

Nodal Discontinuous Galerkin Methods:

Algorithms, Analysis, and Applications

– LIST OF CORRECTIONS AND CLARIFICATIONS

September 6, 2010

Springer

## List of corrections and clarifications

Notation: First number is page number, second number line number with a "+" counting from the top and a "-" counting from the bottom. Line counts include equations.

Thanks to C. Bahls, A. Panizza, X. Zhu, C. Rohde, S. Field, J. Thorenson, J. Li, A.Engsig-Karup, A. Jameson, A. Kloeckner, M. Rosing for pointing out these misprints.

12, 5: "noncoersive" should be "noncoercive"

**45**, **-12** Should be dr and not dx in integral, i.e.,

$$\int_{-1}^{1} uv \, dr$$

**50**, Eq.(3.3) :  $r_i$  should be  $\xi_i$ .

**50**, **-5**: Last expression should be

$$\mathcal{V}_{ij} = \tilde{P}_{j-1}(r_i).$$

**56, 1**: To avoid confusion,  $\ell_i(r)$ , should be  $\ell(r)$ .

**58**, **-1**: Matrix FToV should be

$$FToV = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

**59**, +3: This also impacts  $(FToV)(FToV)^T$  which becomes

$$(\text{FToV})(\text{FToV})^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

This also implies that [59, +5] should read rows 1 and 8 indicate.

**67, 11**: MeshGen1D should be called with argument (0.0, 2 \* pi, 10).

**67, -2**:  $x \in [-2, 2]$  should be  $x \in [-1, 1]$ .

**68,** +2: E(-2,0) = E(2,0) = 0 should be E(-1,t) = E(1,t) = 0.

68, +15: Should be

$$=\frac{1}{J^k\mu^k}\dots$$

**70,-7**: Software line

[Nv, VX, K, EToV] = MeshGen1D(-2.0, 2.0, 80);

should be

[Nv, VX, K, EToV] = MeshGen1D(-1.0, 1.0, 80);

71, -20: Wrong exact solution. Should be

$$H^{(m)}(x,t) = n^{(m)} \left[ A^{(m)} \exp(i\omega n^{(m)}x) + B^{(m)} \exp(-i\omega n^{(m)}x) \right] \exp(i\omega t)$$

71, -18: Wrong exact solution. Should be

$$B^{(2)} = \exp(i2n^{(2)}\omega)A^{(2)}$$

71, -16: Wrong exact solution. Should be

$$A^{(2)} = \exp(-i\omega(n^{(1)} + n^{(2)}))$$

**79**, +13: The expression for  $|\tilde{v}_n|$  is correct but it should be clarified by write it as. "We recover

$$|\tilde{v}_n| \le \left(\frac{1}{n(n+1)}\right)^p \left| \int (\mathcal{L}v)^p \tilde{P}_n(r) dr \right|,$$

by integration by parts 2p times. Recalling (4.2) and combining this with ..."

**85**, +17 :  $a(u_x, v)_{\Omega}$  should be  $a(u_x, \phi)_{\Omega}$ 

**87**, +3:  $\|\varepsilon_N\|_{\Omega,h}^2$  should be  $\|\varepsilon_h\|_{\Omega,h}^2$ 

**89**, **+16**: Should be

$$\left[ -\frac{i\omega h}{2}\mathcal{M} + a\mathcal{S} \dots \right]$$

109, last equation : Should be  $\nu \to 0$  in lim.

118, Sec 5.2 : Clarification: In this section,  $f_h^k$  has the meaning of the interpolation of the projection of f, i.e.,

$$f_h^k(x,t) = \sum_{i=1}^{N_p} (\mathcal{P}_N f)(x_i, t) \ell_i^k(x).$$

This is equivalent to assuming that all integrals are exact.

**119**, **-8**: "from" should be "form".

122, +5 : Eq.(5.8) should be

$$\frac{1}{2}\frac{d}{dt}\|u_h\|_{\Omega,h}^2 \le 0.$$

123, -8: Last expression should be

$$f_h^k(x,t) = \sum_{i=1}^{N_p} f_h^k(x_i^k, t) \ell_i^k(x),$$

**124**, +3:  $u_h^k(x_i, t)$  should be  $u_h^k(x_i^k, t)$ .

**130**, +10 : Eq.(5.16), lower limit should be  $\eta_c < \eta \le 1$ .

134, -3: The statement is only true for  $\hat{\mathbf{n}} = 1$ . The general statement should be

$$\hat{\mathbf{n}} \cdot (au)^* = \frac{2a^+a^-}{a^+ + a^-} \left( \{ \{u\} \} + \frac{1}{2} \llbracket u \rrbracket \right)$$

**151**, **-9**: Should be

162,-1 to 163, +2: Statements

drho (mapI) = ...
drhou(mapI) = ...
dEner(mapI) = ...

should be

drhof (mapI) = ...
drhouf(mapI) = ...
dEnerf(mapI) = ...

**163**, **+6-8**: Statements

drho (map0) = ...
drhou(map0) = ...
dEner(map0) = ...

should be

drhof (map0) = ...
drhouf(map0) = ...
dEnerf(map0) = ...

165, +7-8: The purpose of this piece of code is to describe initial conditions at the cell-centers as is required for discontinuous initial conditions. The correct statement should be

If the initial conditions are smooth, cx, can be replaced by x in the codes in lines 9-11.

175, +20ff: Should be "Thus, w(r) is an N-th-order polynomial approximation to a function which measures the difference between the equidistant points and the Legendre-Gauss-Lobatto points; ..."

179, -2 : Sixth number should be "0.9808" - not "0.9800".

182, +5: Middle expression should be

$$\dots \mathcal{V}^T \boldsymbol{l}(\boldsymbol{r}) = \boldsymbol{\psi}(\boldsymbol{r}) \dots$$

**185, -2** : Should be

$$S_r = \mathcal{M}\mathcal{D}_r, \ S_s = \mathcal{M}\mathcal{D}_s.$$

194, +9: "each of length  $3KN_{f_p}$ .

**195**, +1 : Remove one "find".

206, -4 : Should be "consider a diatomic gas with ..."

208, 2 : Stabilization term (last term) should be

$$\ldots + \frac{\lambda}{2}(\mathbf{q}_h^- - \mathbf{q}_h^+).$$

**209**, -8 : Should be

$$\cdots \frac{x-x_0-t}{2\pi}$$

**245**, +9: "discretize" instead of "discretizing"

**245**, +19: "types" instead of "type"

246, +9: Should be "As in Section 5.3, we have ..."

259, -3: Exact solution should be

$$u(x,t) = \cos(-\pi^3 t + \pi x).$$

**268**, **+4** : Should be

$$\ldots = hq_h^k$$
.

**268**, +8 : Equation (7.4)

$$\ldots + \tau \frac{u_h^{k+1} - 2u_h^k + u_h^{k-1}}{h} = \ldots$$

**268, -5**: Equation (7.5) – same as above in (7.4).

**271**, +3: In caption – n should be N.

**282**, -7/-8 : Should be  $\partial \Omega^D$  and  $\partial \Omega^N$  to reflect the boundaries.

**282, -2**:  $p^{O}$  should be  $u^{D}$ .

**287**, **-3**: Should be

$$\ldots = (f, \phi)_{\Omega}, \ldots$$

**287**, **13**: Statement 48 in file should be  $A\setminus(M^*(-f(:)) + ubc)$ ;

**290, -3** Should be ".. with  $\pi = \nabla u$  we "

**294**, **-8ff**: Until p295, line 4,  $u_h$  should be exchanged with  $\mathcal{P}_N u$  to avoid the confusion that  $u_h$  is used for a numerical solution elsewhere. In these few lines,  $u_h$  is the projection of the solution and these results are basic approximation results.

294, -7: Last term should be

$$||h^{-1/2}(u-u_h)||_{\Gamma_h}^2$$

**295**, +14 : Remove one  $|u|_{\Omega,\sigma,h}$ .

**298, -10**: rhs should be f, i.e., >> f = f(P).

312, -12: "compare" instead of "compared"

353, -19: Remove "which" to have "spectrum and appears to be isolated."

373, +6: "complex situations."

**376**, **-14**: Software statement, line 16. Should be

**399**, **-1**: "information"

**413**, **-7**: Should be

$$\dots t^{3,2} = \left(-\sqrt{\frac{1}{12}}, -\frac{1}{6}, \sqrt{\frac{8}{9}}\right),$$

**434, -4ff**: The 6 equations are written with a wrong sign on the boundary flux terms. This is due to a definition of  $[q] = q^+ - q^-$  which is inconsistent with the bottom of p.433. There should be a '-' in front of all boundary terms as a consequence of this.

435-436: This same inconsistency is reflected in the code which should be

```
% form field differences at faces
   dHx(:) = Hx(vmapM)-Hx(vmapP); dEx(:) = Ex(vmapM)-Ex(vmapP);
   dHy(:) = Hy(vmapM)-Hy(vmapP); dEy(:) = Ey(vmapM)-Ey(vmapP);
   dHz(:) = Hz(vmapM)-Hz(vmapP); dEz(:) = Ez(vmapM)-Ez(vmapP);
   and
   fluxHx = ny.*dEz - nz.*dEy - alpha*(dHx - ndotdH.*nx);
   fluxHy = nz.*dEx - nx.*dEz - alpha*(dHy - ndotdH.*ny);
   fluxHz = nx.*dEy - ny.*dEx - alpha*(dHz - ndotdH.*nz);
   fluxEx = -ny.*dHz + nz.*dHy - alpha*(dEx - ndotdE.*nx);
   fluxEy = -nz.*dHx + nx.*dHz - alpha*(dEy - ndotdE.*ny);
   fluxEz = -nx.*dHy + ny.*dHx - alpha*(dEz - ndotdE.*nz);
447, -9 : Software statement
   x(1) = (alpha-beta)/(alpha+beta+2);
   should be
   x(1) = -(alpha-beta)/(alpha+beta+2);
420, -2: Should be
```

$$S_r = \mathcal{M}\mathcal{D}_r, \ S_s = \mathcal{M}\mathcal{D}_s, \ S_t = \mathcal{M}\mathcal{D}_t.$$

**449, -1** :  $P_k^{(2i+2j+2,0)}(b)$  should be  $P_k^{(2i+2j+2,0)}(c)$ 

450, 2 : Second expression should be

$$\dots, b = 2\frac{1+s}{1-t} - 1, \dots$$

**459**: CorrectBCTable.m fails if an element has two faces on the boundary. An improved version but with a different calling sequence is

```
function BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,BCcode)
          % function BCType = CorrectBCTable(EToV,BCType,fd,BCcode);
          % Purpose: Setup BCType for boundary conditions in 2D
          %
                EToV : Element-To-Vertice table
          %
               VX, VY: (x,y)-coordinates of mesh vertices
          %
                BCType : Table with types of faces for BC's
          %
                      : handle to distance function
          %
                BCcode : Integer for specific boundary type
          % By Allan P. Engsig-Karup
          Globals2D;
          VNUM = [1 2;2 3;3 1]; % face orientations
          pxc = 0.5*(VX(EToV)+VX(EToV(:,[2 3 1])));
          pyc = 0.5*(VY(EToV)+VY(EToV(:,[2 3 1])));
          dc = abs(fd([pxc(:) pyc(:)])); % distances to boundaries from face centers
          tol = 1e-4; % tolerance
          idx = find(dc<tol);</pre>
          BCType(idx) = BCcode;
          return
464, +11 : Should be "interior values, u^- = u(\text{vmapM})."
464, +13 : Should be "exterior values, u^+ = u(\text{vmapP})."
464, +14: vmapB is a one-vector but the size is problem dependent.
467, +12 : Software line
   [TRI,xout,yout,uout,interp] PlotField2D(2*N, x, y, vort);
   should be
   [TRI,xout,yout,uout,interp] = PlotField2D(2*N, x, y, vort);
467, -3 : Software line
   PlotContour2D(TRI, xout, yout, vortout, linspace(-6, 6, 12));
   should be
   PlotContour2D(TRI, xout, yout, vort, linspace(-6, 6, 12));
481, ref 134: "applications"
```