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MULTILEVEL AND WEIGHTED REDUCED BASIS METHOD FOR
STOCHASTIC OPTIMAL CONTROL PROBLEMS CONSTRAINED

BY STOKES EQUATIONS

PENG CHEN ∗, ALFIO QUARTERONI ∗ † , AND GIANLUIGI ROZZA ‡

Abstract. In this paper we develop and analyze a multilevel weighted reduced basis method
for solving stochastic optimal control problems constrained by Stokes equations. Existence and
uniqueness of the stochastic optimal solution is proved by establishing the equivalence between the
constrained optimization problem and a stochastic saddle point problem. Analytic regularity of the
optimal solution in the probability space is obtained under certain assumptions on the random input
data. Finite element method and stochastic collocation method are employed for numerical approx-
imation of the problem in deterministic space and probability space, respectively. A reduced basis
method using a multilevel greedy algorithm based on isotropic and anisotropic sparse-grid techniques
and weighted a posteriori error estimate is proposed in order to reduce the computational effort. A
global error is obtained based on estimate results of error contribution from each method. Numerical
experiments are performed with stochastic dimension ranging from 10 to 100, demonstrating that
the proposed method is very efficient, especially for high dimensional and large-scale optimization
problems.

Key words. uncertainty quantification, stochastic optimal control, stochastic collocation method,
weighted reduced basis method, multilevel greedy algorithm, stochastic regularity, error estimate
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1. Introduction. In computational science and engineering, often it is common
practice to control selected variables of the underlying physical system modelled by
partial differential equations (PDEs) in order to drive the simulation results as close
as possible to some ideal data or experimental measurements. These problems can be
generally formulated as optimal control of PDEs, where a so-called cost functional is
minimized subject to some PDE model. In practical applications, uncertainties are
inevitably encountered from various sources, for instance the PDE coefficients repre-
senting physical parameters, computational geometries, external loadings, boundary
and initial conditions, etc.. This leads to the necessity of quantifying the uncertain-
ties that play an important role in determining the optimal solutions. In the last few
decades, deterministic optimal control problems without taking the uncertainties into
account have been studied from both mathematical and computational perspectives
[29, 19, 20, 45]. Instead, stochastic optimal control problems constrained by PDE
models with random inputs have been considered only recently thanks to the devel-
opment of efficient stochastic computational methods [23, 21, 38, 27, 44, 11, 46, 2, 34].

Several computational challenges arise from solving PDEs-constrained stochastic
optimal control problems. Firstly, design of efficient and accurate numerical scheme
for approximation of the optimal solution in the stochastic space has been a diffi-
cult task for most PDE models. Monte-Carlo method can be regarded as one of
the most effective and simple schemes, however it is to be blamed for its low con-
vergence rate, thus leading to heavy computational cost when a full deterministic
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optimal control problem has to be solved for every sample. Galerkin projection of the
optimal solution onto some subspace (e.g. global polynomial space) of the stochas-
tic space has been proven to converge exponentially fast for smooth problems [3, 23]
but is not convenient to use in that the tensor-product projection scheme produces a
large scale tensor system to be solved, which brings further computational difficulty.
Another scheme known as stochastic collocation method based on multidimensional
interpolation [2, 46] takes advantage of fast convergence of the Galerkin projection
and non-intrusive property (thus easy implementation) of Monte-Carlo sampling. Sec-
ondly, to deal with high dimensional stochastic problems is commonly recognized as
a computational challenge due to “curse-of-dimensionality”. In order to harness the
computational burden, sparse and adaptive algorithms have been well employed by
making good use of sparse structure of numerical approximation and the different
importance of each dimension, for instance (anisotropic) sparse-grid stochastic collo-
cation method [46, 2, 34]. An additional computational challenge in solving PDEs-
constrained stochastic optimal control problem comes from full solve of the optimality
system obtained by variational approach [45], which is often ill-conditioned and nat-
urally coupled. To undertake this difficulty, efficient preconditioning techniques have
been developed to solve the optimality system by one “shot” approach [42, 37]; se-
quential quadratic programming [44] and trust-region algorithm [27] have also been
applied as iterative approaches. However, when solving the full optimality system
becomes very expensive, it is only affordable for tens or hundreds of full solve in prac-
tice, making the approaches introduced above impossible to be directly applied since
the number of samples needed easily goes beyond that can be handled, especially for
high dimensional problems. Since quantities of interest usually live in low dimensional
manifold, model order reduction techniques may be applied using proper orthogonal
decomposition or reduced basis method for parametrized optimal control problems
and provide a computational opportunity, see [28, 30, 32, 31, 26].

In this paper, we study a stochastic optimal control problem constrained by Stokes
equations with random inputs and distributed control function, which features all the
aforementioned computational challenges, besides the additional difficulty in dealing
with the saddle point structure of the underlying Stokes model [35, 6]. To tackle these
challenges, a multilevel and weighted reduced basis method, using multilevel greedy
algorithm and weighted a posteriori error estimate, is developed and applied to solve
the stochastic optimal control problem. More in detail, (anisotropic) sparse grid
stochastic collocation method is applied for stochastic approximation of the optimal
solution in the probability space and finite element method with (optimal) precondi-
tioning techniques is used for deterministic approximation in physical space, leading
to a large number of finite element optimality systems to solve. To reduce the com-
putational cost, we project the finite element optimality system into an adaptively
constructed reduced basis space, leading to a reduced optimality system that can be
solved with very cheap computational cost. For the construction of the reduced basis
space, we design a multilevel greedy algorithm and propose a weighted a posteriori
error bound, which produces quasi-optimal “snapshots” space that well approximate
the low dimensional manifold of the quantities of interest. A global error analysis is
carried out for the complete numerical approximation based on the regularity of the
optimal solution, in particular the stochastic regularity obtained for the specific Stokes
control problem. Numerical experiments with stochastic dimensions ranging from 10
to 100 are performed to verify the error convergence results and demonstrate the effi-
ciency and accuracy of our computational method for large scale and high dimensional
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PDEs-constrained optimization problems. The main contribution of this work is the
development of efficient model order reduction techniques to solve stochastic optimal
control problems with PDEs (Stokes equations) constraints. Another contribution is
the detailed analysis of the stochastic regularity of the optimal solution with respect
to input random variables and the associated error convergence analysis. Moreover,
the numerical experiments demonstrate that the proposed method achieves consider-
able computational saving. For large-scale and “reducible” problems, it is definitely
cheaper than both the stochastic collocation method [38] and Galerkin projection
method [23] that have been recently developed for solving stochastic optimal control
problems.

The paper is organized as follows: the stochastic optimal control problem with
Stokes constraint is presented in section 2 with certainty assumptions on the random
input data; section 3 is devoted to the well-posedness of the stochastic optimal solu-
tion, followed by section 4 for the study of stochastic regularity; detailed numerical
approximation of the problem is presented in section 5, which provides the basis for
the development of the multilevel and weighted reduced basis method in section 6; in
section 7, global error estimates are carried out and verified by numerical experiments
in section 8; concluding remarks are provided in the last section 9.

2. Problem statement. Let (Ω,F, P ) denote a complete probability space,
where Ω is a set of outcomes ω ∈ Ω, F is a σ-algebra of events and P : F → [0, 1]
with P (Ω) = 1 is a probability measure. A real-valued random variable is defined as
a measurable function Y : (Ω,F) → (R,B), being B the Borel σ-algebra on R. The
distribution function of a random variable Y : Ω → Γ ⊂ R, being Γ the image of Y ,
is defined as FY : Γ → [0, 1] such that with FY (y) = P (ω ∈ Ω : Y (ω) ≤ y) and its
probability density function ρ : Γ → R is given by ρ(y)dy = dFY (y) if the random
variable is continuous [15]. For any positive integer k ∈ N+, the k-th moment of Y is
defined as

E
[
Y k
]

=

∫
Ω

Y k(ω)dP (ω) =

∫
Γ

ykdFY (y) =

∫
Γ

ykρ(y)dy. (2.1)

Let D be an open and bounded physical domain in Rd (d = 2, 3) with Lipschitz
continuous boundary ∂D. Let v : D × Ω → R represent a real-valued random field,
which is a real-valued random variable defined in Ω for each x ∈ D. We define the
product Hilbert space Hs(D) := L2(Ω)⊗Hs(D), s ∈ R equipped with the norm

||v||Hs(D) :=

(∫
Ω

||v(·, ω)||2Hs(D)dP (ω)

)1/2

<∞, (2.2)

where Hs(D) is the Hilbert space of functions defined in the physical domain D
[35, 36]. When s = 0, we denote H0(D) ≡ L2(D), and thus H0(D) ≡ L2(D) by
convention. Moreover, the stochastic inner product is defined as

(w, v) =

∫
Ω

∫
D

wvdxdP (ω) ∀w, v ∈ L2(D). (2.3)

For a random vector field v = (v1, . . . , vd) : D × Ω → Rd, we define the product

Hilbert space Hs,d(D) :=
(
L2(Ω)⊗Hs(D)

)d
(= L2,d(D) for s = 0) associated with

the norm ||v||Hs,d(D) =
∑d
i=1 ||vi||Hs(D) and the inner product (v,w) =

∑d
i=1(vi, wi).
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2.1. Stochastic Stokes equations. We consider the following stochastic Stokes
equations: given random variable ν : Ω → R+, random vector fields f : D × Ω → Rd
and h : ∂DN × Ω → Rd, find a solution {u, p} : D × Ω → Rd × R such that the
following equations hold almost surely (for almost every ω ∈ Ω)

−ν(ω)4u(·, ω) +∇p(·, ω) = f(·, ω) in D,

∇ · u(·, ω) = 0 in D,

u(·, ω) = 0 on ∂DD,

ν(ω)∇u(·, ω) · n− p(·, ω)n = h(·, ω) on ∂DN ,

(2.4)

where ∂DD and ∂DN represent the Dirichlet and Neumann boundaries such that
∂DD ∪ ∂DN = ∂D and ∂DD ∩ ∂DN = ∅. In particular, we consider a homogeneous
Dirichlet boundary condition and a nonhomogeneous Neumann boundary condition.

At any realization ω ∈ Ω, the Stokes equations (2.4) is commonly used to quantify
the velocity u and pressure p of fluid flow where advective inertial forces are negli-
gible compared to viscous forces measured via the kinematic viscosity parameter ν.
This occurs, e.g., for low speed channel flows, the flow of viscous polymers or micro-
organisms [1]. In practice, the viscosity ν may vary in a large extent rather than stay
as a fixed constant for many fluids depending on the temperature, the multicompo-
nent property of the fluid and some other factors [17]. Quantification of the body
force f and boundary condition h, for instance by experimental measurements, may
also be faced with various noises or uncertainties. Incorporation of these different
uncertainties leads to the study of stochastic Stokes equations.

In order to solve (2.4) in the distribution sense, we write its weak formulation as:
find {u, p} ∈ V ×Q such that{

a(u,v) + b(v, p) = (f ,v) + (h,v)∂DN ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

(2.5)

where V :=
{
v ∈ H1,d(D) : v = 0 on ∂DD

}
, Q := L2(Ω)⊗Q(D), with Q(D) defined

as

Q(D) :=

{
q ∈ L2(D) :

∫
D

qdx = 0

}
. (2.6)

The bilinear form a(·, ·) : V × V → R is defined as

a(w,v) :=

∫
Ω

∫
D

ν∇w ⊗∇vdxdP (ω) =

d∑
i,j=1

∫
Ω

∫
D

ν
∂wi
∂xj

∂vi
∂xj

dxdP (Ω) (2.7)

and the bilinear form b(·, ·) : V ×Q → R reads

b(v, q) = −
∫

Ω

∫
D

∇ · vqdxdP (ω) = −
d∑
i=1

∫
Ω

∫
D

∂vi
∂xi

qdxdP (ω). (2.8)

The stochastic inner product (f ,v) and (h,v)∂DN are defined by the formula (2.3)
on the domain D and Neumann boundary ∂DN , respectively. To guarantee the well-
posedness of saddle problem (2.5), we make the following assumption on the random
variable ν and random vector fields f and h.

Assumption 1. The random viscosity ν is positive and uniformly bounded from
below and from above, i.e. there exist two constants 0 < νmin ≤ νmax <∞ such that

P (ω : νmin ≤ ν(ω) ≤ νmax) = 1. (2.9)
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The random force field f and Neumann boundary field h satisfy

||f ||L <∞ and ||h||H <∞, (2.10)

where we denote L = L2,d(D) and H = L2,d(∂DN ) for simplicity.
The well-posedness of the stochastic Stokes problem (2.5) can be obtained by the

following theorem, whose proof follows the same lines of the Brezzi theorem for the
deterministic setting and will thus be omitted here, see [8, 35, 36] for details.

Theorem 2.1. Under Assumption 1, there exists a unique solution to the stochas-
tic Stokes problem (2.5). Moreover, the following stability estimate holds

||u||V ≤
1

αa

(
CP ||f ||L +

αa + γa
βb

CT ||h||H
)
, (2.11)

and

||p||Q ≤
1

βb

((
1 +

γa
αa

)
CP ||f ||L +

γa(αa + γa)

αaβb
CT ||h||H

)
, (2.12)

where the positive constants αa, γa, βb, γb are defined such that

a(w,v) ≤ γa||w||V ||v||V ∀w,v ∈ V (2.13)

and

a(v,v) ≥ αa||v||2V ∀v ∈ V0, (2.14)

being V0 := {v ∈ V : b(v, q) = 0,∀q ∈ Q} the kernel of b, and

inf
q∈Q

sup
v∈V

b(v, q)

||v||V ||q||Q
≥ βb, (2.15)

where βb is called an inf-sup constant or compatibility constant, and the continuity

b(v, q) ≤ γb||v||V ||q||Q ∀v ∈ V,∀q ∈ Q. (2.16)

The constants CP and CT are those of the Poincaré inequality and trace theorem [35],

||v||L ≤ CP ||v||V and ||v||H ≤ CT ||v||V ∀v ∈ V. (2.17)

2.2. Finite dimensional assumption. For the sake of numerical approxima-
tion of the Stokes equations (2.5) in stochastic space, we make the following finite
dimensional assumption on the random input data.

Assumption 2. The random data ν, f and h depend only on a finite number of
random variables Y (ω) = (Y1(ω), . . . , YN (ω)) : Ω → Γ = Γ1 × · · · × ΓN ⊂ RN with
probability density function ρ = (ρ1, . . . , ρN ) : Γ → RN , i.e. ν(ω) = ν(Y (ω)) ∈ R+,
f(·, ω) = f(·, Y (ω)) : D → Rd and h(·, ω) = h(·, Y (ω)) : ∂DN → Rd almost surely.

Remark 2.1. The random variable ν and random vector fields f and h may not
depend on the same random vector Y but on different ones Yν , Yf , Yh. For ease of
notation, we still use a single random vector Y = (Yν , Yf , Yh) with total dimension
N .
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Example 1. For a multicomponent fluid flow, the viscosity is propositional to
the contribution of each component [25], which can be described by

ν(Y (ω)) =

N∑
n=1

νnYn(ω) + ν0

(
1−

N∑
n=1

Yn(ω)

)
= ν0 +

N∑
n=1

(νn − ν0)Yn(ω), (2.18)

where Yn, 1 ≤ n ≤ N are uniformly distributed in [0, 1/N ] and νn > 0, 0 ≤ n ≤ N .
Example 2. Another example for the random vector field h is given by the

truncated Karhunen-Loève expansion with N + 1 terms as [43]

h(x, Y (ω)) = E[h](x) +

N∑
n=1

√
λnhn(x)Yn(ω) x ∈ ∂DN , (2.19)

where (λn,hn) are the eigenpairs of the continuous and bounded covariance function
C(x, x′) = E[(h(x, Y ) − E[h](x)])(h(x′, Y ) − E[h](x′)])] and the random variables
Yn, 1 ≤ n ≤ N are uncorrelated with zero mean and unit variance, given by [43]

Yn(ω) =
1
√
rn

∫
D

(h(x, Y (ω))− E[h](x)) hn(x)dx. (2.20)

Under Assumption 2, the stochastic Stokes equations (2.4) can be viewed as a
set of parameterized equations defined in a tensor product of the spatial domain and
the parameter space D × Γ. We remark that the Hilbert space L2(Ω) is equivalent
to L2

ρ(Γ) and we use the same notation L,H,V,Q for the stochastic Hilbert spaces.
Moreover, Theorem 2.1 holds under Assumption 2.

2.3. Constrained optimal control problem. We study a distributed optimal
control problem constrained by the stochastic Stokes equations. Let us define a cost
functional as follows

J (u, p, f) =
1

2
||u− ud||2L +

1

2
||p− pd||2L2(D) +

α

2
||f ||2G

= E
[

1

2

∫
D

(u− ud)
2dx+

1

2

∫
D

(p− pd)2dx+
α

2

∫
D

f2dx

]
,

(2.21)

where first two terms measure the discrepancy between the solution {u, p} ∈ V ×Q of
the stochastic Stokes problem (2.5) and the observational data {ud, pd} ∈ L2,d(D)×
Q(D) that represent the mean of measurements. The admissible control space G in the
last term is a non-empty, closed, bounded and convex subset of L2,d(D). This term is
used to regularize in mathematical sense the control function f with a regularization
parameter α > 0, which can also be viewed as a penalization of the control energy.
The optimal control problem constrained by the stochastic Stokes problem (2.5) can
be formulated as: find an optimal solution {u∗, p∗, f∗} such that

J (u∗, p∗, f∗) = min {J (u, p, f) : {u, p, f} ∈ V ×Q× G and solve (2.5)} . (2.22)

It is easy to see that the cost functional J is weakly lower semicontinuous in G, i.e.

lim inf
n→∞

J (fn) ≥ J (f) (2.23)

for any sequence {fn}∞n=1 ∈ G such that fn ⇀ f as n → ∞. Then, we have the
following result by Lions’ argument [29]:
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Theorem 2.2. Under Assumption 1 and 2, there exists an optimal solution
{u∗, p∗, f∗} ∈ V ×Q× G to the stochastic optimal control problem (2.22).

Remark 2.2. In the cost functional, we have used the L2,d(D) norm for mea-
suring the discrepancy between the velocity field and its mean value of measurements.
Extension to the case with V norm is straightforward by requiring that the data {ud, pd}
possess higher regularity in the spatial domain. Another extension to stochastic data
{ud, pd} can be handled in the same way as in this work provided they depend explicitly
on a finite dimensional random vector, i.e. {ud, pd}(·, ω) = {ud, pd}(·, Y (ω)).

Remark 2.3. When the higher moments of the observational data {ud, pd} or
the control function f , e.g. variance, skewness, etc., or the probability distribution
of {ud, pd} are incorporated into the cost functional in more general settings [44], we
face essentially nonlinear and fully coupled problems, which will be addressed in [12].

3. Saddle point formulation. In order to prove the uniqueness of the opti-
mal solution of the constrained optimal control problem (2.22), we turn to a saddle
point formulation and establish its equivalence to the optimality system obtained by
Lagrangian variational approach in solving (2.22).

3.1. Optimality system. We first employ the variational approach [45] to de-
rive an optimality system (known as Karush–Kuhn–Tucker (KKT) conditions) in
solving the constrained optimal control problem (2.22). Define a compound bilinear
form to represent the weak formulation of the stochastic Stokes equations (2.5) as

B({u, p, f}, {v, q}) = a(u,v) + b(v, p) + b(u, q)− (f ,v). (3.1)

Associated with this bilinear form, we define the Lagrangian functional

L({u, p, f}, {ua, pa}) = J (u, p, f) + B({u, p, f}, {ua, pa})− (h,ua)∂DN , (3.2)

where {ua, pa} ∈ V×Q are the adjoint (or dual) variables of the Stokes equations (2.5)
corresponding to the state (or primal) variables {u, p}. The Lagrangian functional
(3.2) is Gâteaux differentiable with respect to {u, p, f ,ua, pa} [45], so that we can take
Gâteaux derivative of (3.2) with respect to the state variable {u, p} in test directions
{va, qa}, control variable f in g, and adjoint variable {ua, pa} in {v, q}, respectively,
obtaining the first order optimality system as

({u, p}, {va, qa}) + B({va, qa,0}, {ua, pa})
= (ud,v

a) + (pd, p
a) ∀{va, qa} ∈ V ×Q,

α(f ,g)− (ua,g) = 0 ∀g ∈ G,
B({u, p, f}, {v, q}) = (h,v)∂DN ∀{v, q} ∈ V ×Q,

(3.3)

where we can identify that the third equation is in fact the state equation (2.5), the
first one is the adjoint equation and the second one is the optimality equation. More
explicitly, the optimality system can be rewritten as

(u,va) +a(ua,va) +b(va, pa) = (ud,v
a) ∀va ∈ V,

(p, qa) +b(ua,qa) = (pd, q
a) ∀qa ∈ Q,

α(f ,g) −(ua,g) = 0 ∀g ∈ G,
a(u,v) +b(v, p) −(f ,v) = (h,v)∂DN ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

(3.4)
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whose saddle point structure can be observed evidently. For the sake of numerical
approximation, let us introduce the following operators corresponding to system (3.4):

Mv : V → V such that (Mvu,v) = (u,v) ∀u,v ∈ V,
Mq : Q → Q such that (Mqp, q) = (p, q) ∀p, q ∈ Q,
Mg : G → G such that (Mgf ,g) = (v,g) ∀f ∈ G,g ∈ G,
Mc : G → V such that (Mcg,v) = (g,v) ∀g ∈ G,v ∈ V,
Mn : H → V such that (Mnh,v) = (h,v)∂DN ∀h ∈ H,v ∈ V,
A : V → V such that a(u,v) = (ν∇u,v) ∀u,v ∈ V,
B : V → Q such that b(v, q) = −(∇ · v, q) ∀v ∈ V, q ∈ Q,

(3.5)
from which we obtain the following saddle point linear optimality system as


Mv 0 0 A BT

0 Mp 0 B 0
0 0 αMg −MT

c 0
A BT −Mc 0 0
B 0 0 0 0




u
p
f

ua

pa

 =


Mvud
Mppd

0
Mnh

0

 . (3.6)

Remark 3.1. The optimality system (3.6) is the first order necessary condition
to guarantee that if there exists an an optimal solution to the optimal control problem
(2.22), it should also satisfy the optimality system (3.6). However, the uniqueness of
the optimal solution is not an immediate result.

3.2. Saddle point formulation. In order to obtain the uniqueness and study
the stochastic regularity (Sec. 4) of the optimal solution, we introduce a compound
saddle point formulation of the constrained optimal control problem (2.22).

Let A : (V ×Q× G)× (V ×Q× G)→ R be a compound bilinear form defined as

A({u, p, f}, {v, q,g}) = (u,v) + (p, q) + α(f ,g), (3.7)

then we have that the cost functional (2.21) can be expressed as

J (u, p, f) =
1

2
A({u, p, f}, {u, p, f})−A({u, p, f}, {ud, pd,0}) + C, (3.8)

where C is a constant given by C = A({ud, pd,0}, {ud, pd,0})/2. We recall that
B : (V × Q × G) × (V × Q) → R is a compound bilinear form defined in (3.1). Then
the following proposition establishes the equivalence between the constrained optimal
control problem (2.22) and the saddle point problem (3.14), whose proof follows the
one in the deterministic setting, see [8, 7] for details.

Proposition 3.1. Suppose that the bilinear form A is symmetric, non-negative
and continuous, i.e. there exists a constant γ > 0 such that ∀{u, p, f}, {v, q,g} ∈
V ×Q× G, we have

A({u, p, f}, {v, q,g}) ≤ γ||{u, p, f}||V×Q×G ||{v, q,g}||V×Q×G . (3.9)

Moreover, suppose that A is strongly coercive in the kernel space of B, defined as

K :=
{
{u, p, f} ∈ V ×Q× G : B({u, p, f}, {v, q}) = 0 ∀{v, q} ∈ V ×Q

}
, (3.10)

i.e. there exists a constant ε > 0 such that ∀{v, q,g} ∈ V ×Q× G, we have

A({v, q,g}, {v, q,g}) ≥ ε||{v, q,g}||2V×Q×G . (3.11)
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Suppose that B is continuous, i.e. there exists a constant δ > 0 such that ∀{u, p, f} ∈
V ×Q× G, {v, q} ∈ V ×Q, we have

B({u, p, f}, {v, q}) ≤ δ||{u, p, f}||V×Q×G ||{v, q}||V×Q. (3.12)

Furthermore, suppose that B satisfies the inf-sup condition, i.e. there exists a constant
β > 0 such that

inf
{v,q}∈V×Q

sup
{u,p,f}∈V×Q×G

B({u, p, f}, {v, q})
||{u, p, f}||V×Q×G ||{v, q}||V×Q

≥ β. (3.13)

Then the constrained optimal control problem (2.22) is equivalent to the following
saddle point problem: find {u, p, f} ∈ V ×Q× G and {ua, pa} ∈ V ×Q such that A({u, p, f}, {va, qa,g}) + B({va, qa,g}, {ua, pa})

= ({ud, pd,0}, {va, qa,g}) ∀{va, qa,g} ∈ V ×Q× G,
B({u, p, f}, {v, q}) = (h,v)∂DN ∀{v, q} ∈ V ×Q.

(3.14)

Remark 3.2. By establishing the equivalence between the optimality system (3.3)
and the saddle point system (3.14), it can be shown that the variables {ua, pa} (and
{va, qa,g}) used, with slight abuse of notation, in the saddle point formulation (3.14)
are coincident with the adjoint variables (and test variables) as introduced in the La-
grangian functional (3.2). Moreover, we highlight that some mathematical properties
such as stochastic regularity (Sec. 4) of the two systems hold the same.

3.3. Equivalence, uniqueness and stability estimates.
Lemma 3.2. The constrained optimal control problem (2.22), the saddle point

problem (3.14) and the first order optimality system (3.3) are equivalent problems.
Proof. To prove the equivalence between the first two problems, we only need to

verify the assumptions in Proposition 3.1. By the definition (3.7), it is easy to check
that A is symmetric and non-negative; A is also continuous

|A({u, p, f},{v, q,g})| ≤ ||u||V ||v||V + ||p||Q||q||Q + α||f ||G ||g||G
≤ γ||{u, p, f}||V×Q×G ||{v, q,g}||V×Q×G ,∀{v, q,g} ∈ V ×Q× G,

(3.15)

where the continuity constant γ = 1 and ||{v, q,g}||V×Q×G := ||v||V+||q||Q+
√
α||g||G .

For any {v, q,g} ∈ K, the kernel of B defined in (3.10), we have by Theorem 2.1 that
||v||V ≤ CP ||g||G/αa, which yields

A({v, q,g}, {v, q,g}) = ||v||2L + ||q||2Q + α||g||2G

≥ α2
aα

2C2
P

||v||2V + ||q||2Q +
α

2
||g||2G

≥ 1

3
min

{
α2
aα

2C2
P

,
1

2

}
||{v, q,g}||2V×Q×G ,

(3.16)

from which we can infer that A is coercive on K with a coercivity constant ε =
(1/3) min{α2

aα/(2C
2
P ), 1/2}. As for the continuity of the bilinear form B defined

in (3.1), by Assumption 1 and Theorem 2.1 we have for any {{u, p, f}, {v, q}} ∈
(V ×Q× G)× (V ×Q),

|B({u, p, f}, {v, q})| ≤ νmax||u||V ||v||V + γb||v||V ||p||Q + γb||u||V ||q||Q + ||f ||G ||v||V
≤ max{νmax, γb, 1/

√
α}||{u, p, f}||V×Q×G ||{v, q}||V×Q,

(3.17)
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the continuity constant being δ = max{νmax, γb, 1/
√
α}. Finally, B satisfies the inf-

sup condition, as

inf
{v,q}∈V×Q

sup
{u,p,f}∈V×Q×G

B({u, p, f}, {v, q})
||{u, p, f}||V×Q×G ||{v, q}||V×Q

≥ inf
{v,q}∈V×Q

sup
{u,p,0}∈V×Q×G

B({u, p,0}, {v, q})
||{u, p,0}||V×Q×G ||{v, q}||V×Q

≥ β.
(3.18)

The inf-sup constant β > 0 depends on αa, γa, βb as follows (see [47]):

β =
1

k12 + max{k11, k22}
, (3.19)

where

k11 = α−2
a (1 + β−2

b γ2
a), k22 = β−2

b γ2
ak11 + β−2

b and k12 = β−1
b γak11. (3.20)

We conclude that solving the constrained optimal control problem (2.22) is equivalent
to solve the saddle point problem (3.14), thanks to Proposition 3.1. The equivalence
between the optimality system (3.3) and the saddle point system (3.14) can be ob-
served by noticing that by adding the second equation (optimal equation) of (3.3) to
its first one (adjoint equation), we obtain the first equation of (3.14).

Thanks to Lemma 3.2 and using Theorem 2.1, we can conclude that the optimal
solution is unique and satisfies a priori (boundedness) estimate:

Theorem 3.3. There exists a unique optimal solution to the constrained opti-
mal control problem (2.22). Moreover, the optimal solution {u, p, f} and the adjoint
variables {ua, pa} satisfy the following stability estimates:

||{u, p, f}||V×Q×G ≤ α1||{ud, pd}||L×Q + β1||h||H (3.21)

and

||{ua, pa}||V×Q ≤ α2||{ud, pd}||L×Q + β2||h||H (3.22)

where the constants α1, β1, α2, β2 are defined as

α1 =
1

ε
max{CP , 1}, β1 =

1

ε

ε+ γ

β
CT , (3.23)

and

α2 =
1

β

(
1 +

γ

ε

)
max{CP , 1}, β2 =

1

β

γ(ε+ γ)

εβ
CT . (3.24)

4. Stochastic regularity. In this section, we show that under suitable assump-
tions for the regularity of the viscosity ν : Γ → R+ and boundary data h : Γ → H
in the stochastic space Γ, the solution {u, p, f ,ua, pa} : Γ → V × Q × G × V × Q
can be analytically extended to a complex region that covers the stochastic space Γ.
(Here and in the following, we denote L, V,Q,G,H as the deterministic Hilbert space
corresponding to their stochastic counterparts L,V,Q,G,H, e.g. H = L2,d(∂DN ).)

Let k = (k1, . . . , kN ) ∈ NN0 be a N -dimensional multi-index of non-negative in-

tegers, with k! =
∏k1
i1
i1 · · ·

∏kN
iN
iN , |k| =

∑N
n=1 kn, and |k|! =

∏|k|
i=1 i; let ∂ky {·} =
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∂k1y1 ∂
k2
y2 · · · ∂

kN
yN {·} represent the k-th order partial derivative with respect to the param-

eter y = (y1, . . . , yN ). Let us also define the following constants for ease of notation

Cα = α1 + α2, Cβ = β1 + β2, Cα,β = max{α1 + α2, β1 + β2}, (4.1)

where α1, α2, β1, β2 are the stability constants defined in the Brezzi theorem (3.3).

We make the following assumption of stochastic regularity on the input data:

Assumption 3. For every y ∈ Γ, there exists a N -dimensional positive rate
vector r = (r1, . . . , rN ) ∈ RN+ such that the k-th order derivative of the viscosity
ν : Γ→ R+ and the boundary condition h : Γ→ H satisfy

Cα,β
|∂ky ν(y)|
ν(ȳ)

≤ rk and
Cβ ||∂kyh(y)||H

Cα||{ud, pd}||L×Q + Cβ ||h(y)||H
≤ |k|!rk. (4.2)

Theorem 4.1. Under assumption 3, we have the following a priori estimate for
the k-th order derivative of the solution {u, p, f ,ua, pa} : Γ→ V ×Q×G× V ×Q

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q
≤ C(Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)|k|!(rr)k,

(4.3)

where rr = (rr1, rr2, . . . , rrN ) with the constant rate r > 1/ log(2), and the constant
C is independent of k, which will be provided explicitly in the proof.

Proof. The semi-weak formulation of the saddle point problem (3.14) reads: find
{u(y), p(y), f(y)} ∈ V ×Q×G and {ua(y), pa(y)} ∈ V ×Q such that

A ({u(y), p(y), f(y)}, {va, qa,g}) + B({va, qa,g}, {ua(y), pa(y)}; y)

= (ud,v
a) + (pd, q

a) ∀{va, qa,g} ∈ V ×Q×G,
B({u(y), p(y),g(y)}, {v, q}; y) = (h(y),v)∂DN ∀{v, q} ∈ V ×Q,

(4.4)

where we have used the same bilinear forms A and B for ease of notation, which can
be identified in the semi-weak sense by their explicit dependence on the parameter
y. Taking k-th (|k| > 0) order partial derivative of problem (4.4) with respect to the
parameter y, we obtain the following problem thanks to the general Leibniz rule: find
∂ky {u(y), p(y), f(y)} ∈ V ×Q×G and ∂ky {ua(y), pa(y)} ∈ V ×Q such that



A
(
∂ky {u(y), p(y), f(y)}, {va, qa,g}

)
+ B({va, qa,g}, ∂ky {ua(y), pa(y)}; y)

= −
∑

k′∈Λ(k)

(∂k−k
′

y ν(y)∇∂k
′

y ua(y),∇va) ∀{va, qa,g} ∈ V ×Q×G,

B(∂ky {u(y), p(y),g(y)}, {v, q}; y) = (∂kyh(y),v)∂DN

−
∑

k′∈Λ(k)

(∂k−k
′

y ν(y)∇∂k
′

y u(y),∇v) ∀{v, q} ∈ V ×Q,

(4.5)

where the multivariate index set Λ(k) is defined as

Λ(k) =
{
k′ ∈ NN0 : k′n ≤ kn,∀1 ≤ n ≤ N, and k′ 6= k

}
. (4.6)
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By the Brezzi theorem 3.3, the solution of problem (4.5) admits the following estimate

||∂ky {u(y), p(y), f(y)}||V×Q×G ≤ α1

∑
k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

||∂k
′

y ua(y)||V

+β1

||∂kyh(y)||H +
∑

k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

||∂k
′

y u(y)||V

 ,

||∂ky {ua(y), pa(y)}||V×Q ≤ α2

∑
k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

||∂k
′

y ua(y)||V

+β2

||∂kyh(y)||H +
∑

k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

||∂k
′

y u(y)||V

 ,

(4.7)

where the parameters α1, α2, β1, β2 are given in (3.23) and (3.24). Adding the second
inequality of (4.3) to the first one and noting that ∀k′ ∈ Λ(k),

||∂k
′

y ua(y)||V ≤ ||∂k
′

y {ua(y), pa(y)}||V×Q (4.8)

and

||∂k
′

y u(y)||V ≤ ||∂k
′

y {u(y), p(y), f(y)}||V×Q×G, (4.9)

thus

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q ≤ Cβ ||∂kyh(y)||H + Cα,β∑
k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

(
||∂k

′

y {u(y), p(y), f(y)}||V×Q×G + ||∂k
′

y {ua(y), pa(y)}||V×Q
)
,

(4.10)

where the constants Cβ and Cα,β are defined in (4.1).

To prove the estimate (4.3) for a general k ∈ NN0 , we adopt an induction argument
based on the recursive result (4.10). To start, we consider the case when |k| = 0.
Applying the Brezzi theorem to the semi-weak problem (4.4), we have{

||{u(y), p(y), f(y)}||V×Q×G ≤ α1||{ud, pd}||L×Q + β1||h(y)||H ,
||{ua(y), pa(y)}||V×Q ≤ α2||{ud, pd}||L×Q + β2||h(y)||H .

(4.11)

Adding the second inequality of (4.11) to the first one, we find

||{u(y), p(y), f(y)}||V×Q×G + ||{ua(y), pa(y)}||V×Q
≤ Cα||{ud, pd}||L×Q + Cβ ||h(y)||H
= (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)|k|!rk,

(4.12)

which verifies the estimate (4.3) for |k| = 0 by noting that r > 1 and C = 1.

When |k| = 1, i.e. there exists n, 1 ≤ n ≤ N such that kn = 1 and kn∗ = 0 for all
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n∗ 6= n, 1 ≤ n∗ ≤ N , we have by the estimates (4.10) and (4.12) and Assumption 3

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q
= ||∂kny {u(y), p(y), f(y)}||V×Q×G + ||∂kny {ua(y), pa(y)}||V×Q

≤ Cβ ||∂kny h(y)||H + Cα,β
|∂kny ν(y)|
ν(ȳ)

(Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)

≤ 2 (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H) rn

= 2 (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H) |k|!rk,

(4.13)

which yields the estimate (4.3) for |k| = 1 by noting that r > 1 and C = 2.
As for more general k with |k| > 1, we first prove the following auxiliary estimate

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q
≤ (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H) s(|k|)rk,

(4.14)

where s(|k|) depends only on |k| according to the following recursive formula,

s(0) = 1, s(1) = 2, s(|k|) = 1 +

|k|−1∑
|k′|=0

(
|k|
|k′|

)
s(|k′|). (4.15)

In fact, (4.14) holds for |k| = 0 and |k| = 1 due to (4.12) and (4.13). By induction,
we assume that the stability estimate (4.14) holds for every k′ ∈ Λ(k), so that (4.10)
implies

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q ≤ Cβ ||∂kyh(y)||H

+ Cα,β
∑

k′∈Λ(k)

|∂k−k′y ν(y)|
ν(ȳ)

(Cα||{ud, pd}||L×Q + Cβ ||h(y)||H) s(|k′|)rk
′

≤ (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)

|k|!rk +
∑

k′∈Λ(k)

rk−k
′
s(|k|′)rk

′


= (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)

|k|! +

|k|−1∑
|k′|=0

(
|k|
|k′|

)
s(|k′|)

 rk

= (Cα||{ud, pd}||L×Q + Cβ ||h(y)||H) s(|k|)rk,

(4.16)

where we have used the assumption 3 for the second inequality, the fact that rk =
rk−k

′
rk
′

for any k′ ∈ Λ(k), and the following relation by summation reordering

∑
k′∈Λ(k)

s(|k|′) =

|k|−1∑
|k′|=0

(
|k|
|k′|

)
s(|k′|), (4.17)

thanks to the definition of Λ(k) in (4.6). By this end, it is left to establish a suitable
bound for s(|k|) in order to prove the estimate (4.3) from the estimate (4.14). Let us
denote k = |k|, k′ = |k′|, and define t(k) = s(k)/k!, so that from (4.15) we have

t(k) =
1

k!

(
k! +

k−1∑
k′=0

k!

(k − k′)!
s(k′)

k′!

)
= 1 +

k−1∑
k′=0

t(k′)

(k − k′)!
. (4.18)



14 PENG CHEN AND ALFIO QUARTERONI AND GIANLUIGI ROZZA

Suppose that for all k, t(k) ≤ crrk for some positive constants cr, r to be determined,
so that (4.18) yields

t(k)− 1 =

k−1∑
k′=0

t(k′)

(k − k′)!
=

k∑
k′=1

t(k − k′)
k′!

≤ crrk
k∑

k′=1

r−k
′

k′!
≤ crrk

(
e

1
r − 1

)
. (4.19)

On the other hand, t(k)− 1 ≤ crrk − 1 from our assumption. Hence, we only require
that crr

k
(
e1/r − 1

)
≤ crr

k − 1, which can be satisfied when r > 1/ log(2) and cr ≥
1/(2− e1/r). Therefore, s(k) = t(k)k! ≤ crrkk!, implying that

s(|k|) ≤ crr|k||k|! = crr
k
r |k|!, (4.20)

where the N -dimensional constant rate vector rr = (r, . . . , r). The proof is concluded
by substituting (4.20) into (4.14), noting rkr r

k = (rr)k, and setting C = cr in (4.3).
Let us define a complex region associated with the stability estimate (4.3) as

Σ :=

{
z ∈ C : ∃y ∈ Γ such that

N∑
n=1

rrn|zn − yn| < 1

}
. (4.21)

Then we have that the solution does not only have bounded partial derivative but can
be analytically extended to the complex region Σ, as stated in the following theorem:

Theorem 4.2. Under assumption 3, the solution of the semi-weak saddle point
problem (4.4) admits an analytical extension to the region Σ defined in (4.21).

Proof. Given any y ∈ Γ, the Taylor expansion of the solution of problem (4.4)
{u, p, f} : Γ→ V ×Q×G and {ua, pa} : Γ→ V ×Q about y reads

{u(z), p(z), f(z)} =
∑

k∈NN0

∂ky {u(y), p(y), f(y)}
k!

(z − y)k (4.22)

and

{ua(z), pa(z)} =
∑

k∈NN0

∂ky {ua(y), pa(y)}
k!

(z − y)k, (4.23)

where (z − y)k =
∏N
n=1(zn − yn)kn . By Theorem 4.1, we have

||{u(z), p(z), f(z)}||V×Q×G + ||{ua(z), pa(z)}||V×Q

≤
∑

k∈NN0

(
||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q

) |z − y|k
k!

≤ C(Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)
∑

k∈NN0

|k|!(rr)k
|z − y|k

k!
.

(4.24)

Upon reordering, we have

∑
k∈NN0

|k|!(rr)k
|z − y|k

k!
=

∞∑
k=0

∑
|k|=k

k!

k!

N∏
n=1

(rrn|zn − yn|)kn . (4.25)
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By Newton’s generalized binomial formula, we have

∞∑
k=0

∑
|k|=k

k!

k!

N∏
n=1

(rrn|zn − yn|)kn =

∞∑
k=0

(
N∑
n=1

rrn|zn − yn|

)k
, (4.26)

which converges when
∑N
n=1 rrn|zn − yn| < 1. This concludes our proof.

5. Numerical approximation. In order to solve the constrained optimization
problem (2.22), we need to solve the equivalent saddle point problem (3.14) (or,
equivalently (3.6)) thanks to Lemma 3.2. Hereafter, we introduce a numerical ap-
proximation of system (3.6) in the probability space Γ by the stochastic collocation
method and in the physical domain D by the finite element method.

5.1. Stochastic collocation method. For stochastic problems with smooth
solution in the probability space, the stochastic collocation method based on sparse
grid techniques [46, 2, 34, 33] features both fast convergence of stochastic Galerkin
method and the non-intrusive structure of Monte Carlo method. This makes it an
efficient method in solving stochastic optimal control problems [44, 27, 11].

Let X denote a general Hilbert space defined in the physical domain D, e.g.
H1(D). Let C(Γ;X) be the space of continuous functions with values in X, i.e.

C(Γ;X) :=

{
v : Γ→ X|v is continuously measurable and max

y∈Γ
||v(y)||X <∞

}
.

(5.1)
Let Pm(Γ) be a space of polynomials with degree less than or equal to m in each
coordinate yn, 1 ≤ n ≤ N . Let U in : C(Γ;X) → Pm(in)−1(Γn) ⊗ X denote a one-
dimensional Lagrangian interpolation operator based on the set of collocation nodes

Θin
n = {y1

n, . . . , y
m(in)
n }, 1 ≤ n ≤ N , defined as

U inv(yn) =

m(in)∑
jn=1

v(yjnn )ljnn (yn), with ljnn (yn) =
∏

1≤k≤m(in):k 6=jn

yn − ykn
yjnn − ykn

, (5.2)

where m(k) is a function of k depending on the choice of collocation nodes, e.g.
m(k) = 1 when k = 1 and m(k) = 2k−1 + 1, 1 ≤ n ≤ N when k > 1 [34]. We define
the sparse grid Smolyak formula Sq : C(Γ;X)→ Pm(q−N+1)−1(Γ)⊗X as [34]

Sqv(y) =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(
N − 1
q − |i|

)
Iiv(y), q = N,N + 1, . . . (5.3)

where i = (i1, . . . , iN ) ∈ NN+ with |i| = i1 + · · · + iN is a multi-index. The tensor-
product interpolation operator Ii : C(Γ;X) → Pm(i)−1(Γ) ⊗X is defined on the set

of collocation nodes Θi = Θi1
1 × · · · ×ΘiN

N as

Iiv(y) = (U i1 ⊗ · · · ⊗ U iN )v(y) =

m(i1)∑
j1=1

· · ·
m(iN )∑
jN=1

v(yj11 , . . . , y
jN
N )

N⊗
n=1

ljnn (yn). (5.4)

With the definition of Lagrangian interpolation operator (5.3) and (5.4), we can ap-
proximate statistics of interest, e.g. expectation, by

E[Sqv] =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(
N − 1
q − |i|

)
E[Iiv], (5.5)
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being E[Iiv] defined as

E[Iiv] =

m(i1)∑
j1=1

· · ·
m(iN )∑
jN=1

v(yj11 , . . . , y
jN
N )

N∏
n=1

wjnn , (5.6)

where the quadrature weights are given by

wjnn =

∫
Γn

ljnn (yn)ρ(yn)dyn 0 ≤ jn ≤ m(in), 1 ≤ n ≤ N. (5.7)

Remark 5.1. The accuracy of stochastic collocation approximation depends on
the choice of the collocation nodes. Among the most popular, we mention Clenshaw-
Curtis abscissas, Gauss abscissas of certain orthogonal polynomials corresponding to
the joint probability density function ρ, e.g. Gauss-Jacobi abscissas for beta density
function, Gauss-Hermite abscissas for normal density function, see [34, 9] for more
details.

By using the difference operator 4in = U in − U in−1, with U0 = 0, we have an
alternative representation of the sparse grid Smolyak formula (5.3) as follows

Sqv(y) =
∑

i∈X(q,N)

(4i1 ⊗ · · · ⊗ 4iN )v(y) (5.8)

with the multivariate index set defined as

X(q,N) :=

{
i ∈ NN+ :

N∑
n=1

in ≤ q

}
, q = N,N + 1, . . . . (5.9)

Let H(q,N) := {Θi, i ∈ X(q,N)} denote the set of collocation nodes associated to
the index set X(q,N). The cardinality of H(q,N) grows exponentially with respect
to the dimension of the problem [46, 34]. In tackling high dimensional problems, each
dimension may be given appropriate relevance by applying anisotropic sparse grid
interpolation formula written as [33]

Sαq v(y) =
∑

i∈Xα(q,N)

(4i1 ⊗ · · · ⊗ 4iN )v(y), (5.10)

where the anisotropic multivariate index set Xα(q,N) is defined as

Xα(q,N) :=

{
i ∈ NN+ :

N∑
n=1

αnin ≤ min
1≤n≤N

αnq

}
, q = N,N + 1, . . . . (5.11)

Here, α = (α1, . . . , αN ) is a positive multivariate weight, which can be obtained by a
priori or a posteriori estimate [33], or by a suitable dimension adaptive algorithm [18].
Similarly, we define the set of collocation nodes Hα(q,N) := {Θi, i ∈ Xα(q,N)}. Note
that the isotropic sparse grid interpolation (5.8) is a special case corresponding to α =
1. Evaluation of statistics based on the anisotropic sparse grid stochastic collocation
method, e.g. expectation, is straightforward by the following approximation

E[Sαq v] =
∑

i∈Xα(q,N)

E
[
(4i1 ⊗ · · · ⊗ 4iN )v

]
. (5.12)
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5.2. Finite element method. Given a regular triangulation Th of the physical
domain D̄ ⊂ Rd with mesh size h, we define the finite element space [36, 35]

Xk
h := {vh ∈ C0(D̄) : vh|K ∈ Pk ∀K ∈ Th}, k ≥ 1, (5.13)

where C0(D̄) is the space of continuous functions in D̄, Pk, k ≥ 1, is the space of
polynomials of degree less than or equal to k in the variables x1, . . . , xd. In particular,
we define V kh := (Xk

h)d ∩ V , Qmh := Xm
h ∩ Q, and Glh := (X l

h)d ∩ G with k,m, l ≥ 1
as finite element approximation spaces corresponding to the Hilbert spaces V , Q and
G, respectively, defined in Section 4. The semi-weak finite element approximation
of the saddle point problem (3.14) reads: for any y ∈ Γ, find {uh(y), ph(y), fh(y)} ∈
V kh ×Qmh ×Glh and {uah(y), pah(y)} ∈ V kh ×Qmh such that

A ({uh(y), ph(y), fh(y)}, {vah, qah,gh}) + B({vah, qah,gh}, {uah(y), pah(y)}; y)

= (ud,v
a
h) + (pd, q

a
h) ∀{vah, qah,gh} ∈ V kh ×Qmh ×Glh,

B({uh(y), ph(y),gh(y)}, {vh, qh}; y) = (h(y),vh)∂DN ∀{vh, qh} ∈ V kh ×Qmh .
(5.14)

The well-posedness of problem (5.14) can be guaranteed by fulfilling the conditions
in Proposition 3.1 in finite element spaces. In particular, the compatibility condition
(3.13) needs to be satisfied in the finite element spaces V kh , Q

m
h , G

l
h. In fact, it is a

consequence (as can be observed from the proof (3.18)) of the compatibility condition
(2.15) in V kh , Q

m
h , for which we may use, e.g. the Taylor-Hood elements (m = k−1, k ≥

2) among many feasible choices [35], leading to stable finite element approximation
featuring optimal convergence rate. We set l = k for the control function space Glh.

Let the finite element solution of the saddle point problem (5.14) be written as

uh(y) =

Nv∑
n=1

un(y)ψn, ph(y) =

Np∑
n=1

pn(y)ϕn, fh(y) =

Nv∑
n=1

fn(y)ψn, (5.15)

and

uah(y) =

Nv∑
n=1

uan(y)ψn, p
a
h(y) =

Np∑
n=1

pan(y)ϕn, (5.16)

where ψn, 1 ≤ n ≤ Nv and ϕn, 1 ≤ n ≤ Np are the bases of the finite element spaces
V kh and Qkh, respectively. Note that the bases of V kh and Glh are the same when
k = l. Corresponding to the matrix operators defined in (3.5), the finite element mass
matrices Mv,h (note that Mg,h = Mc,h = Mv,h when k = l) and Mp,h are obtained as

(Mv,h)mn = (ψn,ψm), 1 ≤ m,n ≤ Nv; (Mp,h)mn = (ϕn, ϕm), 1 ≤ m,n ≤ Np, (5.17)

and the mass matrix for Neumann boundary condition is given by

(Mn,h)mn = (ψm,ψn)∂DN , 1 ≤ m,n ≤ Nv. (5.18)

The stiffness matrix Ayh is obtained as

(Ayh)mn = a(ψn,ψm; y), 1 ≤ m,n ≤ Nv, (5.19)

and the matrix Byh corresponding to the compatibility condition is written as

(Bh)mn = b(ψm, ϕn), 1 ≤ m ≤ Nv, 1 ≤ n ≤ Np. (5.20)
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Let Uh(y) = (u1(y), . . . , uNv (y))T represent the coefficient vector for the finite element
function uh(y), and Ph(y), Fh(y), Uah (y), P ah (y) the coefficient vectors for the functions
ph(y), fh(y),uah(y), and Ud,h, Pd,h, Hh(y) the values of ud, pd,h(y) at the finite element
nodes. To this end, the algebraic formulation of problem (5.14) can be written via
the optimality operator system (3.6) as

Mv,h 0 0 Ayh BTh
0 Mp,h 0 Bh 0
0 0 αMg,h −MT

c,h 0

Ayh BTh −Mc,h 0 0
Bh 0 0 0 0




Uh(y)
Ph(y)
Fh(y)
Uah (y)
P ah (y)

 =


Mv,hUd,h
Mp,hPd,h

0
Mn,hHh(y)

0

 . (5.21)

The matrix of the linear system (5.21) becomes ill-conditioned with large condition
number when h or α is very small, which makes it unsuitable for direct solve. Al-
ternatively, we seek the solution by MINRES iteration with the help of the following
block diagonal preconditioner [42, 37],

P (y) =

 M̂s,h 0 0

0 αM̂g,h 0

0 0 K̂y
s,hM

−1
s,h(K̂y

s,h)T

 . (5.22)

The mass matrix Ms,h and the saddle point matrix Ky
s,h corresponding to the Stokes

problem (2.5) in deterministic setting are defined as

Ms,h =

(
Mv,h 0

0 Mp,h

)
and Ky

s,h =

(
Ayh BTh
Bh 0

)
, (5.23)

where the matrices M̂s,h, M̂g,h and K̂y
s,h can be regarded as convenient approximations

of Ms,h, Mg,h and Ky
s,h obtained by using suitable iteration methods [32, 37], e.g.

symmetric Gauss-Seidel iteration for M̂s,h and M̂g,h, and inexact Uzawa iteration for

K̂y
s,h.

6. Multilevel and weighted reduced basis method. To solve a full system
(5.21) at one sample y ∈ Γ is very expensive when the number of degrees of freedom
of the finite element approximation is large. The task becomes prohibitive when the
dimension of the probability space Γ is so high that a large number of samples are
necessary to be used in order to obtain accurate statistics of interest. To circumvent
this computational obstacle, we propose a reduced basis method [10, 14, 16] featuring
multilevel greedy algorithm and weighted a posteriori error bound. The crucial con-
sideration is that the optimal solution of the constrained optimization problem (2.22)
lies in a low dimensional manifold, despite the fact that the random inputs live in
high dimensional probability space.

6.1. Reduced basis approximation. The idea behind reduced basis approxi-
mation is to take “snapshots” - that is high fidelity solutions of the underlying PDE
model - as bases and then approximate the solution at a new sample by Galerkin pro-
jection on the pre-selected snapshots [40, 14]. Specific to the finite element problem
(5.21), the associated reduced basis problem can be formulated as: for any y ∈ Γ, find
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{ur(y), pr(y), fr(y)} ∈ VNr ×QNr ×GNr and {uar(y), par(y)} ∈ VNr ×QNr such that
A ({ur(y), pr(y), fr(y)}, {var , qar ,gr}) + B({var , qar ,gr}, {uar(y), par(y)}; y)

= (ud,v
a
r ) + (pd, q

a
r ) ∀{var , qar ,gr} ∈ VNr ×QNr ×GNr ,

B({ur(y), pr(y),gr(y)}, {vr, qr}; y) = (h(y),vr)∂DN ∀{vr, qr} ∈ VNr ×QNr ,
(6.1)

where VNr , QNr , GNr are reduced basis spaces constructed from the snapshots at the
pre-selected samples y1, . . . , yNr . More in detail, GNr is constructed by

GNr = span{fh(yn), 1 ≤ n ≤ Nr}. (6.2)

As for QNr , we take the union of the state and adjoint snapshots of pressure in order
to guarantee the approximate stability in the reduced basis space [32], written as

QNr = QsNr ∪Q
a
Nr = span{ph(yn), pah(yn), 1 ≤ n ≤ Nr}. (6.3)

As for VNr , a simple union of the state and adjoint snapshots of velocity is not sufficient
to satisfy the compatibility condition (3.13) in the reduced basis spaces. To overcome
this difficulty, it is sufficient to enrich the reduced basis velocity space. With this aim,
we introduce the supremizer operator T : Qmh → V kh [41, 39],

(Tqh,vh)A = b(vh, qh) ∀v ∈ V kh , (6.4)

where the A-scalar product is defined as

(u,v)A = a(u,v; ȳ) ∀u,v ∈ V, (6.5)

being ȳ ∈ Γ a reference value, for instance, the center of Γ. Then, we construct the
reduced basis velocity space VNr as the union of state and adjoint velocity snapshots
enriched by pressure supremizers

VNr = V sNr ∪ V
a
Nr = span{uh(yn), Tph(yn),uah(yn), Tpah(yn), 1 ≤ n ≤ Nr}. (6.6)

It can be proven [39] that the compatibility condition (2.15) is satisfied in V sNr and

V aNr with βNrb ≥ βhb , being βNrb and βhb the compatibility constants of the bilinear
form b of (2.15) in the reduced basis space and finite element space, respectively.
Consequently, the compatibility condition (3.13) is satisfied in VNr following the proof
of (3.18), with the compatibility constants βNr ≥ βh corresponding to that in (3.19).
Following the argument in the proof of Lemma 3.2, it is straightforward to check that
the other conditions in Proposition 3.1 are also satisfied in the reduced basis space
VNr×QNr×GNr . Hence, there exists a unique reduced basis solution to problem (6.1).

For the sake of algebraic stability, we perform Gram-Schmidt orthonormaliza-
tion [39] to the reduced basis spaces VNr , QNr and GNr , obtaining the orthonormal
bases such that VNr = span{ζvn, 1 ≤ n ≤ 4Nr}, QNr = span{ζpn, 1 ≤ n ≤ 2Nr}
and GNr = span{ζgn, 1 ≤ n ≤ Nr}. Finally, at any y ∈ Γ, we project the finite
element solution {uh(y), ph(y), fh(y)} ∈ V kh ×Qmh × Glh into the reduced basis space
VNr ×QNr ×GNr as

uh(y) =

4Nr∑
n=1

un(y)ζvn, ph(y) =

2Nr∑
n=1

pn(y)ζpn, fh(y) =

Nr∑
n=1

fn(y)ζgn, (6.7)
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and the adjoint variables {uah(y), pah(y)} ∈ V kh ×Qmh into VNr ×QNr as

uah(y) =

4Nr∑
n=1

uan(y)ζvn, p
a
h(y) =

2Nr∑
n=1

pan(y)ζpn. (6.8)

Let Ur(y) = (u1(y), . . . , u4Nr (y)) denote the coefficient vector of the reduced ba-
sis approximation, and define Pr(y), Fr(y), Uar (y) and P ar (y) similarly, corresponding
to those of the finite element approximation. Let ZvNr = (ζv1, . . . , ζ

v
4Nr )

T , ZpNr =

(ζp1 , . . . , ζ
p
2Nr

)T and ZgNr = (ζg1, . . . , ζ
g
Nr

)T , by which we define the reduced basis

mass matrices as follows: Mv,r = (ZvNr )
TMv,hZvNr , Mp,r = (ZpNr )

TMp,hZpNr , Mg,r =

(ZgNr )
TMg,hZgNr , Mc,r = (ZvNr )

TMc,hZgNr , Mn,r = (ZvNr )
TMn,hZvNr , and the Stokes

matrices Ayr and Br as Ayr = (ZvNr )
TAyhZvNr , and Br = (ZpNr )

TBhZvNr . The re-

duced basis data vector Ud,r, Pd,r, Hr(y) are defined as Ud,r = (ZvNr )
TUd,h, Pd,r =

(ZpNr )
TPd,h, Hr(y) = (ZvNr )

THh(y). By projecting the finite element system (5.21)
into the reduced basis spaces, we obtain the algebraic formulation of the reduced basis
problem corresponding to the finite element algebraic system (5.21) as

Mv,r 0 0 Ayr BTr
0 Mp,r 0 Br 0
0 0 αMg,r −MT

c,r 0

Ayr BTr −Mc,r 0 0
Br 0 0 0 0




Ur(y)
Pr(y)
Fr(y)
Uar (y)
P ar (y)

 =


Mv,rUd,r
Mp,rPd,r

0
Mn,rHr(y)

0

 , (6.9)

which is a 13Nr × 13Nr linear system, whose numerical solution costs far less com-
putational effort than solving the finite element system (5.21) thanks to the fact that
Nr is much smaller than the number of degrees of freedom of the finite element dis-
cretization.

6.2. A multilevel greedy algorithm. The efficiency of the reduced basis ap-
proximation depends critically on the choice of reduced bases, and thus on the samples
y1, . . . , yNr selected in the construction of the reduced basis spaces VNr , QNr , GNr . In
order to choose the most representative samples, we propose a multilevel greedy al-
gorithm based on the sparse grid construction for stochastic collocation method and
reduce the computational cost of the construction of the reduced basis spaces.

To begin, we choose the first sample from the zeroth level of the sparse grid, i.e.
y1 ∈ H(q,N) (or Hα(q,N) for anisotropic sparse grid) with q − N = 0, where only
one collocation node is available. We solve the finite element problem (5.21) at y1

and construct the reduced basis space V1, Q1, G1 according to (6.2), (6.3) and (6.6).
Let Er denote the reduced basis approximation error defined as

Er(y) := ||uh − ur||V, (6.10)

where we denote the Hilbert space V = V × Q × G × V × Q, the solution u(y) :=
{u(y), p(y), f(y),ua(y), pa(y)} with finite element approximation uh and reduced basis
approximation ur. At each of the level q − N = l, l = 1, 2, . . . , L with prescribed
L ∈ N+, we first construct the set of collocation nodes H(q,N) of the sparse grid and
then choose the “most representative” sample yNr+1 by minimizing Er(y) over the
new collocation nodes in the current level of the sparse grid, i.e.

yNr+1 = arg max
y∈H(q,N)\H(q−1,N)

Er(y). (6.11)
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Note that in the hierarchical sparse grid with nested collocation nodes, we have H(q−
1, N) ⊂ H(q,N), q ≥ N + 1, which provides further computational efficiency since
there is no need to evaluate the error at the collocation nodes in the previous level.
After updating the reduced basis spaces VNr , QNr and GNr by the finite element
solution of problem (5.21) at yNr+1, we set Nr + 1 → Nr and proceed to choose
the next sample until the error Er(yNr+1) is smaller than a prescribed tolerance εtol.
Then we move to the next level q − N = l + 1. However, in order to compute the
reduced basis approximation error (6.10), we have to solve the full finite element
system (5.21), which is out of reach. Instead of computing an exact reduced basis
approximation error Er(y), we seek to evaluate a cheap, sharp and reliable error bound
4r(y) depending on {ur(y), pr(y), fr(y),uar(y), par(y)} at y ∈ Γ such that

c4r(y) ≤ Er(y) ≤ 4r(y) (6.12)

with the constant c as close to 1 as possible. The multilevel greedy algorithm for
construction of the reduced basis space can be summarized as follows:

Algorithm 1 A multilevel greedy algorithm

1: procedure Initialization
2: Set maximum sparse grid level L, tolerance εtol, q = N , take y1 ∈ H(q,N);
3: Solve (5.21), construct the initial reduced basis spaces V1, Q1, G1, set Nr = 1.
4: end procedure

5: procedure Construction
6: for q = N + 1, . . . , N + L do
7: Construct the set of collocation nodes H(q,N), take H(q,N)\H(q−1, N);
8: Solve (6.9) to obtain yNr+1 = arg maxy∈H(q,N)\H(q−1,N)4r(y);
9: while 4r(yNr+1) ≥ εtol do

10: Set Nr ← Nr + 1;
11: Solve (5.21) at yNr , update the reduced basis spaces VNr , QNr , GNr ;
12: Solve (6.9) to obtain yNr+1 = arg maxy∈H(q,N)\H(q−1,N)4r(y).
13: end while
14: end for
15: end procedure

6.3. A weighted a posteriori error bound. In order to efficiently evaluate
a sharp and reliable bound for the reduced basis approximation error, we carry out
a residual-based a posteriori error estimate. At first, we reformulate the semi-weak
saddle point problem (4.4) as an elliptic problem: for any y ∈ Γ, find u(y) ∈ V

B(u(y), v; y) = F(v; y) ∀v ∈ V, (6.13)

where the bilinear form B(·, ·; y) : V ×V→ R is given by

B(u(y), v; y) = A ({u(y), p(y), f(y)}, {va, qa,g})
+ B({va, qa,g}, {ua(y), pa(y)}; y) + B({u(y), p(y),g(y)}, {v, q}; y),

(6.14)

and the linear functional

F(v; y) = (ud,v
a) + (pd, q

a) + (h(y),v)∂DN . (6.15)
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The bilinear form B(·, ·; y) : V × V → R can be proven to be continuous and weakly
coercive [47] since the bilinear forms A,B satisfy the conditions in Proposition 3.1,
yielding the continuous and weak coercivity constants γc(y) and βc(y) defined as

γc(y) :=
B(u, v; y)

||u||V||v||V
<∞ and βc(y) := inf

v∈V
sup
u∈V

B(u, v; y)

||u||V||v||V
> 0. (6.16)

Therefore, by Babuška theorem [47] we have the following stability estimate

||u(y)||V ≤
||F(y)||V′
βc(y)

, (6.17)

where V′ is the dual space of V. By the construction of the finite element approxima-
tion in section 5.2 and the reduced basis approximation in section 6.1, we have that the
relation (6.16) holds in both finite element space Vh = Vh×Qh×Gh×Vh×Qh and re-
duced basis space Vr = Vr×Qr×Gr×Vr×Qr with constants γNrc (y) ≤ γhc (y) ≤ γc(y)
and βNrc (y) ≥ βhc (y) ≥ βc(y). Moreover, the stability estimate (6.17) holds for
the finite element solution and the reduced basis solution with the constant βhc (y)
and βNrc (y), respectively. Let the reduced basis approximation error be defined as
e(y) = uh(y)− ur(y). To seek an error bound for e(y), we consider the residual

R(vh; y) := F(vh; y)− B(ur(y), vh; y) vh ∈ Vh. (6.18)

Noting that F(vh; y) = B(uh, vh; y),∀vh ∈ Vh, we have from (6.18)

B(e(y), vh; y) = R(vh; y) vh ∈ Vh. (6.19)

By the stability estimate (6.17) in the finite element space, we obtain

||e(y)||Vh ≤
||R(y)||V′h
βhc (y)

=: 4r(y). (6.20)

Taking the probability density function ρ : Γ → R+ into account, we replace Er(y)
in (6.11) by a weighted a posteriori error bound [14] 4ρr(y) =

√
ρ(y)4r(y). The error

bound 4ρr(y) assigns high importance at the sample with big probability density,
leading to more efficient (using less bases to achieve the same accuracy) evaluation of
statistical moments of interest, see [14] for proof and illustrative examples. In order
to evaluate the error bound (6.20), we need to compute both the constant βhc (y) and
the norm of the residual ||R||V′h . For the former, we may apply successive constraint

method [24] to compute a lower bound βLBc (y) ≤ βhc (y) with cheap computational
cost, or simply use a uniform lower bound βLBc ≤ βhc (y) evaluated at the minimum
random viscosity νmin provided that the random coefficient ν(y) varies in a relatively
small range. As for the latter, we turn to an offline-online decomposition procedure
in order to reduce computational effort in the many-query context.

6.4. Offline-online decomposition. The offline-online decomposition takes
advantage of the affine structure of the data, as given in examples (2.18) and (2.19).
If the data are provided in a non-affine structure, e.g. log-normal Karhunen-Loève
expansion [34], we may apply a weighted empirical interpolation method to obtain
an affine decomposition of the data function at first, see [13] for details and error
analysis. Let us assume that the random viscosity and the Neumann boundary condi-
tion undergoes, after possibly performing empirical interpolation [4, 13], the following
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affine structure

ν(y) =

Nν∑
n=1

νnθ
ν
n(y) and h(x, y) =

Nh∑
n=1

hn(x)θhn(y) ∀(x, y) ∈ ∂DN × Γ, (6.21)

where θνn, 1 ≤ n ≤ Nν and θhn, 1 ≤ n ≤ Nh are functions of the random vector y ∈ Γ.
Let the matrix Ayr and vector Hr(y) in (6.9) be assembled as

Ayr =

Nν∑
n=1

Anr θ
ν
n(y) and Hr(y) =

Nh∑
n=1

Hn
r θ

h
n(y), (6.22)

where the deterministic reduced basis matrices Anr , 1 ≤ n ≤ Nν are defined as

Anr = (ZvNr )
TAnhZvNr with (Anh)ij = (νn∇ψi,∇ψj), 1 ≤ i, j ≤ Nv, (6.23)

and the deterministic reduced basis vectors Hn
r , 1 ≤ n ≤ Nh are defined as

Hn
r = (ZvNr )

THn
h with (Hn

h )i = (hn,ψi)∂DN , 1 ≤ i ≤ Nv. (6.24)

Accordingly, we decompose the global matrix of the linear system (6.9) as

B0
r =


Mv,r 0 0 0 BTr

0 Mp,r 0 Br 0
0 0 αMg,r −MT

c,r 0

0 BTr −Mc,r 0 0
Br 0 0 0 0

 (6.25)

and Bnr , 1 ≤ n ≤ Nν with only the blocks (4, 1), (1, 4) as Anr the other blocks zero.
Similarly, we decompose the vector on the right hand side of the linear system (6.9) as
F0
r = (Mv,rUd,r,Mp,rPd,r, 0, 0, 0)T and Fnr = (0, 0, 0,Mn,rH

n
r , 0)T , 1 ≤ n ≤ Nh. Thus,

the algebraic formulation of the problem (6.13) can be written as: for any y ∈ Γ, find
Ur(y) := (Ur(y), Pr(y), Fr(y), Uar (y), P ar (y))T ∈ R13Nr such that(

Nν∑
n=0

θνn(y)Bnr

)
Ur(y) =

Nh∑
n=0

θhn(y)Fnr . (6.26)

Since Bnr , 1 ≤ n ≤ Nν and Fnr , 1 ≤ n ≤ Nh are independent of y, we can assemble
them in offline stage. Given any y ∈ Γ, the reduced basis solution can be obtained by
solving the linear system (6.26) with at most O(Nv +Nh) operations for assembling
and O((13Nr)

3) operations for solve.
As for the evaluation of the residual norm ||R(y)||V′h , we first seek the Riesz

representation [36] of R(y) as ê(y) ∈ Vh such that

(ê(y), vh)Vh = R(vh; y) ∀vh ∈ Vh, (6.27)

so that we have ||R(y)||V′h = ||ê(y)||Vh . Let Bn : Vh × Vh → R denote the bilinear
form defined in the finite element space corresponding to the matrix Bnr , 0 ≤ n ≤ Nν
and Fn : Vh → R the linear functional corresponding to the vector Fnr , 0 ≤ n ≤ Nh,
then the residual defined in (6.18) can be decomposed as

R(vh; y) =

Nh∑
n=0

θhn(y)Fn(vh)−
Nν∑
n=0

θνn(y)Bn(ur, vh) ∀vh ∈ Vh. (6.28)



24 PENG CHEN AND ALFIO QUARTERONI AND GIANLUIGI ROZZA

By Riesz representation theorem, we have that there exist fn ∈ Vh, 0 ≤ n ≤ Nh and
bkn ∈ Vh, 0 ≤ n ≤ Nν , 1 ≤ k ≤ 13Nr such that

(fn, vh)Vh = Fn(vh) and (bkn, vh)Vh = −Bn(ukh, vh) ∀vh ∈ Vh, (6.29)

where we have set the reduced basis solution as ukh = (ψvk, 0, 0, 0, 0), 1 ≤ k ≤ 4Nr,
ukh = (0, ϕpk−4Nr

, 0, 0, 0), 4Nr < k ≤ 6Nr, ukh = (0, 0,ψgk−6Nr
, 0, 0), 6Nr < k ≤ 7Nr,

ukh = (0, 0, 0,ψvk−7Nr , 0), 7Nr < k ≤ 11Nr, ukh = (0, 0, 0, 0, ϕpk−11Nr
), 11Nr < k ≤

13Nr, being 0 the vector with length Nv, Np, Nv, Nv, Np at the first to fifth argument.
Finally, we obtain the norm ||ê(y)||Vh as

||ê(y)||2Vh =

Nh∑
n=1

Nh∑
n′=1

θhn(y)(fn, fn′)Vhθ
h
n′(y)

+ 2

Nh∑
n=1

Nν∑
n′=1

13Nr∑
k=1

θhn(y)(fn,b
k
n′)Vh(ur)kθ

ν
n′(y)

+

Nh∑
n=1

Nν∑
n′=1

13Nr∑
k=1

13Nr∑
k′=1

θνn(y)(ur)k(bkn,b
k′

n′)Vh(ur)k′θ
ν
n′(y),

(6.30)

where (fn, fn′)Vh , 1 ≤ n, n′ ≤ Nh, (fn,b
k
n′)Vh , 1 ≤ n ≤ Nh, 1 ≤ n′ ≤ Nν , 1 ≤ k ≤ 13Nr

and (bkn,b
k′

n′)Vh , 1 ≤ n, n′ ≤ Nν , 1 ≤ k, k′ ≤ 13Nr are independent of y and can be
computed and stored in the offline stage, while in the online stage, we only need to
assemble the formula (6.30) by O((Nh + 13NrNν)2) operations. Recall that Nh and
Nν are the number of affine terms of the random Neumann boundary condition and
the viscosity, and Nr is the number of selected samples in the construction of reduced
basis space, leading to fast evaluation of the error bound as they are small.

7. Error estimates. The global error of the numerical approximation presented
in sections 5 and 6 comprises three components: the stochastic collocation approxima-
tion error [2, 34, 33], the finite element approximation error [36, 35], and the weighted
reduced basis approximation error [5, 10, 14], which have been analyzed individually
in different contexts. In the following, we provide individual error estimate as well as
a global error estimate in the context of the constrained optimization problem (2.22).

7.1. Stochastic collocation approximation error. The error of stochastic
collocation approximation of the optimal solution depends on the stochastic regularity
of the latter. We consider the case that Γ is bounded, however similar results can be
obtained in the same way for unbounded Γ as in [2]. Let the complex region Σ(Γ; τ)
be defined as

Σ(Γ; τ) := {z ∈ Σ : ∃ y ∈ Γ such that |zn − yn| ≤ τn, 1 ≤ n ≤ N}, (7.1)

where Σ has been defined in (4.21); τ = (τ1, . . . , τN ) with each element taking the
largest possible value (τn = 1/(rrn), 1 ≤ n ≤ N). Thanks to the analytic regularity
obtained in Theorem 4.2, we have the following a priori error estimate for tensor-
product stochastic collocation approximation of the optimal solution u : Γ → V
(recall that u = {u, p, f ,ua, pa} and V = V ×Q×G× V ×Q)

Es := ||u− us||C(Γ;V) ≤
N∑
n=1

Ci
n exp(−(m(in)− 1)rn), (7.2)
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where we denote us = Iiu; the constants Ci
n, 1 ≤ n ≤ N are bounded by [2, 10]

Ci
n ≤ (1 + Λ(m(in)))Cn, being Cn :=

2

ern − 1

(
max

z∈Σ(Γ;τ)
||u(z)||V

)
(7.3)

with Lebesgue constant Λ(m) ≤ 1 + (2/π) log(m+ 1), and convergence rate

rn = log

(
2τn
|Γn|

+

√
1 +

4τ2
n

|Γn|2

)
> 1, 1 ≤ n ≤ N. (7.4)

Remark 7.1. In the case of unbounded Γ, the convergence rate has been obtained
as rn = τn/δn, 1 ≤ n ≤ N with δn depending on the decay of the probability density
function at infinity, e.g. δn = 1 for normal density function, see details in [2].

As for the error of isotropic sparse grid Smolyak interpolation (5.3) with Gauss-
abscissas, the following error estimate can be proved via (7.2) [34] (denote us = Squ)

Es := ||u− us||C(Γ;V) ≤ CsN−rq , (7.5)

where Nq represents the number of collocation nodes, Cs depends on Lebesgue con-
stant but not on Nq (see [34, 10] for more explicit expression), r is such that (see
[10])

r ≥ e log(2) min{rn, 1 ≤ n ≤ N}
3 + log(N)

. (7.6)

As for the error of anisotropic sparse grid Smolyak interpolation (5.10) based on
Gauss-abscissas, we have the following estimate [33] (denote us = Sαq u)

Eαs := ||u− us||C(Γ;V) ≤ Cα
s N

−r(α)
q , (7.7)

where Cα
s depends on Lebesgue constant but not on Nq and the algebraic convergence

rate r(α) is defined as

r(α) =
e log(2)αmin

2 log(2) +
∑N
n=1

αmin
αn

, (7.8)

being αmin = min1≤n≤N αn with the choice αn = rn/2, 1 ≤ n ≤ N , with rn defined
in (7.4). Moreover, the error of the expectation of the stochastic optimal solution
evaluated by isotropic or anisotropic sparse grid Smolyak formula is bounded by [34,
10]

Ees := ||E[u]− E[us]||V ≤ ||u− us||L2
ρ(Γ;V) ≤ CesN−r(α)

q , (7.9)

where Ces is a constant independent of both Lebesgue constant and Nq, see [10].

7.2. Finite element approximation error. Recall that the bilinear forms A
and B of the finite element problem (5.14) satisfy the conditions of Proposition 3.1 in
the finite element space V kh , Q

m
h , G

l
h with the choice of Taylor-Hood elements. More

explicitly, the finite element constants corresponding to those stated in the conditions
of Proposition 3.1 can be bounded by

γh ≤ 1, εh ≥
1

3
min

{
α2
aα

2C2
P

,
1

2

}
, δh ≤ max{νmax, γb, 1/

√
α}, βh ≥ β, (7.10)
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being the constants αa, α, CP , νmax, γb, β presented in Lemma 3.2. Therefore, by
Brezzi theorem [36, 35], we have the following estimate for the error Eh of the finite
element approximation to solution of the semi-weak saddle point problem (4.4):

Eh(y) := ||u(y)− uh(y)||V
≤ Ch1 inf

{vh,qh,gh}∈V kh ×Q
m
h ×G

l
h

||{u(y), p(y), f(y)} − {vh, qh,gh}||V×Q×G

+ Ch2 inf
{vah,q

a
h}∈V

k
h ×Q

m
h

||{ua(y), pa(y)} − {vah, qah}||V×Q

= O(hk)
(
Ch1 (||u(y)||k+1 + ||p(y)||k +

√
α||f(y)||k+1)

)
+O(hk)

(
Ch2 (||ua(y)||k+1 + ||pa(y)||k)

)
,

(7.11)

where we have chosen m = k − 1 and l = k; the constants Ch1 and Ch2 are given by

Ch1 =

(
1 +

γh
εh

)(
1 +

γh
βh

)(
1 +

δh
βh

)
and Ch2 = 1 +

δh
εh

+
δh
βh

+
γhδh
εhβh

. (7.12)

Remark 7.2. Equivalently, we may formulate the semi-weak saddle point fi-
nite element problem (5.14) as a weakly coercive elliptic problem and apply Babuška
theorem to obtain similar finite element error estimate.

7.3. Reduced basis approximation error. In addition to the a posteriori
error bound 4r obtained in section 6.3, we present some results about a priori error
estimate for reduced basis approximation following those obtained in [14, 5].

Thanks to the analytic regularity in Theorem 4.2, we have a priori error estimate
for reduced basis solution of (6.1) when Γ ⊂ R [14]

Er := ||uh − ur||C(Γ;V) ≤ Cr exp(−rNr), (7.13)

where r is defined as in (7.4) for a single dimension, the constant Cr is bounded by

Cr ≤ C
(

max
z∈Σ(Γ;τ)

||u(z)||V
)
, (7.14)

being C a constant independent of the number of reduced bases Nr, see [14] for details.
As in multidimensional case, the error estimate has been obtained via Kolmogorov

N -width defined in an abstract Hilbert space X as [5]

dN (Γ;X) := inf
XN⊂X

sup
y∈Γ

inf
wN∈XN

||v(y)− wN ||X , (7.15)

where XN is a N -dimensional subspace of X. We have the following result for Er [5]:
suppose that there exists M > 0 such that d0(Γ) ≤M ; moreover, suppose that there
exist two positive constants c1 > 0, c2 > 0, such that

if dNr (Γ; Vh) ≤M exp(−c1N c2
r ) then Er ≤ c5M exp(−c3N c4

r ), (7.16)

where c4 = c2/(c2 + 1), c3 > 0, c5 > 0 depend only on c1, c2 and c6 > 0, which
measures the sharpness of the reduced basis error bound in (6.20), i.e.

c64r(y) ≤ ||uh(y)− ur(y)||V. (7.17)

Remark 7.3. The result (7.16) implies that whenever the error of the best
possible approximation decays exponentially, the reduced basis error also enjoys an
exponential decay with rate depending on the sharpness of the greedy algorithm (7.17).
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7.4. Global error estimate. With the individual error estimate presented
above, we obtain the global error estimate in the following theorem.

Theorem 7.1. Under Assumption 1, 2 and 3, for any given y ∈ Γ, by finite
element approximation and reduced basis approximation we have

||u(y)− ur(y)||V ≤ Eh(y) + Er(y). (7.18)

Moreover, the error for evaluation of the expectation using stochastic collocation
method, finite element method and weighted reduced basis method can be bounded by

||E[u]− E[ur]||V ≤ Ees + max
y∈Hα(q,N)

Eh(y) + max
y∈Hα(q,N)

Er(y), (7.19)

where α = 1 when using the isotropic sparse grid stochastic collocation method.
Proof. The proof is straightforward by applying triangular inequality as follows:

||u(y)− ur(y)||V ≤ ||u(y)− uh(y)||V + ||uh(y)− ur(y)||V ≤ Eh(y) + Er(y). (7.20)

Similarly, we have the error estimate for the expectation of the optimal solution as

||E[u]− E[ur]||V ≤ ||u− ur||L2
ρ(Γ;V)

≤ ||u− us||L2
ρ(Γ;V) + ||us − uh||L2

ρ(Γ;V) + ||uh − ur||L2
ρ(Γ;V)

≤ Ees + max
y∈Hα(q,N)

Eh(y) + max
y∈Hα(q,N)

Er(y).

(7.21)

We remark that Er(y) is bounded by 4r(y), explicitly computed at y ∈ Hα(q,N).

8. Numerical experiments. In this section, we perform two numerical exper-
iments in testing reduced basis approximation error and stochastic collocation ap-
proximation error with sparse grid techniques in isotropic and anisotropic settings.
The aim is to demonstrate the efficiency of the proposed reduced basis method in
solving constrained optimization problem (2.22). Numerical examples for verifying
finite element approximation error in a similar context can be found in [11].

We consider a two dimensional physical domain D = (0, 1)2. The observation
data is set as in [22], ud = (ud1, ud2) and pd = 0, where ud1(x) = ∂x2(φ(x1)φ(x2))/10
and ud2(x) = −∂x1

(φ(x1)φ(x2))/10 with φ(ξ) = (1 − cos(0.8πξ))(1 − ξ)2, ξ ∈ [0, 1].
The random viscosity ν is given as in (2.18) which can be transformed as

ν(yν) =
1

2

Nν∑
n=0

νn +
1

2Nν

Nν∑
n=1

(νn − ν0)yνn, (8.1)

where yν ∈ Γν = [−1, 1]Nν corresponding to Nν uniformly distributed random vari-
ables. We set ν0 = 0.01, νn = ν0/2

n and use Nν = 3 for both the isotropic and
anisotropic tests without loss of generality. Homogeneous Dirichlet boundary con-
dition is imposed on the upper, lower and left edge. Random Neumann boundary
condition is imposed on the right edge as given in (2.19) on the Neumann boundary,
more explicitly, we set h(x, yh) = (h1(x2, y

h), 0) with

h1(x2, y
h) =

1

10

((√
πL

2

)1/2

yh1 +

Nh∑
n=1

√
λn
(
sin(nπx2)yh2n + cos(nπx2)yh2n+1

))
,

(8.2)
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which comes from truncation of Karhunen-Loève expansion of a Gauss covariance field
with correlation length L = 1/16 [34]; the eigenvalues λn, 1 ≤ n ≤ Nh are given by

λn =
√
πL exp

(
−(nπL)2/4

)
; (8.3)

yhn, 1 ≤ n ≤ 2Nh + 1 are uncorrelated with zero mean and unit variance, which
are independent of yν . Therefore, the random inputs are y = (yν , yh), living in
N = Nν + 2Nh + 1 dimensional probability space. As for the specification of the
finite element approximation, we use P1 element for pressure space and P2 element
for velocity and control space with 1342 elements in total.

8.1. Isotropic case. In the first experiment, we set yhn, 1 ≤ n ≤ 2Nh + 1 with
Nh = 3 as independent standard normal random variables (thus the total stochastic
dimension N = 10), and apply isotropic sparse grid stochastic collocation method
with Gauss-Legendre abscissa for the collocation of yν and Gauss-Hermite abscissa
for the collocation of yh. In the multilevel greedy algorithm 1, we set the tolerance
εtol = 10−1, 10−2, 10−3, 10−4, 10−5, and the interpolation level q−N = 0, 1, 2, 3 in the
isotropic sparse grid Smolyak formula (5.3). A uniformly lower bound of the inf-sup
constant βLBc = 0.1436 is used since the fluctuation or variance of ν is small compared
to its mean value. The results for reduced basis construction is reported in Table 8.1.
The number of collocation nodes in each level is shown in the second row; the number
of selected samples as new bases in each level and the samples whose weighted error
bound 4ρr is larger than the tolerance εtol, thus potential as new bases are shown in
the 3rd-6th lines, from which we can see that the number of reduced bases is much less
than that of collocation nodes. For example, with the smallest tolerance εtol = 10−5,
we only need 1, 10, 22, 14 new bases in each level, respectively, resulting in 47 bases
in total out of 1581 collocation nodes. Since the number of samples as potential
bases is also small (216 in total), the computational cost for sample selection in the
construction of reduced basis space is negligible compared to the full solve of the finite
element problem (5.21), especially for large scale problems featuring a small mesh size
h.

Table 8.1
The number of samples selected by multilevel greedy algorithm 1 with different tolerance εtol in

each of the sparse grid level; the value in (·) reports the number of samples potential as new bases.

tolerance \ level q −N = 0 q −N = 1 q −N = 2 q −N = 3 in total
# nodes 1 21 221 1581 1581
εtol = 10−1 1 (1) 6 (14) 1 (21) 0 (0) 8 (36)
εtol = 10−2 1 (1) 8 (20) 7 (80) 4 (28) 20 (129)
εtol = 10−3 1 (1) 9 (20) 13 (86) 5 (62) 28 (169)
εtol = 10−4 1 (1) 9 (20) 18 (90) 9 (67) 37 (178)
εtol = 10−5 1 (1) 10 (20) 22 (90) 14 (105) 47 (216)

Fig. 8.1 (left) displays the weighted error bound 4ρr and the true error of the
reduced basis approximation in each level of the construction, from which we can see
that the error bound is accurate and relatively sharp, providing good estimate of the
true error with cheap computation. On the right of Fig. 8.1 we plot the expectation
error (in L2

ρ(Γ; V) norm) of the reduced basis approximation using quadrature formula
based on sparse grid of different levels, where the expectation error is defined as

exp. error = |||u||L2
ρ(Γ;V) − ||us,r||L2

ρ(Γ;V)| = |(E[||u||2V])1/2 − (E[||us,r||2V])1/2|. (8.4)
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Note that the “true” value of ||u||L2
ρ(Γ;V) is approximated by the finite element solution

uh computed at the deepest level q−N = 3. From this figure, different accuracy with
different εtol can be observed, implying that decreasing tolerance for the construction
of the reduced basis space results in more accurate evaluation of statistics of the
solution. How to balance the reduced basis approximation error (by choice of εtol) and
the sparse grid quadrature error (by choice of q−N) is subject to further investigation.
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Fig. 8.1. Left, weighted error bound 4ρr and true error of the reduced basis approximation at
the selected samples; right, expectation error at different levels with different tolerance εtol.

8.2. Anisotropic case. In the second experiment, we solve the constrained op-
timization problem (2.22) in high dimensional probability space by combination of the
anisotropic sparse grid techniques and the multilevel weighted reduced basis method.
We set yhn, 1 ≤ n ≤ Nh in (8.2) with Nh = 3, 8, 13, 18, 48 as uniformly distributed
random variables, thus leading to N = 10, 20, 30, 40, 100 stochastic dimensions in to-
tal. The weight parameter α is chosen a priori according to [33] in the following
conservative way

αn =
1

2
log

(
1 +

2τn
|Γn|

)
, with τn =

1

4
√
λn
, 1 ≤ n ≤ Nh. (8.5)

We remark that for a more general random field where α is difficult to be ob-
tained from a priori estimate, we may use a posteriori estimate by fitting a em-
pirical convergence rate in each dimension [33], or use dimension-adaptive approach
which determines the weight automatically [18]. The sparse grid level is chosen as
q − N = 0, 1, 2, 3, 4. As for the tolerance for the construction of the reduced basis
space, we use εtol = 10−5. The results for the construction of the reduced basis space
with different dimension N and different sparse grid level q−N (results for q−N = 0
are the same as in Table 8.1, thus omitted here) are presented in Table 8.2. Similar
conclusion as for results in the isotropic case in Table 8.1 can be drawn for those in
the anisotropic case in Table 8.2. For example, when N = 40, only 97 samples out of
40479 are used for the construction of the reduced basis space, thus resulting in only
97 full solve the finite element problem (5.21) instead of 40479, which considerably
reduces the total computational cost. This observation holds even in the 100 dimen-
sional case. Moreover, the number of nodes of sparse grid and the number of reduced
bases increase as the dimension increase when N is small, see the change from 10 to
40. However, they stay almost the same when N becomes large, see the change from
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40 to 100, which indicates that out of 100 random variables, the first 40 play the most
important role on the impact of the stochastic optimal solution when we set sparse
grid level at q −N = 4.

Table 8.2
The number of samples selected by multilevel greedy algorithm 1 in each of the sparse grid level

with different dimensions; the value in (·) reports the number of samples potential as new bases.

dimension \ level q −N = 1 q −N = 2 q −N = 3 q −N = 4 in total

N = 10 5 (10) 13 (40) 19 (85) 10 (100) 48 (236)
# nodes 11 71 401 2141 2141
N = 20 5 (10) 21 (60) 36 (205) 15 (204) 78 (480)
# nodes 11 91 1021 12121 12121
N = 40 5 (10) 25 (92) 47 (397) 19 (432) 97 (932)
# nodes 11 123 2381 40769 40769
N = 100 5 (10) 25 (92) 47 (397) 19 (436) 97 (936)
# nodes 11 123 2393 41349 41349
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Fig. 8.2. Weighted error bound 4ρr and true error of the reduced basis approximation at the
selected samples in the case of stochastic dimension N = 10 (left) and N = 100 (right).

On the left of Fig. 8.2, we plot the weighted a posteriori error bound 4ρr and the
true error of the reduced basis approximation at each sparse grid level with stochastic
dimension N = 100. We can observe that the error bound is indeed accurate and sharp
for the high dimensional case, especially when the reduced basis space become large.
The right of Fig. 8.2 depicts the expectation error at different sparse grid level. We
show the expectation error with the “true” expectation for each stochastic dimension
computed the same as in the isotropic sparse grid case, from which we can see that
the expectation error converges with an algebraic rate that verifies the error estimate
in section 7. Moreover, the error becomes very small at around 4 × 104 nodes for
the 100 dimensional problem by anisotropic sparse grid technique, which would need
around 7× 107 nodes for isotropic sparse grid technique at the same sparse grid level
q−N = 4. Furthermore, we can observe that no “plateau” (flattening) of expectation
error appears as in Fig. 8.1, demonstrating that the multilevel reduced basis method
is very efficient in producing the accurate statistics of the stochastic optimal solution
even when the number of the reduced bases shown in Table 8.2 remains critically
small (around 97 for high dimensions).
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9. Concluding remarks. In this paper we studied the mathematical properties
of an optimal control problem constrained by stochastic Stokes equations and devel-
oped a computational strategy by using sparse grid techniques and the model order
reduction approach. The existence and uniqueness of the stochastic optimal solution
was proved by establishing the equivalence between the constrained optimization prob-
lem and an stochastic saddle point problem. Moreover, we obtained some stochastic
regularity results of the optimal solution in the probability space under some mild
assumptions on the random input data. In the fully discretized problem, we used
finite element approximation in the deterministic space and stochastic collocation
approximation in the probability space, and proposed a multilevel and weighted re-
duced basis method in order to reduce the computational effort in the many-query
context, for which a global error estimate was carried out. This computational ap-
proach was proven to be very efficient by two numerical experiments, especially for
high dimensional and large-scale problems requiring a large number of samples and
heavy computational cost for a full solve of the optimization problem at each sample.
Further study on more general statistical cost functional, adaptive scheme to balance
various computational errors and applications to practical flow control problems are
ongoing [12].
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