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REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC
OPTIMAL CONTROL PROBLEMS∗

FEDERICO NEGRI† , GIANLUIGI ROZZA†, ANDREA MANZONI‡ , AND ALFIO

QUARTERONI§

Abstract. We propose a suitable model reduction paradigm – the certified reduced basis method
(RB) – for the rapid and reliable solution of parametrized optimal control problems governed by
partial differential equations (PDEs). In particular, we develop the methodology for parametrized
quadratic optimization problems with elliptic equations as constraint. Firstly, we recast the optimal
control problem in the framework of saddle-point problems in order to take advantage of the already
developed RB theory for Stokes-type problems. Then, the usual ingredients of the RB methodology
are provided: a Galerkin projection onto a low-dimensional space of basis functions properly selected
by an adaptive procedure; an affine parametric dependence enabling to perform competitive Offline-
Online splitting in the computational procedure; an efficient and rigorous a posteriori error estimate
on the state, control and adjoint variables as well as on the cost functional. Finally, the reduction
scheme is applied to some numerical tests confirming the theoretical results and showing the efficiency
of the proposed technique.

Key words. reduced basis methods, parametrized optimal control problems, saddle-point prob-
lems, model order reduction, PDE-constrained optimization, a posteriori error estimate.
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1. Introduction. The numerical solution of PDE-constrained optimization prob-
lems is usually computationally demanding, since it requires the solution of a system
of PDEs arising from the optimality conditions – the state problem, the adjoint prob-
lem and a further set of equations ensuring the optimality of the solution. This task
becomes even more challenging whenever the state system (or the cost functional to
be minimized) depend on a set of parameters – which can specify physical or geomet-
rical properties of interest – and we are interested to solve an optimal control problem
for many different scenarios corresponding to different sets of parameter values. In
this case, standard techniques built over full-order discretization methods such as the
finite element method may yield an overwhelming computational complexity. There-
fore, when performing the optimization process for many different parameter values
(many-query context) or when, for a given new configuration, we need to compute
the solution in a rapid way (real-time context), the computational effort may be un-
acceptably high and, often, unaffordable. Substantial computational saving becomes
possible thanks to a reduced order model (ROM) which relies on the reduced basis
(RB) method [30, 25], which allows to solve a parametrized PDE problem for any
new value of the parameters (inexpensive Online evaluation) once a set of (full-order)
solutions have been computed for selected values of the parameter set and stored (ex-
pensive Offline database construction).
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2 REDUCED BASIS METHOD FOR PARAMETRIZED OPTIMAL CONTROL PROBLEMS

We denote with µ ∈ D ⊂ Rp a p-vector of parameters representing either physical
and/or geometrical quantities of interest, while y represents the state variable, u the
control variable, J the objective functional, and E(·, ·;µ) the residual of the state
equation. The general form of a parametrized optimal control problem reads: given
µ ∈ D,

(OCPµ) min
y,u
J (y, u;µ) subject to E(y, u;µ) = 0.

In this work we bound our analysis to the most typical linear/quadratic case, i.e.
to optimal control problems featuring quadratric cost functionals and linear (scalar
coercive) elliptic PDEs as constraint.
From an abstract point of view, the mapping µ 7→ (y(µ), u(µ)) defines a smooth
and rather low-dimensional parametrically induced manifold M = {(y(µ), u(µ)) ∈
X : µ ∈ D}, where y(µ) and u(µ) are the state and control solutions of (OCPµ) and X
is a suitable functional space. In a classical discretization approach, after introducing
an approximation space XN of (typically very large) dimension N – e.g. a finite
element (FE) space – for every value of the parameters µ we are supposed to solve
the whole optimal control problem in order to compute the solution (yN (µ), uN (µ)),
ignoring the possibly smooth relation between parameters and solutions. A reduced
(basis) approach is premised e.g. upon a classical FE method and consists in a low-
order approximation of the truth manifold MN , based on (i) computation of some
snapshots of the truth manifold MN , and (ii) a Galerkin projection onto the space
spanned by the precomputed snapshots.
The main ingredients of the reduced basis (RB) methods [25, 30] are the following
ones: (i) a rapidly convergent global approximation (Galerkin projection) onto a space
spanned by solution of the original problem at some selected parameters value; (ii) a
rigorous a posteriori error estimation procedures which provides inexpensive yet sharp
bounds for the error between the RB and the truth solution; (iii) an Offline/Online
computational procedure, i.e. an efficient splitting between a time-consuming and
parameter independent Offline stage and an inexpensive Online calculation for each
new input/output evaluation.

Computational reduction strategies such as RB methods or proper orthogonal
decomposition (POD) have already been employed to speedup the solution of optimal
control, as well as other PDE-constrained optimization problems. First examples of
optimal control problems solved by exploiting computational reduction techniques
have been addressed by Ito and Ravindran, in the context either of (a preliminary
version of) the RB method [18] or of the proper orthogonal decomposition method [27].
Other recent works dealing with optimal control problems through POD techniques
have been addressed for instance by Kunisch and Volkwein [20] (and reference therein).
More recent contributions dealing with RB methods have been presented in both
the elliptic case by Quarteroni, Rozza and Quaini [26], Tonn, Urban and Volkwein
[35], Grepl and Kärcher [9], and the parabolic case by Dedè [5, 6]. However, in
all these works the control variable is low-dimensional, e.g. a set of real numbers
that could be treated themselves as parameters. We aim at developing a certified
reduced framework that enables to handle infinite dimensional (either distributed
and/or boundary) control functions. In this context, designing a strategy for the
reduction of the complexity of the optimal control problem (that is treated as a
whole, with respect to all its variables simultaneously) becomes mandatory.
Furthermore, an efficient and rigorous a posteriori error estimation, necessary both for
constructing the reduced order model and for measuring its accuracy, is still missing
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for a large class of optimal control problems. For example, the a posteriori estimators
for the error in the cost functional and in the control variable proposed in some
previous works [5, 6] are efficient in practice but unfortunately lack of rigorousness,
whereas the estimator proposed in [35] is proved to be rigorous but not efficient. Only
recently an efficient and rigorous estimator has been proposed in the case of constant
control function in [9]. In this work we aim at developing both efficient and rigorous a
posteriori error bounds in order to estimate, simultaneously, the errors on the optimal
control, the state variable and the cost functional.
With reference to the basic ingredients of the RB method previously introduced, we
point out that:

(i) in our approach the reduced scheme is built directly over the optimality con-
ditions system rather than on the original optimization problem, following an
optimize-then-discretize-then-reduce approach. Indeed, we first derive the opti-
mality system (optimize step), then we introduce its truth finite element (FE)
approximation (discretize step) and finally we provide the RB approximation
for the whole optimality system (reduce step).

(ii) the reduced basis is made of optimal solutions of the original problem, hence
the computation of each basis function requires the resolution of the FE truth
approximation; moreover, the reduced spaces are built for both the state, control
and adjoint variables.

(iii) to ensure the well-posedness of the RB approximation, and in order to provide an
a posteriori error estimate for the optimal control problem, we take advantage
of the RB theory developed for Stokes-type problems [22, 29, 32] by recasting
the optimal control problem in the framework of saddle-point problems;

(iv) we rely on the the affine parameter dependence assumption, which provides the
possibility to extract the parameter dependent components from our operators
and thus exploit an Offline/Online computational procedure.

The paper is structured as follows. In §2 we introduce the formulation of parame-
trized linear/quadratic optimal control problems governed by elliptic coercive PDEs
with affine parameter dependence; after having recast the problem in the framework
of saddle-point problems, we briefly discuss its FE truth approximation, recalling the
necessary assumptions to ensure the well-posedness. In §3 we discuss the RB approx-
imation and the main features of the method, focusing on the corresponding stability
condition for the RB approximation. Then in §4 we deal with the a posteriori error
estimation for the RB solution and functional based on the Babuška stability theory
[2]. Finally, in §5 some numerical examples are presented.

2. Parametrized optimal control problems. In this section we introduce the
parametrized optimal control problems we focus on and, once recast in the framework
of saddle-point problems, we prove a well-posedeness result. Finally we introduce the
truth FE approximation.

2.1. Problem definition. Let Ω ⊂ Rd (d = 1, 2, 3) be an open and bounded
domain with Lipschitz boundary Γ = ∂Ω, and D ⊂ Rp be a prescribed p-dimensional
compact set of parameters µ = (µ1, . . . , µp), with p ≥ 1. Let Y, U be two Hilbert
spaces1 for the state and control variables y and u respectively, while the Hilbert

1Typically the state space Y is a closed subspace of H1(Ω) such that H1
0 (Ω) ⊂ Y ⊂ H1(Ω), while

the control space can be given for example by U = L2(ω), being ω a portion of the domain or of the
boundary. We do not treat here the case of control-constrained problems, i.e. problems where the
control space is a closed and convex set in a Hilbert space rather than a Hilbert space itself.
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space Z ⊃ Y shall denote the observation space. Given another Hilbert space Q, we
define the linear constraint equation in the form

(2.1) a(y, q;µ) = c(u, q;µ) + 〈G(µ), q〉 ∀q ∈ Q,

where the bilinear form a(·, ·;µ) : Y ×Q→ R represents a linear elliptic operator, the
bilinear form c(·, ·;µ) : U×Q→ R expresses the action of the control and G(µ) ∈ Q′ is
a linear continuous functional acting as a forcing term. The quadratic cost functional
to be minimized is given by

(2.2) J(y, u;µ) =
1

2
m(y − yd(µ), y − yd(µ);µ) +

α

2
n(u, u;µ),

where α > 0 is a given constant, yd(x,µ) ∈ Z is a given parameter-dependent ob-
servation function, the bilinear form m(·, ·;µ) : Z × Z → R defines the objective of
the minimization while the bilinear form n(·, ·;µ) : U ×U → R acts as a penalization
term for the control variable. The parametrized optimal control problem reads: for
any given µ ∈ D,

(2.3) min
y,u

J(y(µ), u(µ);µ) s.t. (y(µ), u(µ)) ∈ Y × U solves (2.1).

Let us specify the assumptions on the linear and bilinear forms introduced above.
We firstly remark that, since we are interested in considering second-order coercive
elliptic equation as constraint, we can assume without loss of generality that Q ≡ Y 2.
Then, we assume that the bilinear form a(·, ·;µ) is bounded and coercive over Y for
any µ ∈ D, i.e. there exists a constant α̃0 > 0 such that

(2.4) α̃(µ) = inf
z∈Y

a(z, z;µ)

‖z‖2Y
≥ α̃0, ∀µ ∈ D.

We assume that the bilinear form c(·, ·;µ) is symmetric and bounded, and the bilinear
form n(·, ·;µ) is symmetric, bounded and coercive. Moreover, we assume the bilinear
form m(·, ·;µ) to be symmetric, continuous and positive in the norm induced by the
space Z. Holding these assumptions, the existence of a unique solution (y, u) ∈ Y ×U
of the optimal control problem (2.3) can be easily proved by applying either Lions
theory [21] or Lagrange multiplier theory [17, 13]. Here however, in view of the appli-
cation of the RB method, we are interested in recasting the problem in the framework
of saddle-point problems.
Before addressing this issue, let us make an additional assumption, crucial to Offline-
Online procedures, by assuming the bilinear and linear forms, as well as the ob-
servation function, to be affine3 in the parameter µ, i.e. for some finite Q̃∗, ∗ ∈

2We therefore limit ourselves to consider Galerkin variational problems as state equations rather
than Petrov-Galerkin problems. We remark that while at the continuous level it seems useless to
keep a different notation for the spaces Y and Q, it will be crucial in order to correctly construct the
RB approximation (as well as to generalize the method to the case Y 6= Q).

3If this assumption does not hold, it could be recovered through the so-called Empirical Inter-
polation Method (EIM); see [31] for an application to optimal control problems.
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{a, c, n,m, g, d}, they can be expressed as

a(z, q;µ) =

Q̃a∑
q=1

Θ̃q
a(µ) aq(z, q), c(v, q;µ) =

Q̃c∑
q=1

Θ̃q
c(µ) cq(v, q),

m(y, z;µ) =

Q̃m∑
q=1

Θ̃q
m(µ)mq(y, z), n(u, v;µ) =

Q̃n∑
q=1

Θ̃q
n(µ)nq(u, v),(2.5)

〈G(µ), q〉 =

Q̃g∑
q=1

Θ̃q
g(µ) 〈Gq, q〉, yd(x,µ) =

Q̃d∑
q=1

Θ̃q
d(µ) yqd(x),

for given smooth µ-dependent function Θ̃q
∗(µ) and continuous µ-independent bilinear

and linear forms aq(·, ·), cq(·, ·), mq(·, ·), nq(·, ·), nq(·, ·), Gq and functions yqd ∈ Z.

2.2. Saddle-point formulation. In order to formulate the optimal control
problem (2.3) as a saddle-point problem, let us denote with X = Y × U the product
space between the state space Y and the control space U , equipped with the inner
product (x,w)X = (y, z)Y +(u, v)U and norm ‖ ·‖X =

√
(·, ·)X , being x = (y, u) ∈ X,

w = (z, v) ∈ X. Furthermore, we define the bilinear form A(·, ·;µ) : X ×X → R as

A(x,w;µ) = m(y, z;µ) + αn(u, v;µ), ∀x,w ∈ X,

and the bilinear form B(·, ·;µ) : X ×Q→ R as

B(w, q;µ) = a(z, q;µ)− c(v, q;µ), ∀w ∈ X, q ∈ Q.

By defining the linear functional F (µ) = m(yd(µ), ·;µ) ∈ X ′, we can express the cost
functional as J(y, u;µ) = J (x;µ) + t(µ), where t(µ) = 1

2m(yd(µ), yd(µ);µ) and

(2.6) J (x;µ) =
1

2
A(x, x;µ)− 〈F (µ), x〉.

Since for any fixed µ ∈ D the constant term t(µ) does not affect the minimizer of
J(·, ·;µ), we can reformulate the problem (2.3) as follows: given µ ∈ D,

(2.7) min
x∈X

J (x;µ) subject to B(x, q;µ) = 〈G(µ), q〉 ∀q ∈ Q.

It is well known (see for instance [11, 33]) that the constrained optimization problem
(2.7) falls into the framework of saddle-point problems, for which the existence and
uniqueness of a solution is well-established by Brezzi theorem [4] under the following
conditions:

(i) the bilinear form A(·, ·;µ) is continuous over X ×X:

γa(µ) = sup
x∈X

sup
w∈X

A(x,w;µ)

‖w‖X‖x‖X
< +∞, ∀µ ∈ D;

(ii) the bilinear form A(·, ·;µ) is coercive over X0 = {w ∈ X : B(w, q;µ) =
0 ∀q ∈ Q} ⊂ X, i.e. there exists a constant α0 > 0 such that

α(µ) = inf
x∈X0

A(x, x;µ)

‖x‖2X
≥ α0, ∀µ ∈ D;
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(iii) the bilinear form B(·, ·;µ) is continuous over X ×Q

γb(µ) = sup
w∈X

sup
q∈Q

B(w, q;µ)

‖w‖X‖q‖Q
< +∞, ∀µ ∈ D;

(iv) the bilinear form B(·, ·) satisfies the inf-sup condition over X ×Q, i.e. there
exists a constant β0 > 0 such that

(2.8) β(µ) = inf
q∈Q

sup
w∈X

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D;

(v) the bilinear form A(·, ·;µ) is symmetric and non-negative over X.
Holding these assumptions, the optimal control problem has a unique solution x(µ) ∈
X for any µ ∈ D, and that solution can be determined by solving the following saddle-
point problem (i.e. the optimality system): given µ ∈ D, find (x(µ), p(µ)) ∈ X ×Q
such that

(2.9)

{
A(x(µ), w;µ) + B(w, p(µ);µ) = 〈F (µ), w〉 ∀w ∈ X,
B(x(µ), q;µ) = 〈G(µ), q〉 ∀q ∈ Q,

where p(µ) is the Lagrange multiplier (i.e. the adjoint variable) associated to the
constraint. In fact, if we introduce the Lagrangian functional L(·;µ) : X ×Q→ R

(2.10) L(x, p;µ) = J (x,µ) + B(x, p;µ)− 〈G(µ), p〉,

the equations in (2.9) are nothing but the first-order necessary (and sufficient4) opti-
mality conditions for the unconstrained optimization problem of finding saddle-points
(x, p) ∈ X ×Q of the Lagrangian, i.e. (2.9) is equivalent to

(2.11) ∇L(x(µ), p(µ);µ)[w, q] = 0, ∀(w, q) ∈ X ×Q.

Furthermore, we remark that the optimality system (2.9) is in fact the usual optimality
system given by the state equation, the adjoint equation and the optimality equation.
Let us now verify the fulfillment of the hypotheses (i)-(v).

Lemma 2.1. The bilinear forms A(·, ·) and B(·, ·) satisfy the Brezzi assumptions
(i)-(v).

Proof. It is sufficient to exploit the assumptions made on the bilinear forms
a(·, ·;µ), c(·, ·;µ), m(·, ·;µ) and n(·, ·;µ), see for instance [11]. In view of the design
of a suitable RB scheme it is useful to show here the proof of the fulfillment of the
inf-sup condition for the bilinear form B(·, ·). We exploit the fact that Y ≡ Q and the
coercivity property of the bilinear form a(·, ·;µ)

sup
06=w∈X

B(w, q;µ)

‖w‖X
= sup

06=(z,v)∈Y×U

a(z, q;µ)− c(v, q;µ)

(‖z‖2Y + ‖v‖2U )1/2

≥
(z,v)=(q,0)

a(q, q;µ)

‖q‖Y
≥ α̃(µ)‖q‖Y = α̃(µ)‖q‖Q.

Note that the inequality β(µ) ≥ α̃(µ) plays a crucial role in the following.

4We recall that in the linear/quadratic case the usual second order sufficient optimality condition
– requiring the second derivative of the Lagrangian functional to be coercive on the null space of the
linearized state equation [17, 13] – reduces to the assumption (ii) stated above.
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Then, for any µ ∈ D, the optimal control problem (2.3) is equivalent to the saddle-
point problem (2.9) and the latter admits a unique solution (x(µ), p(µ)) ∈ X × Q.
Moreover, the solution satisfies the stability estimate

‖x(µ)‖X + ‖p(µ)‖Q ≤ C(‖F (µ)‖X′ + ‖G(µ)‖Q′) ∀µ ∈ D,

where C is a positive constant (possibly µ-dependent).
Let us finally observe that, thanks to the affine parameter dependence assumption

(2.5), an affine decomposition holds also for the bilinear and linear forms in (2.9), i.e.
for some finite Qa, Qb, Qf , Qg, they can be expressed as

A(x,w;µ) =

Qa∑
q=1

Θq
a(µ)Aq(x,w), B(w, p;µ) =

Qb∑
q=1

Θq
b(µ)Bq(w, p)(2.12)

〈G(µ), q〉 =

Qg∑
q=1

Θq
g(µ) 〈Gq, q〉, 〈F (µ), w〉 =

Qf∑
q=1

Θq
f (µ) 〈F q, w〉,(2.13)

where the coefficients Θq(µ) and the µ-independent linear and bilinear forms are
related to those appearing in (2.5). For example, Qa = Q̃m+Q̃n, Θq

a(µ) = Θ̃q
m(µ) and

Aq(x,w) = mq(y, z) for 1 ≤ q ≤ Q̃m, while Θq+Q̃m
a (µ) = Θ̃q

n(µ) and Aq+Q̃m(x,w) =
nq(u, v) for 1 ≤ q ≤ Q̃n.

2.3. Truth approximation. Let TN be a triangulation of the domain Ω, we
denote V rN the space of globally continuous functions that are polynomials of degree r
on the single elements of the triangulation. Then we define Y N = Y ∩V rN , QN ≡ Y N
and UN = U ∩ V rN in such a way that XN = Y N × UN ⊂ X, QN ⊂ Q are sequences
of FE approximation spaces. Moreover we indicate with N the global dimension –
typically very “large” – of the product space XN × QN , i.e. N = NX + NQ where
NX = NY +NU and NY = NQ.

Following an optimize-then-discretize approach – rather than a discretize-then-
optimize approach, see e.g. [10] – we introduce the truth Galerkin-FE approximation
of the optimality system (2.9): given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN ×QN such
that

(2.14)

{
A(xN (µ), w;µ) + B(w, pN (µ);µ) = 〈F (µ), w〉 ∀w ∈ XN ,
B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN .

Provided Y N ≡ QN , the bilinear form A(·, ·;µ) remains continuous over XN ×XN
and coercive over XN0 = {w ∈ XN : B(w, q;µ) = 0 ∀q ∈ QN }, and the bilinear form
B(·, ·;µ) remains continuous and inf-sup stable over XN × QN , i.e. there exists a
constant β0 > 0 such that

(2.15) βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D.

In particular, mimicking the proof of Lemma 2.1 we can easily show that βN (µ) ≥
α̃N (µ), being α̃N (µ) the FE coercivity constant of the bilinear form a(·, ·;µ). There-
fore, thanks to Brezzi theory, also the FE approximation (2.14) is well-posed.

Let us now investigate the structure of the algebraic system associated to the

Galerkin approximation (2.14). We denote with {ϕ
j
∈ XN }NX

j=1, {φk ∈ QN }
NQ

k=1, the
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basis functions of the spaces XN , QN , respectively. Then, (2.14) is equivalent to the
linear system

(2.16)

(
A(µ) BT (µ)
B(µ) 0

)
︸ ︷︷ ︸

K(µ)

(
xN (µ)
pN (µ)

)
=

(
F(µ)
G(µ)

)
,

where xN (µ) and pN (µ) denotes the vectors of the coefficients in the expansion
of x(µ) and p(µ), while, for example, the elements of the matrix A are given by
Aij(µ) = A(ϕ

j
, ϕ

i
;µ) for 1 ≤ i, j ≤ NX . Let us notice that also the matrices

appearing in (2.16) inherit the same affine decompositions (2.12), so that

A(µ) =

Qa∑
q=1

Θq
a(µ)Aq, B(µ) =

Qb∑
q=1

Θq
b(µ)Bq,

where the µ-independent matrices Aq, Bq represent the discrete counterparts of the
corresponding bilinear. Analogously for the vectors F(µ) and G(µ).

For the resolution of the linear system (2.16) several strategies can be employed
(see for instance [17, 1]): a popular alternative is based on the so called reduced Hes-
sian methods, in which block elimination on the state and adjoint variables yields a
reduced5 system for the control variable whose matrix is the Schur complement of the
optimality system. A radically alternative strategy consists of using full space (also
called all-at-once) methods, where the optimality system is solved simultaneously for
the state, adjoint and control variables. Both approaches present advantages and
disadvantages and require problem-tailored design of suitable preconditioners and it-
erative linear solvers. Yet, beside the choice of the favorite solution algorithm, it is
well known that the numerical solution of an optimal control problem entails large
computational costs and may be very time-consuming already in the non-parametric
case. Therefore, when performing the optimization process for many different pa-
rameter values or else when, for a new given configuration, the solution has to be
computed in a rapid way, reducing the computational complexity is mandatory. This
is why we advocate using suitable model order reduction techniques.

3. The reduced basis approximation. The idea of the RB method is to
efficiently compute an approximation of (xN (µ), pN (µ) by using approximation spaces
made up of well-chosen solutions of (2.14), i.e. corresponding to specific choices of the
parameter values. As already mentioned in the introduction, the main assumption
is that the solution of (2.14) depends smoothly on the parameters, thus implying the
parametric manifoldMN to be smooth and approximable by selecting some snapshot
FE solutions.

3.1. Construction of RB approximation spaces and stability properties.
Let us suppose that we are given a set of hierarchical RB approximation subspaces
XN ⊂ XN and QN ⊂ QN , N ∈ [1, Nmax], made up of properly selected FE solutions.
By using Galerkin projection onto the low-dimensional subspace XN ×QN , we obtain
the following reduced basis approximation: given µ ∈ D, find (xN (µ), pN (µ)) ∈
XN ×QN such that

(3.1)

{
A(xN (µ), w;µ) + B(w, pN (µ);µ) = 〈F (µ), w〉 ∀w ∈ XN ,

B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN .

5Here reduced must not be understood in the sense of reduced order model.
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The existence, uniqueness and stability of the solution to problem (3.1) depend on
the properties of the RB spaces XN and QN , that are analyzed in the following.

Let us take, for given N ∈ [1, Nmax], a finite set of parameter values SN =
{µ1, . . . ,µN} and consider the corresponding FE solutions {(xN (µn), pN (µn))}Nn=1,
the so called snapshots of the corresponding optimal control problem. We (naively)
define the RB spaces for the state, control and adjoint variables respectively as

(3.2)

YN = span{ζn := yN (µn), n = 1, . . . , N},
UN = span{λn := uN (µn), n = 1, . . . , N},
QN = span{ξn := pN (µn), n = 1, . . . , N},

and denoteXN = YN×UN . Let us discuss the well-posedness of the RB approximation
(3.1). While the continuity properties of the bilinear forms over the RB spaces are
automatically inherited from the parents spaces (i.e. the FE spaces), the coercivity
property of the bilinear form A(·, ·;µ) over

XN
0 = {w ∈ XN : B(w, q;µ) = 0 ∀q ∈ QN}

and the fulfillment of the inf-sup condition of B(·, ·;µ) are not granted and have to
be proved. In particular, the problem (3.1) has to satisfy the following RB inf-sup
condition: there exists β0 > 0 such that

(3.3) βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D.

The first idea in order to prove the fulfillment of (3.3) is to mimic the proof already
used for the continuous problem and its FE approximation, see Lemma 2.1. Unfor-
tunately, while in the continuous case (respectively for the FE approximation) the
state and adjoint spaces Y and Q (respectively Y N and QN ) are equivalent, with the
choice (3.2) we lose this property on the corresponding RB spaces, i.e. YN 6= QN .

In order to recover the stability of the RB approximation, we therefore need to
enrich in some way at least one of the RB spaces involved. This is not surprising when
dealing with the RB approximation of a saddle-point problem, since the structure of
this class of problems – in particular the requirement to fulfill the inf-sup condition
– implies that building the RB approximation spaces solely from snapshots is not
always sufficient. In fact, there are at least two other examples where a similar
treatment shows to be necessary: the application of the RB method to parametrized
Stokes equations [28, 32, 29, 8] and to parametrized variational inequalities [12]. Two
possible strategies to achieve the stability of the approximation are either the use of
a suitable supremizer operator or the use of the same (properly defined) space for the
state and adjoint variables. While the first option can be seen as a trial to mimic what
has been done in the case of the Stokes problem, the second option follows naturally
from the discussion above and has been already considered in some previous works
[5, 19] (even if not specifically for this reason). We chose to pursue the second one,
being aware that these issues deserve further investigations in order to explore also
other strategies, that might be more convenient from the computational point of view.

We thus define the following aggregated space for the state and adjoint variables

(3.4) ZN = span{ζn := yN (µn), ξn := pN (µ), n = 1, . . . , N},

and we let

(3.5) YN = ZN , XN = YN × UN , QN = ZN .
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Lemma 3.1. If the reduced spaces XN and QN are chosen as in (3.4)-(3.5), then
the bilinear form B(·, ·;µ) satisfies the inf-sup condition (3.3). Moreover we have the
estimate

βN (µ) ≥ α̃N (µ), ∀µ ∈ D,

where α̃N (µ) is the coercivity constant associated to the FE approximation of the
bilinear form a(·, ·;µ).

Proof. It is sufficient to follow the proof of Lemma 2.1. In fact,

βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
= inf
q∈ZN

sup
(z,v)∈ZN×UN

a(z, q;µ)− c(v, q;µ)

‖(z, v)‖X‖q‖Q

≥
(z,v)=(q,0)

inf
q∈ZN

a(q, q;µ)

‖q‖Q
= α̃N (µ) ≥ α̃N (µ) > 0.

Note that the choice z = q is allowed because both z and q belong to the space ZN .
The well-posedness of the RB approximation is ensured by the following

Proposition 3.2. If the reduced spaces XN and QN are chosen as in (3.4)-
(3.5), then, for any µ ∈ D, the RB approximation (3.1) has a unique solution
(xN (µ), pN (µ)) ∈ XN ×QN depending continuously on the data.

Proof. It suffices to check that the assumptions of Brezzi theorem hold. As
already mentioned, the continuity properties of the bilinear and linear forms over the
RB space are automatically inherited from the parents spaces (i.e. the FE spaces).
The fulfillment of the inf-sup condition of the bilinear form B(·, ·;µ) has been proved
in Lemma 3.1, while the fulfillment of the coercivity condition of the bilinear form
A(·, ·;µ) can be proved using the same arguments as in Lemma 2.1.

3.2. Algebraic formulation and Offline-Online computational proce-
dure. Let us now investigate the algebraic formulation associated to the enriched
spaces introduced in the previous section. Let {τj}2Nj=1 = {ζj}Nj=1 ∪ {ξj}Nj=1 such that
ZN = span{τj , j = 1, . . . , 2N}, we can express the RB state, adjoint and control
solutions as

xN (µ) =

3N∑
j=1

xNj(µ)σj , pN (µ) =

2N∑
j=1

pNj(µ)τj .

where σj = (τj , 0) for j = 1, . . . , 2N , while σj = (0, λj) for j = 2N + 1, . . . , 3N , in
such a way that XN = span{σj , j = 1, . . . , 3N}. Hence, given a parameter µ, the RB
solution of the problem (3.1) can be written as a combination of basis functions with
weights given by the following reduced basis linear system:

(3.6)

(
AN (µ) BTN (µ)
BN (µ) 0

)
︸ ︷︷ ︸

KN (µ)

(
xN (µ)
pN (µ)

)
=

(
FN (µ)
GN (µ)

)
,

where AN (µ) =
∑

Θq
a(µ)AqN , BN (µ) =

∑
Θq
b(µ)BqN and the submatrices AqN and

BqN are given by (AN )qij = Aq(σj , σi), (BN )qli = Bq(σi, τl), for 1 ≤ i, j ≤ 3N , 1 ≤ l ≤
2N .

In order to state the connection between the RB linear system (3.6) and the FE
discretization (2.16), let us define the basis matrices Zz = (τ1 | · · · | τN ) ∈ RN×2N ,
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Zu = (λ1 | · · · |λN ) ∈ RN×N and

Zx =

(
Zz 0
0 Zu

)
∈ R2N×3N , Z =

Zz 0 0
0 Zu 0
0 0 Zz

 ∈ R3N×5N .

Then, the matrix KN = ZTKZ is given by

(3.7) KN =

(
AN BTN
BN 0

)
=

(
ZTx AZx ZTx B

TZz
ZTz BZx 0

)
.

Thus the matrix KN is still symmetric, with saddle-point structure and has dimension
5N × 5N . Although being dense (rather than sparse as in the FE case), the system
matrix is very small, with a size independent of the FE space dimension N ; for this
reason the RB linear system can be easily solved using direct solvers. Furthermore,
to keep under control the condition number of the matrix KN we have adopted the
Gram-Schmidt orthonormalization procedure [30]. In particular we apply the Gram-
Schmidt procedure separately on the basis functions of the space ZN and on the basis
functions of the space UN .

Thanks to the assumption of affine parameter dependence, we can decouple the
formation of the matrix KN (µ) in two stages, the Offline and Online stages, that
enable the efficient resolution of the system (3.6) for each new parameter µ.
In particular, in the Offline stage, performed only once, we first compute and store
the basis function {τi}2Ni=1 and {λj}Nj=1, and form the µ-independent matrices AqN ,
1 ≤ q ≤ Qa, BqN , 1 ≤ q ≤ Qb and the vectors F qN , 1 ≤ q ≤ Qf , GqN , 1 ≤ q ≤ Qg. The
operation count depends on N , Qa, Qb, Qf , Qg and N .
In the Online stage, performed for each new value µ, we use the precomputed matrices
AqN , BqN and vectors F qN , GqN to assemble the (full) matrix KN and the vectors FN ,
GN appearing in (3.6); we then solve the resulting system to obtain (xN ,pN ). The
Online operation count depends on N , Qa, Qb, Qf , Qg but is independent of N .
In particular we need O((Qa + Qb)N

2) and O((Qf + Qg)N) operations to assemble
matrices and vectors, and O((5N)3) operations to solve the RB linear system (3.6).

3.3. Sampling strategy. For the construction of the hierarchical Lagrange RB
approximation spaces – and thus the optimal choice of the sample points µn, 1 ≤
n ≤ N – we rely on the sampling strategy based on the standard greedy algorithm
[30, 29]. Let Ξtrain ⊂ D be a finite dimensional sample set, called the set of train
samples. The cardinality of Ξtrain will be denoted with ntrain, that we assume to
be sufficiently large such that Ξtrain be a good approximation of the set D (a finite
dimensional surrogate for D). The idea of the greedy procedure is that, starting with
a train sample Ξtrain, we adaptively select (in the sense of minimizing a suitable error
indicator) N parameters µ1, . . . ,µN and form the hierarchical sequence of reduced
basis spaces XN , QN as in (3.4)-(3.5). At each iteration N , the greedy algorithm
appends to the previously retained snapshots that particular candidate – over all
candidate snapshots (xN (µ), pN (µ)), µ ∈ Ξtrain – which is least well approximated
by the “old” RB space XN−1×QN−1. The key ingredient of this adaptive procedure
is a rigorous, sharp and inexpensive estimator ∆N (µ) for the RB error such that

(3.8)
(
‖xN (µ)− xN (µ)‖2X + ‖pN (µ)− pN (µ)‖2Q

)1/2 ≤ ∆N (µ),

where (xN (µ), pN (µ)) is the RB approximated solution associated with the generic
RB space XN ×QN . The construction of the a posteriori error estimator ∆N will be
described in detail in §4.
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Given such an estimator, we can state precisely the steps required by the greedy
algorithm. By denoting εtol a chosen tolerance for the stopping criterium, the greedy
sampling strategy can be implemented as reported in Algorithm 1.

S1 = {µ1}, compute (xN (µ1), pN (µ1) by solving the truth approximation (2.14)
U1 = span{uN (µ1)}, Z1 = span{yN (µ1), pN (µ1)}
X1 = Z1 × U1, Q1 = Z1

for N = 2 : Nmax do
µN = arg maxµ∈Ξtrain

∆N−1(µ)
εN−1 = ∆N−1(µ)
if εN−1 ≤ εtol

Nmax = N − 1
end if
compute (xN (µN ), pN (µN ) by solving the truth approximation (2.14)
SN = SN−1 ∪ {µN}
UN = UN−1 ∪ span{uN (µN )}, ZN = ZN−1 ∪ span{yN (µN ), pN (µN )}
XN = ZN × UN , QN = ZN

end for

Algorithm 1: Greedy algorithm for parametrized optimal control problems.

We underline again that the key point in the algorithm is to exploit an a posteri-
ori error bound ∆N (µ) efficiently computable, since at each iteration the algorithm
requires to evaluate ∆N (µ) for all µ ∈ Ξtrain.

4. Rigorous a posteriori error estimates. In the RB framework a posteriori
error estimates plays a crucial role in order to guarantee the efficiency and reliability
of the method. As regards efficiency, the error bound is essential in the sampling
procedure, by allowing an exhaustive exploration of the parameters domain and a
proper selection of the basis functions. As regards reliability, at the Online stage for
each new value of parameter µ ∈ D, the a posteriori estimator permits to bound the
error of the RB approximation with respect to the underlying truth approximation.

Different strategies can be pursued in order to provide a posteriori error estima-
tion for parametrized optimal control problems. In [5] an efficient yet not rigorous
estimator has been proposed dealing with time-dependent optimal control problems,
while recently in [19] similar techniques combined with some previous results pro-
posed in [36] have been applied to the same problem considered here, providing an
efficient and rigorous estimator. In this work, we propose a new a posteriori error
estimate that can be easily obtained exploiting the structure of the optimality sys-
tem. In particular, once the saddle-point structure of the optimality system has been
highlighted, one can apply three different approaches, already proposed in the RB
context: (i) to exploit Brezzi stability theory [4]; (ii) to use the Nečas-Babuška sta-
bility theory [2, 23]; (iii) or to adopt a penalty approach [11]. While the approaches
(i) and (iii) have been only recently applied in the RB context, respectively in [8] and
[7], the second approach is quite standard in the RB context [30]. We thus choose to
pursue the latter, exploiting the analogies with the RB scheme proposed for affinely
parametrized Stokes equations in [32, 29].

In §4.1 we construct a rigorous and inexpensive (i.e. N -independent) a posteriori
error bound ∆N (µ) such that

(4.1)
(
‖xN (µ)− xN (µ)‖2X + ‖pN (µ)− pN (µ)‖2Q

)1/2 ≤ ∆N (µ).
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Then in §4.2, using the same ingredients, we construct a rigorous and inexpensive a
posteriori error bound ∆J

N (µ) for the error on the cost functional, i.e.

(4.2) |J(yN (µ), uN (µ);µ)− J(yN (µ), uN (µ);µ)| ≤ ∆J
N (µ).

4.1. Bound for the solution. Since saddle point problems can be regarded as a
particular case of weakly coercive (also called noncoercive) problems, the construction
of the error estimator ∆N (µ) can be carried out by using the Nečas-Babuška stability
theory [2, 23].

Upon defining the space X = X ×Q, the bilinear form B(·, ·;µ) : X × X → R,

(4.3) B(x,w;µ) := A(x,w;µ) + B(w, p;µ) + B(x, q;µ),

and the linear continuous functional F(·;µ) : X → R,

(4.4) F(w;µ) = 〈F (µ), w〉+ 〈G(µ), q〉,

where x = (x, p) ∈ X and w = (w, q) ∈ X , problem (2.9) can equivalently be reformu-
lated as: given µ ∈ D,

(4.5) find x ∈ X s.t: B(x,w;µ) = F(w;µ) ∀w ∈ X .

According to Nečas theorem, the problem (4.5) is well posed if for any µ ∈ D the
bilinear form B(·, ·;µ) is continuous and weakly coercive, i.e. there exists a constant

β̂0 > 0 such that6

(4.6) β̂(µ) = inf
w∈X

sup
x∈X

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂0.

Moreover, holding these assumptions, for any µ ∈ D the unique solution satisfies the
following stability estimate

(4.7) ‖x(µ)‖X ≤
1

β̂(µ)
‖F(·;µ)‖X ′ .

Actually, since the bilinear forms A(·, ·;µ) and B(·, ·;µ) satisfy the hypotheses of
Brezzi theorem, it can be shown (see e.g. [37, 11]) that the the compound form
B(·, ·;µ) is bounded and weakly coercive. Similarly, the FE and RB approximations
satisfy the same inf-sup condition,

β̂N (µ) := inf
w∈XN

sup
x∈XN

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂N0 > 0, ∀µ ∈ D,(4.8)

β̂N (µ) := inf
w∈XN

sup
x∈XN

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂N0 > 0, ∀µ ∈ D,(4.9)

where XN = XN ×QN and XN = XN ×QN . Moreover the stability estimate (4.7)
holds also for the FE and RB approximations, in particular

(4.10) ‖xN (µ)‖X ≤
1

β̂N (µ)
‖F(·;µ)‖X ′ , ∀µ ∈ D.

6In the following we will refer to the inf-sup constant β̂(µ) (4.6) as the Babuška inf-sup constant,
in contrast to the Brezzi inf-sup constant β(µ) (2.8); similar notation will be used for their FE and
RB approximations.
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The construction of the a posteriori error estimation is based on two main in-
gredients (as usual in RB context): an effective calculation of a lower bound for the

Babuška inf-sup constant β̂N (µ) and the calculation of the dual norm of the residual
[24]. As regards the first one, we suppose to have at our disposal a µ-dependent lower

bound β̂LB(µ) : D → R such that

(4.11) β̂N (µ) ≥ β̂LB(µ) ≥ β̂0 > 0, ∀µ ∈ D,

and the Online computational time to evaluate µ → β̂LB(µ) is independent of N .

The calculation of β̂LB(µ) can be carried out using the Natural Norm Successive
Constraint Method, an improvement of the SCM algorithm specifically tailored for
noncoercive problems, see e.g. [16, 29] for a detailed explanation of this procedure as
well as for many numerical tests.
As regards the second ingredient, the residual r(·;µ) ∈ (XN )′ is defined as

r(w;µ) := F(w;µ)− B(xN ,w;µ) ∀w ∈ XN .

Finally, let us define the error between the “truth” FE approximation and the RB ap-
proximation, e(µ) := xN (µ)−xN (µ). We can now formulate an a posteriori estimator
for the error e(µ).

Proposition 4.1. For any given µ ∈ D, N ∈ [1, Nmax], and β̂LB(µ) satisfying
(4.11), we define

(4.12) ∆N (µ) =
‖r(·;µ)‖X ′
β̂LB(µ)

.

Then, ∆N (µ) is an upper bound for the error e(µ),

(4.13) ‖e(µ)‖X ≤ ∆N (µ), ∀µ ∈ D, ∀N ∈ [1, Nmax].

Proof. The problem statement for the FE solution xN (µ) and for the RB solution
xN (µ) and the bilinearity of B(·, ·;µ) imply that the error e(µ) statisfy the following
equation: B(e(µ),w;µ) = r(w;µ), ∀w ∈ XN . Then it suffices to apply the stability
estimate (4.7) and exploit the lower bound (4.11) for the Babuška inf-sup constant.

As usual (see for instance [30, 29]), the computation of the dual norm of the resid-
ual can be decomposed in two stages: an expensive, µ-independent Offline stage and
an inexpensive Online stage. As a result, given µ ∈ D, the evaluation of ‖r(·;µ)‖X ′
requires O(25N2Q2

B + 5NQBQf +Q2
F ) operations, independent of N .

4.2. A posteriori error bound for the cost functional. To develop an a
posteriori error bound on the cost functional J(y, u;µ), we firstly observe that this is
equivalent to provide an estimator for the error on J (x;µ), since J (·;µ) and J(·, ·;µ)
differ only in a constant term once µ ∈ D is fixed. Although the cost functional J (·;µ)
is a quadratic functional, thanks to the structure of the optimal control problem we
can avoid to use the techniques of error estimation for quadratic outputs already
proposed in the RB context, see for instance [34, 14, 22]. Rather, following the work
in [5] we may use a goal-oriented analysis, a standard tool for the development of a
posteriori error estimates for optimal control problems.

The error on the cost functional evaluated with respect to the FE and RB ap-
proximations will be denoted with

JN (µ)− JN (µ) = J(yN (µ), uN (µ);µ)− J(yN (µ), uN (µ);µ).
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Recalling the definition of the Lagrangian functional (2.10), we observe that we can
use a different formalism to express the gradient of the Lagrangian as

(4.14) ∇L(x;µ)[w] = B(x,w;µ)− F(w;µ), ∀w ∈ X .

Then, we can show the following result.

Proposition 4.2. For any given µ ∈ D, N ∈ [1, Nmax], and β̂LB(µ) satisfying
(4.11), we define

(4.15) ∆J
N (µ) =

1

2

‖r(·;µ)‖2X ′
β̂LB(µ)

.

Then, ∆J
N (µ) is an upper bound for the error on the cost functional,

(4.16) |JN (µ)− JN (µ)| ≤ ∆J
N (µ), ∀µ ∈ D, ∀N ∈ [1, Nmax].

Proof. The RB error on the cost functional can be rewritten as (see e.g. [3, 5])

JN (µ)− JN (µ) =
1

2
∇L(xN (µ);µ)[xN (µ)− xN (µ)].

Thanks to (4.14) we have that

∇L(xN ;µ)[xN − xN ] = B(xN , x
N − xN ;µ)− F(xN − xN ;µ) = r(xN − xN ;µ).

By exploiting the continuity of the residual r(·;µ) and the estimate (4.13) we obtain
the required bound (4.16).

Note that the error estimator ∆J
N (µ) does not need any further ingredients besides

those already available: the efficient computation of the dual norm of the residual and
the calculation of a lower bound for the Babuška inf-sup constant.

5. Numerical examples. In this section we discuss three numerical examples
in order to verify the properties – and to test the performances – of the proposed RB
scheme. In the cases in which we consider a parametrized geometry we firstly define
an “original” problem (subscript o) posed over a parameters dependent domain, then
we trace back the problem to a reference domain through suitable affine geometrical
mappings (see [30, 29, 22] for the details) in order to recover the formulation (2.9). The
implementation of the method has been carried out in the Matlab R© environment
using an enhanced version of the rbMIT library [15]7.

5.1. Test 1: distributed optimal control for the Laplace equation with
geometrical parametrization. We consider an “original” domain Ωo(µ) = Ω1

o ∪
Ω2
o(µ) given by a rectangle separated in two subdomains, with the first one parameter

independent, as shown in Figure 5.1. We consider two parameters µ = (µ1, µ2), being
µ1 related to the geometry of Ω2

o while µ2 is such that yd(µ) = 1 in Ω1
o and yd(µ) = µ2

in Ω2
o(µ), i.e. the observation function is parameter dependent (constant on each

subdomain). The set spanned by the parameters is given by D = [1, 3.5]× [0.5, 2.5].

7Since the problems we deal with are of small size, all the required linear systems (in particular
in the Offline stage) will be solved using the direct solver provided by Matlab. All the computations
are performed on a personal computer with an Intel Core i5-2400S CPU and 16 GB of RAM.
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Ω1
o Ω2

o(µ)

(1 + µ1, 0)

(1 + µ1, 1)(1, 1)(0, 1)

(0, 0) (1, 0)

Fig. 5.1. Test 1: “original” domain Ωo(µ).

We consider the following optimal control problem:

(5.1)

min
yo.uo

J(yo(µ), uo(µ);µ) =
1

2
‖yo(µ)− yd(µ)‖2L2(Ωo) +

α

2
‖uo(µ)‖2Uo

,

s.t.

{
−∆yo(µ) = uo(µ) in Ωo(µ),

yo(µ) = gD on ΓoD(µ) = ∂Ωo(µ),

where yo and uo are the state and control functions defined on the original domain,
while the Dirichlet boundary condition is given by gD = 1. We denote with Yo and
Uo the spaces H1

0 (Ωo) and L2(Ωo) respectively, moreover Qo ≡ Yo. By tracing the
problem back to a reference domain Ω = Ωo(µref) (with the arbitrary choice µref =
(1, 1)) we obtain the parametrized formulation (2.9) where the affine decompositions
(2.12) (2.13) hold with Qa = 2, Qb = 3, Qf = 2, Qg = 3.

Computations are based upon a finite element approximation on P1 spaces for the
state, control and adjoint variables; the total number of degrees of freedom, i.e. the
dimension of the space XN = Y N × UN ×QN , is N = 5 982, obtained using a mesh
of 4 136 triangular elements. The regularization parameter is kept fixed and equal to
α = 0.01. In Figure 5.2 a representative solution for a fixed value of the parameters
is given.

Fig. 5.2. Test 1: representative solution for µ = (0.6, 3); on the left the state variable yN , on
the right the optimal control uN .

1 1.5 2 2.5 3 3.5
0

0.05

0.1

β̂LB(µ)

β̂N (µ)

β̂N (µ)

Fig. 5.3. Test 1: lower bound for the Babuška inf-sup constant β̂N (µ) as a function of the
geometrical parameter µ1 (on the x-axis).

With a fixed tolerance εtol = 5 · 10−4, Nmax = 12 basis functions have been selected
by the greedy algorithm, thus resulting in a RB linear system of dimension 60×60. In
Figure 5.3 we show the lower bound for the Babuška inf-sup constant β̂N (µ) (defined
in (4.8)) obtained using the natural norm SCM algorithm, which requires in this
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case the solution of 10 + 2QB eigenproblems of dimension N (see [16, 29] for further

details). In Figure 5.3 the RB Babuška inf-sup constant β̂N (µ) defined in (4.9) is also

reported, in particular we can observe that β̂N (µ) ≥ β̂N (µ), thus indicating the good
stability property of the RB approximation.
Furthermore, as regards the stability properties, in Figure 5.4 we give some numerical
results on the discrete Brezzi inf-sup constants βN (µ) and βN (µ), also compared with
the coercivity constant α̃(µ) of the bilinear form a(·, ·;µ) in the state equation. In
Figure 5.4a we report some results obtained in a preliminary numerical investigation
without any enrichment option, i.e. using different RB spaces YN and QN (see §3.1).
We compare the discrete Brezzi inf-sup constant and coercivity constant for the FE
and RB approximation. We can confirm that, as claimed in §2.3 (see also Lemma
2.1), βN (µ) ≥ α̃N (µ). Moreover we observe that

βN (µ) ≥ α̃N (µ) ≥ βN (µ) ≥ α̃N (µ),

hence (as expected) we cannot bound from below the RB inf-sup constant βN (µ)
with similar quantities related to the FE approximations. We note also that in this
case the RB coercivity constant α̃N (µ) is in fact an inf-sup constant, since we are
approximating the state equation with a Petrov-Galerkin scheme, i.e.

α̃N (µ) = inf
q∈QN

sup
y∈YN

a(y, q;µ)

‖q‖Q‖y‖Y
, ∀µ ∈ D.
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α̃N (µ)

(a) (b)

Fig. 5.4. Test 1: comparison of the FE and RB discrete Brezzi inf-sup constant β(µ) and
coercivity constant of the state equation α̃(µ). The two quantities are given as function only of µ1,
since µ2 does not appear in the affine expansion of B(·, ·;µ). (a) No enrichment: YN 6= QN . (b)
Aggregated space: YN = QN = ZN with ZN defined as in (3.4).

In Figure 5.4b we compare the RB stability factors obtained using the aggregated
space ZN for the state and adjoint variables. In this case we have a numerical evidence
of the result proven in Lemma 3.1, that is

βN (µ) ≥ α̃N (µ) ≥ α̃N (µ) > 0, ∀µ ∈ D.

Finally in Figure 5.5 we compare the a posteriori error bound ∆N (µ) with the true
error ‖xN (µ)− xN (µ)‖X and the a posteriori error bound ∆J

N (µ) with the true error
on the cost functional |JN (µ)− JN (µ)|.

As regards the computational performances, the Offline computational time is
equal to tofflineRB = 139s, the (average) Online evaluation time is tonlineRB = 8.5 ms
comprehensive of the evaluation of the a posteriori error estimation; we remark that
most of the Offline time is spent performing the SCM and greedy algorithms, the
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former requiring around 88 seconds while the latter requiring around 46 seconds. The
evaluation time for the FE approximation is equal to about tonlineFE = 1 s taking into
account the time needed for assembling the FE matrices and vectors.

2 4 6 8 10 12
10−7

10−3

101

N

average error

∆N average
max error

2 4 6 8 10 12
10−13

10−6

101

N

average error

∆J
N average

max error

Fig. 5.5. Test 1. Average and max computed errors and estimate between the truth FE solution
and the RB approximation, for N = 1, · · · , Nmax (left). Average computed errors and estimate
∆J

N (µ) between JN (µ) and JN (µ), for N = 1, · · · , Nmax (right). Here Ξtrain is a sample of size
ntrain = 1000 and Nmax = 12.

5.2. Test 2: distributed optimal control for a Graetz convection-diffusion
problem with physical parametrization. As a second example we consider a
distributed optimal control problem for the Graetz conduction-convection equation.
With respect to the previous test we consider here a simple physical parametriza-

Ω̂1 Ω̂2

(2.5, 0)

(2.5, 1)(1, 1)(0, 1)

(0, 0) (1, 0)

ΓN

ΓD2

ΓD2ΓD1

ΓD1

ΓD1

Fig. 5.6. Test 2: domain Ω (the observations subdomains are denoted with Ω̂1 and Ω̂2).

tion instead of a geometrical one; in particular, µ1 will be the Péclet number, while
µ2 and µ3, similarly to the previous example, are such that yd(µ) = µ2 in Ω̂1 and
yd(µ) = µ3 in Ω̂2, where the spatial domain (shown in Figure 5.6) is the rectangle
Ω = [0, 2.5] × [0, 1]. The parameter domain is D = [3, 20] × [0.5, 1.5] × [1.5, 2.5]. We
consider the following optimal control problem:

(5.2)

min
y,u

J(y, u;µ) =
1

2
‖y(µ)− yd(µ)‖2

L2(Ω̂)
+
α

2
‖u(µ)‖2L2(Ω),

s.t.


− 1

µ1
∆y(µ) + x2(1− x2)

∂y(µ)

∂x1
= u(µ) in Ω

1

µ1
∇y(µ) · n = 0 on ΓN

y(µ) = 1 on ΓD1, y(µ) = 2 on ΓD2,

where y(µ) is the temperature field, the control u(µ) acts as a heat source and Ω̂ =
Ω̂1∪ Ω̂2 is the observation domain. The problem admits an affine decomposition with
Qa = 1, Qb = 2, Qf = 2, Qg = 2 components. For the computation we fixed α = 0.01
and used piecewise linear finite elements for the FE approximation, the dimension of
the global FE space XN used is N = 10 494.
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Table 5.1
Numerical details for Test 2. The RB spaces have been built by means of the greedy procedure

and N = 19 basis functions have been selected.

Approximation data Computational performances

Number of FE dof N 10 494 Linear system size reduction 110:1
Number of parameters P 3 Offline total time 417 s
Error tolerance greedy εtol 10−4 Offline SCM time 315 s
Affine operator components QB 3 Offline greedy time 90 s

With a fixed tolerance εreltol = 10−4, Nmax = 19 basis functions have been selected,
thus resulting in a RB linear system of dimension 95×95. In Figure 5.7a we show the
lower bound for the Babuška inf-sup constant β̂N (µ) obtained using the natural norm
SCM algorithm; SCM requires in this case the solution of 28 + 2QB eigenproblems.
Once again we can observe that β̂N (µ) ≥ β̂N (µ), thus indicating the good stability
property of the RB approximation.
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0.3
β̂LB(µ)

β̂N (µ)

β̂N (µ)

5 10 15 20

0.5

1

1.5
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2.5

βN (µ)

α̃N (µ)

βN (µ)

α̃N (µ)

(a) (b)

Fig. 5.7. Test 2: stability factors as functions of the physical parameter µ1. (a) Lower bound

for the discrete Babuška inf-sup constant β̂N (µ). (b) Comparison of discrete Brezzi inf-sup constant
β(µ) and coercivity constant α̃(µ) for the FE and RB approximations.

In Figure 5.7b we compare the Brezzi inf-sup constants βN (µ) and βN (µ) and the
coercivity constants α̃N (µ) and α̃N (µ) of the bilinear form a(·, ·;µ). As in the previ-
ous example we have confirmed numerically that βN (µ) ≥ α̃N (µ) ≥ α̃N (µ). Finally
in Figure 5.8 we compare the a posteriori error bound ∆N (µ) with the true error
‖xN (µ) − xN (µ)‖X and the a posteriori error bound ∆J

N (µ) with the true error on
the cost functional |JN (µ)− JN (µ)|.
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Fig. 5.8. Test 2. Average and max computed errors and bound between the truth FE solution
and the RB approximation (left). Average true error and bound ∆J

N (µ) between JN (µ) and JN (µ)
(right).
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(1 + µ2, 0)

(1 + µ2, 1)(1,1)(0,1)

(0,0) (1,0)

ΓoN

ΓoC

ΓoCΓoD

ΓoD

ΓoD

Ω̂o

Ω̂o

Fig. 5.9. Test 3: “original” domain Ωo(µ).

As regards the computational performances, while the average Online time needed
to compute and certify the RB solution is approximately equal to the one reported in
the previous test, the Offline computational time required to build all the ingredients
is now equal to tofflineRB = 417s. Notice that here performing the SCM algorithm
requires around the 75% of the overall Offline time, a percentage that can further
increase rapidly when the number of parameters P , the number of terms QB in the
affine decomposition or the number of FE degrees of freedom N increase. In the
next example we will discuss an alternative strategy for the construction of the lower
bound β̂LB(µ), in order to avoid this computational bottleneck in the Offline stage.

5.3. Test 3: boundary optimal control for a Graetz flow with both
physical and geometrical parametrization. This third example deals again with
a control problem for a Graetz flow, however this time we consider a boundary con-
trol instead of a distributed one and we consider both a geometrical and physical
parametrization. The original domain is shown in Figure 5.9, we consider 3 parame-
ters: µ1 is the Péclet number, µ2 is the geometrical parameter (the length of second
portion of the channel) and µ3 is such that yd(µ) = µ3χΩ̂o

, being Ω̂o(µ) the observa-

tion domain Ω̂o(µ) ⊂ Ω2
o(µ). The parameter domain is D = [6, 20]× [1, 3]× [0.5, 3].

We consider the following optimal control problem

(5.3)

min
yo,uo

J(yo(µ), uo(µ);µ) =
1

2
‖yo(µ)− yd(µ)‖2

L2(Ω̂o)
+
α

2
‖uo(µ)‖2Uo

,

s.t.



− 1

µ1
∆yo(µ) + xo2(1− xo2)

∂yo(µ)

∂xo1
= 0 in Ωo(µ)

yo(µ) = 1 on ΓoD
1

µ1
∇yo(µ) · n = uo(µ) on ΓoC(µ)

1

µ1
∇yo(µ) · n = 0 on ΓoN (µ),

where we impose constant Dirichlet conditions on the inlet boundary of the channel,
homogeneous Neumann condition on the outlet boundary and finally a Neumann
condition equal to the control function uo on ΓoC . We denote with Yo and Uo the
spaces H1

0 (Ωo) and L2(ΓoC) respectively, moreover Qo ≡ Yo. By tracing the problem
back to a reference domain we obtain the parametrized formulation (2.9) where the
affine decompositions (2.12) (2.13) hold with Qa = 1, Qb = 5, Qf = 1, Qg = 4.

As mentioned in §5.2, in order to avoid the time-consuming SCM algorithm, we
seek for an alternative strategy to compute a lower bound of the inf-sup constant
β̂N (µ). As recently proposed in [22], we consider – rather than a rigorous lower

bound – a surrogate of β̂N (µ) given by an interpolation procedure. We (arbitrary
and a priori) select a (possibly small) set of interpolation points Ξβ ⊂ D and compute
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Fig. 5.10. Test 3: representative solution for µ = (12, 2, 2.5). We report the state variable yN
(left), the adjoint variable pN (middle) and the optimal control uN on Γo

C (right); thanks to the
symmetry of the problem the control variable has the same values on the boundaries ΓC ∩ {x2 = 0}
and ΓC ∩ {x2 = 1}.
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Fig. 5.11. Test 3: comparison between lower bound and interpolant surrogate for the discrete
Babuška inf-sup constant β̂N (µ). On the left: β̂N (µ) as a function of µ1, (µ2, µ3) = (1.5, 3) fixed;

on the right: β̂N (µ) as a function of µ2, (µ1, µ3) = (9, 1) fixed.

the inf-sup constant β̂N (µ) by solving the related eigenproblem for each µ ∈ Ξβ . Then

we compute a suitable interpolant surrogate β̂S(µ) such that

β̂S(µ) = β̂N (µ), ∀µ ∈ Ξβ .

Depending on the number of parameters and their range of variation, different inter-
polation methods can be employed. Here we use a simple linear interpolant and an
equally spaced grid of interpolation points in the parameter space. Actually, since the
parameter µ3 does not affect the value of β̂N (µ), we perform just a two dimensional
interpolation with respect to the parameters µ1 and µ2.

We present here a first test comparing the performances of this alternative strat-
egy with respect to the SCM algorithm. We fixed α = 0.07 and used piecewise linear
finite elements for the FE approximation, the dimension of the global FE space XN
is N = 7 156. In Figure 5.11 we show a comparison between the lower bound for
the Babuška inf-sup constant β̂N (µ) obtained using the SCM algorithm and the in-

terpolant surrogate β̂S(µ); SCM takes around 1 hour to be performed, while the
computation of the interpolant surrogate needs only 24 seconds using 120 sampling
points in the parameter space. Furthermore, the interpolant surrogate is a much
sharper approximation of the true FE inf-sup constant – despite not being a rigorous
lower bound – thus resulting also in a sharper a posteriori error estimate (see Figure
5.12). For this reason, with a fixed tolerance εreltol = 5 · 10−4, the greedy algorithm
selects Nmax = 36 basis functions when using the lower bound given by the SCM,
while only Nmax = 27 basis functions are selected when employing the interpolant
surrogate. A detailed comparison of the computational costs is given in Table 5.2.

Finally, we have performed a further test using a smaller regularization constant
α = 8 · 10−3 and a finer triangulation of the spatial domain, resulting in a global FE
space XN of dimension N = 22 792. We use β̂S(µ) as surrogate for the lower bound

of the FE inf-sup constant β̂N (µ): with 120 equally distributed interpolation points

we obtain a sharp approximation of β̂N (µ) (see Figure 5.13a), yet requiring less than
two minutes to be computed in the Offline stage (all the numerical details are given
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Fig. 5.12. Test 3 (α = 0.07). (a) True error and error estimate between the FE solution

and the RB approximation: the quantities in red are obtained using the interpolant surrogate β̂S(µ)

instead of β̂LB(µ). (b) Average true error and bound ∆J
N (µ) between JN (µ) and JN (µ) using

β̂S(µ) in the estimate.

Table 5.2
Numerical details for Test 3 (α = 0.07). Comparison between the use of SCM algorithm and

the interpolation procedure.

SCM algorithm Interpolation surrogate

Number of eigenvalue problems 239 120
“Lower bound” computation time 3523 s 24 s

Greedy algorithm comput. time 349 s 175 s
Number of RB functions N 36 27
Linear system size reduction 39:1 53:1

in Table 5.3). The greedy algorithm selects Nmax = 35 basis functions in order to
guarantee the relative error of the RB solution (with respect to the FE approximation)
to be under the desired tolerance εreltol = 5 · 10−4. In Figure 5.13b we compare the a
posteriori error bound ∆N (µ) with the true error ‖xN (µ)− xN (µ)‖X .

6. Conclusions. In this work we have developed a reduced basis framework
for the efficient solution of parametrized linear-quadratic optimal control problems
governed by elliptic coercive PDEs. A rigorous well-posedness analysis has been
carried out by exploiting a suitable saddle-point formulation. On the other hand, the
certified error bounds on the solution variables as well as on the cost functional have
been obtained by recasting the problem in the form of weakly coercive problems and
then applying standard arguments based on Nečas-Babuška stability theory. Finally,
we have also provided a full Offline-Online decomposition strategy ensuring the Online
efficiency of the method. Our numerical tests showed the possibility to obtain large
computational savings (a speedup of at least two order of magnitude) in the Online
stage with respect to classical high-fidelity discretization methods. In particular,
the proposed error estimators demonstrate to be sharp enough to enable an efficient
exploration of the parameter space through the Greedy algorithm, thus resulting in
the selection of a reasonably small number of basis functions.
A possible drawback resides in the Offline stage, that demands for large computational
resources. To alleviate this problem, we have provided a detailed (empirical) analysis
of the computational costs required by the main operations to be performed, i.e. the
computation of a lower bound for the inf-sup constant (via the SCM algorithm) and
the construction of the RB spaces through the Greedy algorithm. Since the main
computational effort is required by the former, we have proposed the use of a suitable
interpolant surrogate instead of a rigorous lower bound. This alternative strategy is
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Fig. 5.13. Test 3 (α = 8 · 10−3). (a) Interpolant surrogate for the discrete Babuška inf-sup

constant β̂N (µ) as a function of µ1, (µ2, µ3) = (1.5, 3) fixed. (b) Average and max true errors and
estimate on the solution variables.

Table 5.3
Numerical details for Test 3 (α = 8 · 10−3).

Approximation data Computational performances

Number of FE dof N 22 792 Linear system size reduction 130:1
Number of parameters P 3 RB solution 2.5 ms
Affine operator components QB 6 Offline interpolation time 102 s
Number of RB functions N 35 Offline greedy time 860 s

signicantly more efficient, resulting in both a substantial computational saving in in
the Offline stage and a sharper approximation of the true stability factor.
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