Jan S Hesthaven and Tim Warburton

Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications

— LIST OF CORRECTIONS AND CLARIFICATIONS

September 6, 2010

Springer

List of corrections and clarifications

Notation: First number is page number, second number line number with a ”+” counting from the
top and a ”-” counting from the bottom. Line counts include equations.

Thanks to C. Bahls, A. Panizza, X. Zhu, C. Rohde, S. Field, J. Thorenson, J. Li, A.Engsig-
Karup, A. Jameson, A. Kloeckner, M. Rosing for pointing out these misprints.

12, 5 : "noncoersive” should be ”noncoercive”

45, -12 Should be dr and not dz in integral, i.e.,

1
/ uv dr
-1

50, Eq.(3.3) : r; should be &;.
50, -5 : Last expression should be

56, 1 : To avoid confusion, ¢;(r), should be £(r).
58, -1 : Matrix FToV should be

[10000]
01000
01000
00100
00100
00001
00001

100010

FToV =

59, +3 : This also impacts (FToV)(FToV)T which becomes

[10000000]
01100000
01100000
00011000
00011000
00000110
00000110

100000001 |

(FToV)(FToV)T =

This also implies that [59, +5] should read rows 1 and 8 indicate.
67, 11 : MeshGen1D should be called with argument (0.0, 2 * pi, 10).
67, -2 : x € [-2,2] should be z € [-1,1].

68, +2 : E(—2,0) = E(2,0) = 0 should be E(—1,t) = E(1,t) = 0.
68, +15 : Should be

1

70,-7 : Software line

[Nv, VX, K, EToV]
should be

MeshGen1D(-2.0, 2.0, 80);

[Nv, VX, K, EToV]

MeshGen1D(-1.0, 1.0, 80);
71, -20 : Wrong exact solution. Should be

H (z,t) = n™ | A exp(iwn™z) + B™) exp(—iwn(m)x)} exp(iwt)

71, -18 : Wrong exact solution. Should be

B® = exp(i2nPw)A®

71, -16 : Wrong exact solution. Should be

A = exp(—iw(n® +n?))

79, +13 : The expression for |0,| is correct but it should be clarified by write it as.

”We recover
1 p
< (1
o < ()

by integration by parts 2p times. Recalling (4.2) and combining this with ...”

3

/I (Lo)P By (r) dr

85, +17 : a(uy,v)p should be a(uz, @) o
87, +3 : HEN”??,h should be ||Eh||?27h
89, +16 : Should be

iwh

_TM‘FGS

109, last equation : Should be v — 0 in lim.
118, Sec 5.2 : Clarification: In this section, ff has the meaning of the interpolation of the pro-
jection of f, i.e.,

Np

(e t) =Y (Pnf)(it) e (x).

i=1
This is equivalent to assuming that all integrals are exact.
119, -8 : "from” should be ”form”.
122, +5 : Eq.(5.8) should be

-

1d

§a|\uh”?),h <0.

123, -8 : Last expression should be

Np
f,’f(x,t) = Zfﬁ($f7t)ff($),
i=1

124
130

+3 : uf(z;,t) should be uf (z¥,1).
+10 : Eq.(5.16), lower limit should be n. < n < 1.

-

-

134, -3 : The statement is only true for n = 1. The general statement should be

2ata~

. . 1
i ()" = S50 () + gl
151, -9 : Should be

ul = uh; ul(3:Np,:) =0; ul = V*ul;
162,-1 to 163, +2 : Statements

drho (mapI) = ...
drhou (mapI)
dEner (mapI)

should be

drhof (mapI) = ...
drhouf (mapI) = ...
dEnerf (mapI) = ...

163, +6-8 : Statements

drho (map0) = ...
drhou(map0) =
dEner (map0)

should be

drhof (mapQ) = ...
drhouf (map0) = ...
dEnerf (map0) = ...

165, +7-8 : The purpose of this piece of code is to describe initial conditions at the cell-centers
as is required for discontinuous initial conditions. The correct statement should be

cx = ones(Np,1)*(sum(MassMatrix*x,1))/2;
If the initial conditions are smooth, cx, can be replaced by x in the codes in lines 9-11.

175, +20ff : Should be ”Thus, w(r) is an N-th-order polynomial approximation to a function
which measures the difference between the equidistant points and the Legendre-Gauss-Lobatto
points; ...”

179, -2 : Sixth number should be ”70.9808” - not ”0.9800”.
182, +5 : Middle expression should be

VT = (7).
185, -2 : Should be
S, = MD,, S;=MDs,.

194, +9 : "each of length 3K Ny, .

195, +1 : Remove one "find”.

206, -4 : Should be ”consider a diatomic gas with ...”
208, 2 : Stabilization term (last term) should be

A,
+5(a, —ay)
209, -8 : Should be

245, +9 : "discretize” instead of ”discretizing”
245, +19 : "types” instead of "type”

246, +9 : Should be ”As in Section 5.3, we have ...”
259, -3 : Exact solution should be

u(z,t) = cos(—m>t + mx).

268, +4 : Should be

268, +8 : Equation (7.4)

Lt
h
268, -5 : Equation (7.5) — same as above in (7.4).
271, +3 : In caption — n should be N.
282, -7/-8 : Should be 902 and 92V to reflect the boundaries.
282, -2 : p© should be uP.

287, -3 : Should be

=9, ...
287, 13 : Statement 48 in file should be A\(M*(-f(:)) + ubc);
290, -3 Should be ”.. with w = Vu we ”

294, -8ff : Until p295, line 4, uj, should be exchanged with Pywu to avoid the confusion that uy is
used for a numerical solution elsewhere. In these few lines, u is the projection of the solution
and these results are basic approximation results.

294, -7 : Last term should be

112w — un) |,

295, +14 : Remove one |u|o.oh-

298, -10 : rhs should be f, i.e., >> f = f(P).

312, -12 : "compare” instead of ”compared”

353, -19 : Remove "which” to have ”spectrum and appears to be isolated.”
373, +6 : ”complex situations.”

376, -14 : Software statement, line 16. Should be

thetal
theta?2

atan2(VY(v1l)-yo, VX(vl)-xo0);
atan2(VY(v2)-yo, VX(v2)-xo);

399, -1 : "information”

413, -7 : Should be

pao (oL 1 f
o 127 6'V9)’
434, -4ff : The 6 equations are written with a wrong sign on the boundary flux terms. This is due

to a definition of [¢] = ¢ — ¢~ which is inconsistent with the bottom of p.433.
There should be a ’-’ in front of all boundary terms as a consequence of this.

435-436 : This same inconsistency is reflected in the code which should be

% form field differences at faces

dHx(:) = Hx(vmapM)-Hx(vmapP); dEx(:) = Ex(vmapM)-Ex(vmapP);
dHy (:) Hy (vmapM) -Hy (vmapP) ; dEy(:) = Ey(vmapM)-Ey(vmapP);
dHz(:) = Hz(vmapM)-Hz(vmapP); dEz(:) = Ez(vmapM)-Ez(vmapP);

and

fluxHx = ny.*dEz - nz.*dEy - alpha*(dHx - ndotdH.*nx);
fluxHy = nz.*dEx - nx.*dEz - alpha*(dHy - ndotdH.*ny) ;
fluxHz = nx.*dEy - ny.*dEx - alphax(dHz - ndotdH.*nz);

fluxEx = -ny.*dHz + nz.*dHy - alpha*(dEx - ndotdE.*nx) ;
fluxEy = -nz.*dHx + nx.*dHz - alpha*(dEy - ndotdE.*ny) ;
fluxEz = -nx.*dHy + ny.*dHx - alpha*(dEz - ndotdE.*nz);

447, -9 : Software statement
x(1) = (alpha-beta)/(alphatbeta+2);
should be
x(1) = -(alpha-beta)/(alphatbeta+2);

420, -2 : Should be
ST = MDT7 Ss = MDsa St = MDt

449, -1 : Pézi+2j+2’0)(b) should be Pé2i+2j+2’0)(c)
450, 2 : Second expression should be

1
t5 g
11

o b=2

459 : CorrectBCTable.m fails if an element has two faces on the boundary. An improved version
but with a different calling sequence is

function BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,BCcode)

% function BCType = CorrectBCTable(EToV,BCType,fd,BCcode);
% Purpose: Setup BCType for boundary conditions in 2D

A

% EToV : Element-To-Vertice table

% VX, VY : (x,y)-coordinates of mesh vertices
pA BCType : Table with types of faces for BC’s
% fd : handle to distance function

yA BCcode : Integer for specific boundary type
A

% By Allan P. Engsig-Karup
Globals2D;

VNUM = [1 2;2 3;3 1]; % face orientations

pxc = 0.5%(VX(EToV)+VX(EToV(:,[2 3 11)));

pyc = 0.5%(VY(EToV)+VY(EToV(:,[2 3 11)));

dc = abs(fd([pxc(:) pyc(:)]1)); % distances to boundaries from face centers
tol = le-4; % tolerance

idx = find(dc<tol);

BCType(idx) = BCcode;

return

464, +11 : Should be ”interior values, u~ = u(vmapM).”

464, +13 : Should be ”exterior values, u™ = u(vmapP).”

464, +14 : vmapB is a one-vector but the size is problem dependent.
467, +12 : Software line

[TRI,xout,yout,uout,interp] PlotField2D(2*N, x, y, vort);

should be

[TRI,xout,yout,uout,interp] = PlotField2D(2*N, x, y, vort);
467, -3 : Software line

PlotContour2D(TRI, xout, yout, vortout, linspace(-6, 6, 12));

should be

PlotContour2D(TRI, xout, yout, vort, linspace(-6, 6, 12));

481, ref 134 : "applications”

