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Abstract—Precise lung sounds classification is still
an open issue: traditional auscultation methods are
limited due to biased human interpretation. This paper
introduce two CNN models, which differ in the way
audio crops are combined and fed to the network.
They recognize specific audio patterns in the STFT
spectrograms and classify healthy and unhealthy pe-
diatric patients, suffering from different pulmonary
diseases. Two different datasets are investigated and
compared rigorously; however, the attempts to find a
general model that performed well on both sets were not
successful. After a weighted mean aggregation method,
both models achieved an accuracy of 94%.

I. INTRODUCTION

Pulmonary disease is a major global health threat:

pneumonia alone causes up to 1 million childhood
deaths per year[7], and COVID-19 has further re-
vealed the destructive potential of emerging respira-
tory infections. Lung sound auscultation is a funda-
mental clinical exam in the diagnosis of respiratory
disease but its interpretations suffers from significant
subjectivity and inter-user bias[1]. To more objec-
tively discriminate diagnostic patterns in lung sounds,
the iGH at EPFL has developed a convolutional neural
network (CNN) to identify COVID-19 with 90%
accuracy[8]. A similar approach could be extended
to other lung pathologies.
The following work aims to analyze such approach:
we present several methods to characterize the
dataset, assemble several recordings from a single
patient, efficiently train a CNN and derive a final
diagnosis.

II. DATA AND PRE-PROCESSING

The dataset is composed of lung sound recordings
acquired at 22050 Hz, using the Littmann 3200 dig-
ital stethoscope at 8 different thoracic sites (Fig. 1)
spanning from few seconds to more than a minute.
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Figure 1: Location of the different auscultation site on a patient

A total of 318 patients are considered from a
pediatric outpatient population aged 0 to 15 years

and recruited at the outpatient departments of Geneva
University Hosptial, Switzerland (GVA, n=78) and
Porto Alegre (POA, n=240) in Brazil. The recruit-
ment period for both was pre-COVID from 3.10.2018
to 28.01.2019 for POA and from 06.01.2016 to
02.03.2018 for GVA. The population is divided in
controls (healthy, n=103) and cases (pathological,
n=215) (table I), and cases have four subcategories:
bacterial pneumonia, viral pneumonia, bronchiolitis
and asthma (n=49, 9, 137 and 17 respectively).

Nb.patients | Total recording
GVA Cases 55 1h40min
GVA Controls 23 1h35min
POA Cases 160 15h10min
POA Controls 80 3h50min

Table I: Overview of the dataset, divided in healthy and unhealthy patients
A. Data augmentation

To improve the performance of the CNN, several
methods for data augmentation have been tested:

e Crop audios into smaller segments of 5 seconds
each, With a 50% overlap;

 Introduce random noise;

o Change the loudness and/or the pitch;

 Shift spectrograms along the time axis.

e Sample-wise normalization

o Feature-wise normalization

B. Audio transformation

Three traditional approaches of sound transforma-
tion were compared [9].
e Short-Term Fourier Transform (STFT) power
spectrum, rescaled in decibels;
e Mel-spectrogram derived from the Mel filter
banks;
o Mel-Frequency Cepestral Coefficients (MFCC),
obtained after a linear cosine transformation.
The Mel scale reflects human like audio percep-
tion. It offers a higher resolution in lower frequency
compared to normal spectrograms[4].

C. Generalization

Because POA and GVA audios were acquired in
different conditions, changes in background noise are
noticeable (Fig. 2). It also seems that POA audios
were previously low-pass filtered. These factors will



influence the generalisation of our model. The addi-
tion of white noise or cropping both sets to lower fre-
quency range did not improve inter set performance,
thus it will not be included in the discussion of this
paper.

To improve inter-data set performance and to un-
derstand the importance of each position for determin-
ing the disease the following techniques were used:

o Set high dropout rate while training to improve
generalization

e Train the model on one data set and transfer learn
on another. The initial model was firstly trained
10 times, then the best model was selected for
transfer learning on a different data set.
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Figure 2: Spectrogram examples (notice the similarities between POA
cases and GVA Controls)

D. Training, Validation and Testing

From the 78 GVA patients, 9 were used for val-
idation, 69 for training and no testing (insufficient
data). From the 240 POA patients, 8 were used for
validation, 90 for batch 1 and 66 for batch 2 (balanced
batches), the rest 84 were left out in batch 3 (only
disease cases) and were only used for testing but not
training.

III. METHODS
A. Model by Position (MPO)

Pos 1 Pos 2 Pos 8
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Figure 3: Model by position diagram. 1. Crop audio data with overlay, 2.
map crops to spectrograms, 3. estimate the diagnosis of each spectrogram
with their corresponding model, 4. combine the 8 means, std and max of
each position prediction to estimate the final diagnosis of the patient
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Figure 4: CNN model, right: model by position, left: model by patient

To avoid filling missing positions audios with Os
we train 8 different models ( see Fig.4 and Fig.3),
one per position. We tested the following aggregation
methods to combine the probabilistic output of each
model:

o simple average of probabilities
o weight the mean with a factor of the inverse loss
for each model

B. Model by Patient (MPA)
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Figure 5: MPA. 1. Crop audio with overlay, 2.map crops to spectrogram
3. duplicate random crops in order to have the same number of crops for
each position, 4. stack all crops depth-wise by position, 5. estimate each
of the stacked crops tensors, 6. combine the estimations to get the final
patient diagnosis

The MPO does not take into consideration corre-
lations across positions due to the late fusion. The
MPA uses early fusion and combines all the spec-
trograms for individual positions depthwise in pre-
processing.Each patient would produce N number
of data samples with N being the number of crops
for the longest audio for any position. For the other
positions, all the available crops were used first, then
any random crop was sampled. If the recording for a
certain position was missing altogether the layer was
filled with Os. (see Fig. 5).

To assess the importance of each position, we
trained 8 different models each time with one position
removed and compared it to the full model



C. Pneumonia vs Bronchitis

The way the data is collected between unhealthy
and healthy patients is fundamentally different. To
check that the network is not simply detecting the
difference in the data collection, the model was tested
whether it could learn to differentiate between bron-
chiolitis and pneumonia.

This condition was tested on POA patients, with
undersampling of bronchiolitis cases. In total, 60
patients (52 for train and 8 for test) were used.

IV. RESULTS
A. Pre-processing

In Table II the effect of the various pre-processing
techniques on the GVA dataset in the MPA are
compared. The best forming model was from Mel.

TP | TN | FP | FN | Acc.

mean 47 | 23 1 7 0.89

GVA w. inv.loss mean | 50 | 23 | 0 4 | 0.94
mean 112 | 24 | 2 | 11 | 091

POA; w. inv.loss mean | 116 | 25 1 8 | 0.94

Table IV: Confusion matrix for POA and GVA , using 2 aggregation
methods (simple mean and weighted mean using the inverse of the loss
of each loss). Th best model in bold.

learned on the GVA data etc. The models GVA,
POA;{ —GVA were tested on the entire GVA set
(since we did not have test set). On the other hand
the models POA; and GVA—POA; were tested on
POAs + POA3. The predictions are aggregated over
multiple crops with simple mean.

TP | TN | FP | FN | Accuracy
GVA 551230 |0 1.00
POA; - GVA | 52 | 21 | 2 3 0.94
POA; 108 | 23 | 3 | 16 0.87
GVA — POA; (116 | 24 | 2 8 0.93

Loss Accuracy F1
Iz o I o I o
STFT 0.36 0.14 | 0.86 0.071 | 0.82 0.075
MFCC 040 0.17 |0.82 0.11 | 076 0.17
MEL 0.34 0.07 | 0.88 0.03 | 0.89 0.04
Sample Wise | 0.47 023 | 0.75 0.18 | 0.74 0.17
Feature Wise | 0.49 0.14 | 0.74 0.16 | 0.75 0.16

Table II: All of the results were calculated using the MPA on GVA dataset.
Normalization techniques were performed on STFT spectrograms. The
statistics are calculated for 5 second crops not for individual patients. Each
method was run 10 times with maximum of 200 epochs and early stopping
if the validation loss stopped improving. For each run the minimum
validation loss and corresponding value of validation accuracy and F1
score were selected. 1 and o represent mean and std respectively. The
best performing model is in bold.

B. Model by Position (MPO)

To validate the GVA model, 10-fold cross valida-
tion was used (see Table III) whereas for POA;, it
was POAy + POAj3 sets (see Table IV). The notation
of GVA and POA; in the table means that the model
was trained on these sets. From the the 10-fold cross
validation it is evident that the GVA data is roughly
homogeneous, thus due to lack of data, entirety of
GVA set (train+test) was used for testing.

loss acc f1

mean | std | mean | std | mean | std
posl | 040 | 0.04 | 0.83 | 0.04 | 0.83 | 0.04
pos2 | 0.31 | 0.07 | 0.87 | 0.05 | 0.89 | 0.04
pos3 | 0.44 | 0.08 | 0.80 | 0.08 | 0.81 | 0.09
pos4 | 0.44 | 0.08 | 0.79 | 0.06 | 0.79 | 0.06
pos5 | 0.37 | 0.09 | 0.82 | 0.05 | 0.79 | 0.05
pos6 | 0.39 | 0.06 | 0.84 | 0.05 | 0.86 | 0.06
pos7 | 0.40 | 0.04 | 0.81 | 0.05 | 0.80 | 0.06
pos8 | 0.39 | 0.06 | 0.83 | 0.05 | 0.82 | 0.04

Table III: 10-fold cross validation on GVA

C. Model by Patient (MPA)

The table V shows the confusion matrix using
MPA. The POA; —GVA means that the model was
initially trained on the POA; data set and then transfer

Table V: Prediction for individual patients. Predictions were done on best
models only (one with the lowest loss). The Best model in bold.
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Figure 6: Performance of the individual models when we removed each
position during training. For each model the statistics of the full model
were subtracted. The positive loss means the increase in loss when the
given position was removed.
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Figure 7: Grad-Cam [5] analysis of the MPA on POA. Frequencies
increase from top to bottom. The second row shows how many features
the model deemed to be similar to what it thinks control should have.
Thus, for the case sample it didn’t find to have many features similar to
control but found more features to be similar to control in control sample.
Similarly for the third row.
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Figure 8: Monte Carlo Dropout accuracies mean(x-axis) and std(y-axis)
over 20 estimations with 0.2 dropout rate. The smaller the std the more
certain is the prediction of the model. Left estimation of the POA model
for Cases , right for controls. GVA patients (Green) , POA; (blue) and
POA2 (Orange). Note, in this graph the labels are reversed. Cases are
between 0 and 0.5 and controls 0.5 and 1.



D. Pneumonia VS Bronchiolitis

The training was performed using the MPA and
MPO. The best of the 10 MPA runs (with an accuracy
of 81%, loss of 47% and F1 of 82%) has been chosen
for prediction. The predictions found in table VI are
computed on the test and training sets together, since
there was no test set.

POA-Pneu-Bronch TP | TN | FP | FN | Accuracy
Model by positions (MPO) | 19 | 26 | 4 11 0.75
Model by patient (MPA) 22122 | 8 8 0.73

Table VI: Prediction for individual patient. In this case, TP are patients
with pneumonia and TN patients with bronchiolitis. For aggregation, the
max method was used.

V. DISCUSSION

The results shown in table II were used to decide
which strategies to employ to perform the analysis.
STFT performed better in most cases (even though
MEL has slightly higher accuracy on just the MPA)
and it was chosen as the default spectrogram. Normal-
ization worsened performance and it was excluded.
Data augmentation seemed promising; however, due
to computational limitations, it was left out.
Transfer learning did not improve inter set perfor-
mance but increased the base accuracy when trans-
ferred onto POA but not vice versa.

When comparing two approaches, the MPA out-
performs the MPO on GVA set. On the other hand,
the MPO yields higher accuracies on POA. MPO also
performs better when trying to differentiate pneumo-
nia and bronchiolitis. The accuracy obtained, even if
low, suggests that the predictions are made beyond
simple differentiation of the data collection methods.

Overall, both models offer roughly the same perfor-
mance. Both have pros and cons. The MPA is simple
to use, does not require complicated post-training
aggregation methods, but suffers when patients have
missing positions and is computationally heavy.

On the other hand, MPO is flexible (new positions
can be added without retraining), lightweight (fewer
data to train a model) but needs 8 separate models to
train and requires aggregation of outcomes, which is
not always obvious, as seen in table 4.

The MPA pays most attention to position 1 fol-
lowed by 5 and 2 (see Fig.6). On the other hand, MPO
has the lowest loss for position 2 and 5 (see table III),
hinting that the both models look for similar features
in the data.

The Grad-Cam class activation visualisation (see
Fig. 7), confirms that the features for healthy patients
in POA data are contained at lower frequencies (fre-
quency in the figure increases from top to bottom) and
features for unhealthy at high frequencies. It explains
why the model is only valid within its dataset as POA
and GVA differ at high frequencies. Looking at Fig.2,
one can see that both POA cases and GVA controls

contain dense information at high frequencies, thus
the model confuses GVA controls as cases. On the
other hand, GVA cases have almost no information
at very low frequencies, this is very unusual for the
model trained on POA, and since the information
in POA controls is concentrated at low frequencies
then the model predicts them as cases but with low
certainty. The prediction and certainty of prediction
is visualised in Monte Carlo Dropout estimation in
Fig.8

VI. CONCLUSION

In summary it can be said that both proposed
models offer suitable ways of differentiating between
healthy and unhealthy patients using digital lung
auscultation audios. The final prediction accuracies
of both are above 90%. However, the GVA results
are less robust due to being tested on the data that it
was trained on, therefore may be biased. On the other
hand 93% accuracy of the model trained on POA and
tested on previously unseen 150 patients indeed seems
very promising. Relatively low but still significant
accuracy of the MPA model on the Bronchiolitis
vs Pneumonia (75%) also confirms that the model
is learning true differences in pathological sound
patterns rather than potential biases in acquisition
quality between pathological and healthy classes (for
example clinically irrelevant background noise).

One must acknowledge the limitation of the mod-
els, as both only offer very broad usage of discrim-
inating between controls and cases. However, when
teamed up with clinical insight, such broad distinc-
tions may be sufficient to guide objective clinical
decisions. The failure to generalize a single model
for both data sets suggests that the models will only
perform well if the data collection is systematic and
there are no drastic differences present as there were
between GVA and POA.

Transfer learning was a limited success achieving
higher accuracy when performed on POA but not
vice versa ( see Fig. VIII in appendix). Therefore,
further use of the models trained in this work can be
performed such as transfer learning to predict healthy
vs COVID patients.

The improvements for the future endeavors can
be the following: deeper understanding of the data
and data collection methods between locations. Better
post-training aggregation methods for the MPO such
as feeding the outcomes of 8 models into small NN,
or SVM. Better pre-training combination methods of
different crops for the MPA, such as avoiding filling
the layers with Os but replacing with the mean of the
entire data set for that position.
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APPENDIX

TP | TN | FP | FN | Accuracy
GVA 55 1231010 1.0000
POA; - GVA | 52 | 21 | 2 3 0.9359
POA; - GVA | 39 | 22 | 1 | 16 07821
POA; 108 | 23 | 3 | 16 | 0.8733
GVA — POA; | 116 | 24 | 2 8 0.9333
POA2 117 1 21 | 29| 7 0.7931
GVA — POA, | 114 | 27 | 23 | 10 | 0.8103

Table VII: Similar to table V but with the added model trained on POAs5.

Loss Accuracy F1
M H 4 H o
GVA 031 0.09 | 0.88 0.05| 0.86 0.06
POA; —GVA | 0.36 0.02 | 0.81 0.03 | 0.83 0.02
POA; —GVA | 042 0.05 | 0.80 0.02 | 0.79 0.03
POA; 0.22 0.10 | 0.93 0.05 | 0.94 0.06
GVA—POA; | 026 0.04 | 0.89 0.02 | 0.86 0.01
POA; 0.33 0.10 | 0.87 0.06 | 0.88 0.08
GVA—POA2 | 030 0.04 | 0.85 0.05| 0.85 0.05

Table VIII: The validation accuracies during training. The first 2 rows
are the models that were simply trained on the data outlined. The
GVA—POA| means that the model was initially trained on the GVA
data set and then transfer learned on the POA data set batch 1 etc. Each
model was ran 10 times. The statistic are calculated for 5 second crops not
for individual patients. The statistics are calculated only on corresponding

validation sets(no test).

GVA

POA

loss

accuracy

f1

loss

accuracy

fl

mean

std

mean

| std

mean |

std

mean [ std

mean [ std

mean [ std

position 1 | 0.3780

0.0203

0.8628

0.0051

0.8641

0.0057

0.2764 0.0956

0.8866 0.1049

0.8749 0.1002

position 2 | 0.4599

0.0298

0.8758

0.0045

0.8794

0.0078

0.2879 0.0822

0.9166 0.0473

0.9166 0.0473

position 3 | 0.4741

0.0394

0.8095

0.0585

0.8058

0.0639

0.2226 0.0138

1 0

1 0

position 4 | 0.4997

0.1369

0.8223

0.0841

0.8254

0.0817

0.2980 0.0209

0.9456  0.0088

0.9479  0.0085

position 5 | 0.4380

0.0286

0.8405

0.0241

0.8404

0.0241

0.4887 0.0910

0.7862 0.1028

0.7842  0.1002

position 6 | 0.4598

0.0262

0.8049

0.0494

0.8142

0.0622

0.3701 0.0326

0.8576  0.0419

0.8576  0.0419

position 7 | 0.3122

0.0981

0.8701

0.0682

0.8695

0.0679

0.5784 0.0367

0.6527 0.0383

0.6527 0.0383

position 8 | 0.2928

0.1415

0.8771

0.1112

0.8765

0.1138

0.7084  0.0877

0.5902 0.0512

0.5902 0.0512

Table IX: Each model was ran 5 times. The statistic are calculated for 5
second crops not for individual patients. The statistics are calculated only
on corresponding test sets (no validation).




