
Machine Learning (CS-433) Project 2 Report

Camille Ohlmann, Michaël Spierer, Corentin Junod

Fall 2020

Abstract – Flow cytometry is a tool widely used in
biology to measure a number of parameters in a cell
population. The cells are suspended in a fluid and
their DNA is stained by a fluorescent dye. They are
aligned in a flow by hydrodynamic focusing, then
subsequently cross a laser beam, ideally one at a
time. Their optical properties are then collected,
and used to infer various characteristics. This pa-
per uses Machine Learning tools applied to a flow
cytometry data-set, measured on glacier samples by
the Stream Biofilm and Ecosystem research Labo-
ratory. It aims to separate cells from background
and noise, so as to count them in each sample as
accurately and reproducible as possible.

1 Introduction

Climate change leads to the melting of glaciers and ice
sheets, also affecting downstream aquatic ecosystem such
as glacier-fed streams. At SBER (Stream Biofilm and
Ecosystem research Laboratory), a team of scientists col-
lects glacier-fed stream water and sediment samples from
across the world to analyse their microbiomes before they
are lost. To this end, this laboratory is interested in count-
ing the number of cells in these samples by flow cytometry.

However, the low number of bacterial cells and the high
amount of background noise affect counting efficiency as it
involves differentiating cell events from noise events. This is
typically done manually by the individual scientists, which
can be somewhat tedious and prone to subjectivity and
misclassification, and a Machine Learning based approach
seems appropriate. As there are no labeled training data,
we used Unsupervised Learning algorithms to build mod-
els that best address this issue. To exploit these models
to their fullest and increase their accuracy, we also made
several adjustments to the data and model parameters.

This paper aims at illustrating the steps and choices that
were made to achieve our results. We will first explain how
the cytometry data is collected and how these results are
to be interpreted intuitively. Then we will discuss how we
handled the different data files we were provided with, and
explain how we processed the data before we used it. Then
we will go into the details of the different algorithms and
methods we used, while simultaneously giving the results
obtained for each of them.

2 Cytometry data interpretation

As shown in Figure 1, flow cytometry works as follows:
cell DNA is stained, cells are brought into suspension in a
fluid, and then they are separated using flow techniques to
go through a thin tube, ideally one by one. The dye binding
to the DNA of each cell is then excited by the laser light and,

using optical filters, several parameters related to scattering
and fluorescence properties are measured for each cell. This
is done very rapidely (several hundreds of cells per second).

Figure 1: Flow Cytometry

This generates 5 different outputs, each divided in 2 fea-
tures that represent the height and the area of the optical re-
sponse measured, so 10 features in total. To be able to count
the cells in a sample, the challenge is to distinguish them
from all the noise and background. Currently the manual
process to cluster the data consists in plotting 2 representa-
tive features (often B675-H and B530-H) and then drawing
a polygon by hand around the points assumed to be cells,
as shown in Figure 2. The number of cells is then approxi-
mated to be the number of points within the polygon.

Figure 2: Hand drawn separation polygons

We see that this method includes several limitations: it
combines only 2 features to make the separation, it assumes
there are no background events near the cell events (within
the polygon), and that no cell events are situated far from
the other cell events (outside of the polygon). Further, the
simple geometry of the drawn polygon sets constraints as to
which points are considered as cells.

Mr Hannes Peter, a scientific at SBER, has thus turned to
us to find, under his supervision, Machine Learning models
and tools which are not subject to these limitations, to build
accurate and easily exploitable clustering results.

3 Data processing

3.1 Data format

To import the FCS format files (specific format used to
encode cytometry data) in our scripts, we used the FlowCal
library. Those files contain, for each supposed cell in the

1

https://www.epfl.ch/labs/sber/
https://pypi.org/project/FlowCal/


fluid, the three measured optic values of the laser beam, the
forward-scatter light (FSC) and the side-scatter light (SSC).

As explained before each output is divided in a height
and an area feature. Since they are highly correlated and
their difference are not significant for our purpose, we chose
to consider only the five height features (lower dimensions).

3.2 Data standardization and outlier re-
moval

To process the data, we first import the file as mentioned
above. The first step is to standardize the data. As the val-
ues increase exponentially, we first take their natural loga-
rithm (all data plots in this paper are in logarithmic scale).
Since the log function is undefined for negative values, they
are removed from the data-set.

Then we standardize the data, by subtracting the mean to
each file entry and then dividing by the standard deviation.

Figure 3: Example of outlier classification

The last step consists in removing the outliers, i.e. points
with an abnormally high standard deviation. After our ex-
pert’s validation, removing points that have a greater than
4 Euclidean distance to the mean leads to desired results.

4 Models

To cluster our data we implemented several algorithms
leading to different models. For the sake of comparability,
all result examples presented in this section are found by
applying our algorithms to the same file (’GL10 UP 2B.fcs’)
considering the same channels (’FSC-H’, ’SSC-H’, ’B530-H’,
’B572-H’, ’B675-H’). For the sake of clarity the results are
plotted only on two features: ’B675-H’ and ’B530-H’.

4.1 K-means

A well known clustering algorithm is K-means. It takes as
input the number of clusters it should divide the points in,
and then randomly chooses that number of points to be the
starting centroids. The algorithm progresses iteratively: at
each step every point is assigned to the same cluster as its
closest centroid, then every centroid’s position is updated
to be in the center of its cluster.

This algorithm may not find the most optimal solution
where all points are at minimum distance from their cluster
centroid, but if the metric used for calculating distances is
the Euclidean distance, the convergence is guaranteed.

4.1.1 Parameters

The only k-mean parameter is the number of final clus-
ters. As we are interested in splitting the data between the

noise and the cells, and as this algorithm is not able to place
the eventual outliers in a separated cluster, we remove the
outliers beforehand, as explained in the previous section,
and we fix this parameter to 2.

4.1.2 Results

This algorithm performed fairly well and gave us a good
starting point.

Figure 4: K-means clustering
example, centroids are marked
with blue crosses

The problem we run into
is the lack of parameters.
K-mean rigidity does not
allow a wide range of differ-
ent results. Also, data ge-
ometry is such that the dis-
tances to centroids do not
well account for the noise
and cell signals distribution.

4.2 Density

We also implemented a model based on the density of the
data-set using DBSCAN (density-based spatial clustering
of applications with noise). The algorithm takes as input
a radius r and a number n which set a density threshold:
a point is over the threshold (we say ’dense’) if it has n
or more other points in a r radius around it, and under
(’sparse’) if not. The global idea of DBSCAN is that it
assigns the points that are below the threshold to a first
cluster, and then it clusterizes the dense points to as many
clusters as there are disjoint groups of points.

Figure 5: Points

The way it does that is by identifying:

• Core points: dense as well as all
neighbors (red points here)

• Edge points: sparse but have at
least one core point neighbor (B, C)

• Outlier points: sparse and have
no core point neighbor (N)

So outlier points will form one cluster, and every group
of neighbor core and edge points form new clusters.

What we want to do to achieve our goal is to separate
our cytometry data into three clusters: the sparse noise (an
outlier cluster), the very dense background noise (a dense
cluster), and the cells (another dense cluster).

4.2.1 Parameters

We should chose n and r so that the density threshold
is low enough for cells not to be clustered as outliers, but
high enough for the two dense clusters to be distinct (points
between both clusters have to be classified as edges, not core
points).

(a) n = 225 (b) n = 187

Figure 6: Tuning density parameter n with r = 0 .7

2



We see in Figure 10 a an example of data where, with a
radius r = 0 .7 , n has to be under 225 as otherwise density
threshold is too high and cells are classified as outliers.

In Figure 10 b we see that for the same data, n has to
be over 187 as otherwise density threshold is too low and
there are too many points classified as dense between the
big noise cluster and the cell cluster, therefore both clusters
are not distinguished from each other and are classified as
one.

4.2.2 Results

Tuned manually, this model gives interesting results.

(a) n = 224 (b) n = 188

Figure 7: Tuning density parameter n with r = 0 .7

In Figure 7 we plotted the results for both extreme values
of n (with r still to 0 .7 ) for which our model finds three
clusters. So now n can be chosen anywhere between 188
and 224 depending on the desired size of the cell cluster.
We chose r to be 0 .7 because after a lot of tests it seemed
to be the value that would give us the largest window of n
leading to three clusters.

Here the most interesting plot is this in Figure 7 b as
it shows the clusters that contain the highest number of
cell points (lowest density threshold) we could find with
DBSCAN.

When asked, the expert in this domain said that even in
our plots containing the highest number of cell points like
Figure 7 b, as though the clusters seemed of the right shape,
there were too few cells and too many outliers compared to
reality. Since, as explained in 4.2.1, the range of threshold
values for which the model outputs three clusters is very
narrow, we were not able to tune this algorithm to greatly
increase the size of the cell cluster.

4.3 Gaussian Mixture

Gaussian Mixture is a more advanced technique, in which
each cluster is assumed to follow a different multidimen-
sional Gaussian distribution. The clustering of a point is
done by comparing the probabilities of it being generated
by each Gaussian. As the Gaussian distribution is highest
around its mean, this model is sensible to distances to cen-
ters and can therefore have similar results as K-means. In
fact it can be summarize as a flavour of K-means where the
clusters do not have to be circular (or hyper-spherical in
higher dimensions).

We implemented this model using Scikit-Learn, more pre-
cisely the sklearn.mixture.GaussianMixture function.

4.3.1 Parameters

Scikit-Learn’s GaussianMixture takes two inputs: the
number Gaussian distributions (simply the number of clus-
ters) and the covariance type. The covariance type is an
indicator of the degree of freedom you want your cluster

shapes to have. It can take the three different values illus-
trated in Figure 8: diag , spherical and full .

Figure 8: Covariance type ellipses

When set to diag (the default value), the distributions
are constraint to be independent over each dimension but
are free to be different. This results in an elliptic shape as
shown in the left part of Figure 8.

When set to spherical , the distributions have to be in-
dependent and identical over each dimension which results
in spherical shapes as shown in the center of Figure 8. In
this case the GMM classification will be very similar to the
K-means’ as it reduces to a distance analysis.

In our case we set the covariance type to full which is more
computationally expensive but sets no such constraints. As
our features are highly correlated, we want our distributions
to be shaped as ellipses of any orientation like on the right
in Figure 8.

4.3.2 Results

This algorithm with inputs n components = 2 and
covariance type = full gives the most promising results,
with a clear distinction between the two trails on Figure 9.

Figure 9: GMM (and final)
clustering example

Mr Hannes Peter, the
expert following this
project indeed confirmed
that these results corre-
spond to his demand.

At this point we need to
find a way to assign the
correct label to each clus-
ter. By comparing a lot of
samples and files we notice
that the cell cluster is gen-
erally placed higher on the x and lower on the y axis. So we
tried computing the clusters centroids and simply compar-
ing their x − y difference, and assigning the ”cell” label to
the highest centroid. This works as desired for all our train
and test files.

5 Combining models

GMM works well for our problem and the main back-
ground strand can be deleted meeting up to the expectations
of the expert following the project. Once this inconvenient
noise cluster is taken out of the picture, we notice, with
the Mr Peter’s feedback, that in reality there are usually
less cells than what we have left which means some of the
remaining points are still due to noise.

At this point and for the last step, we then use our density
algorithm (presented in 4.2) on the product of GMM to
extract the cells among the remaining noise.

Parameters

The principal parameter here is the proportion of points
to consider as cells, call this the data ratio. Mr. Peter

3

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html


offered to use some other independent method to count the
cells in some of our samples for us to check our results,
unfortunately due to the time constraints we were not able
to obtain exploitable values. The idea would have been
to compare our number of points with the number of cells
in this independent counts, see if the ratio is similar over
different files and find how to obtain it for a new file.

Since we can’t do this, we will assume the data ratio as a
given input. Now we want to run a density algorithm that
will split our data according to this data ratio. Since density
algorithm is computationally expensive and takes two input
parameters (radius r and a number n), this is quite tricky
and we proceed the following way: we fix a value for radius r
and, by bisection, find number n for which density reaches
data ratio ± trust interval . If no such value is found, we
increment r and start again.

Results

(a) Removing background trail (b) Removing sparse noise

Figure 10: Removing noise with data ratio = 0 .7 and
trust interval = 0 .1

We reach our final results in this steps! By simply tuning
the data ratio we can (and we did) reach the final product
corresponding to our problem specifications.

6 Detecting invalid sample

All the results presented here were shown for the
’GL10 UP 2B.fcs’ file, which is quite representative of the
general sample quality.

However, some files looked quite different and, even after
going through processing and tuning, our results didn’t seem
to correspond to cells. When asked, our expert said that
these files were simply invalid due to experimental weakness
or errors unlinked to our model’s performance, and were to
be discarded.

In order to detect these samples for the laboratory to
know which experiments would need to be run again, we
have developed the following method that we apply on the
GMM results (before the density selection). We first com-
pute the distance and the slope between the cluster cen-
troids then we detect two possible anomalies with the fol-
lowing code:

if distance < 0.55:

print("!! Data is suspicious, the clusters are

very close to each other, or not enough cells")

elif slope > 0.8:

print("!! Data is suspicious, the algorithm

detected only one cluster")

The parameters were found by observing a few files, and
this method was then tested on all provided files and de-
tected the exact files it was expected to.

7 Conclusion

Final Result

To summarize the steps we do on a file to obtain our
best results: we first discard the area features, then stan-
dardize the data, remove outliers, apply GMM in full mode,
check for invalid samples and finally apply density to dis-
card remaining noise. Our final result for the example file
presented in this paper is shown in Figure 11.

Figure 11: Final result, cells are in red

This result is very satisfying as, according to the expert,
it indeed corresponds to the requirements and increases the
counting accuracy. As a reminder, our product uses much
more information (e.g. scatter and fluorescence measured in
other channels) than what is currently done in bi-featured
graphs. So, this makes much better use of the available data
and since this is independent of the scientist, (particularly
in a project where many scientists work together over many
years), an objective algorithm will produce more replicable
results.

Final Program

As we worked for the SBER Laboratory at EPFL, one
of our main tasks was to provide a software implementing
the algorithms described above. All our work was done in
Python, and we created a program capable of applying any
model to all files in a given directory.

This software can output a wide range of graphics, useful
to check if the algorithm works correctly or if a sample is
unusable (then flow cytometry has to be run again).

Future work

To push the fine tuning even further, we could, as ex-
plained in Section 5, find the data ratio by using Mr. Peter’s
independent count.

Something else that could be interesting to do would be
to use Scikit-Learn’s predict proba method that returns a
matrix of size [n samples, n clusters], giving a mesure of the
probability that any point belongs to the given cluster. We
could use it to give certainty estimations or to weight each
cell by it’s probability to be a cell in the final cell count.

References

[1] Fundamentals of Flow Cytometry.
https://www.aatbio.com/resources/assaywise/2019-8-
1/fundamentals-of-flow-cytometry

[2] A guide to gating in flow cytometry.
https://www.bio-rad-antibodies.com/blog/a-guide-to-
gating-in-flow-cytometry.html

4

https://github.com/CS-433/cs-433-project-2-camico
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html

	Introduction
	Cytometry data interpretation
	Data processing
	Data format
	Data standardization and outlier removal

	Models
	K-means
	Parameters
	Results

	Density
	Parameters
	Results

	Gaussian Mixture
	Parameters
	Results


	Combining models
	Detecting invalid sample
	Conclusion

