportional to the square root of the volume. So the computational savings might come at the
cost of artificially enlarge the size of the fluctuations [33]. These are all issues that will need to
be carefully addressed.
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