
Learned cross-domain descriptors (LCD) for drone
navigation

Tanguy Rocher, Sacha Coppey, Florine Réau
Department of Computer Science, EPF Lausanne, Switzerland

Supervised by Iordan Doytchinov, Geodetic Engineering Laboratory

Abstract—The aim of this project was to try and reproduce
the work from a computer vision paper that present a learned
cross-domain descriptor for 2D-3D matching[1] and apply it
to both generated synthetic images and point clouds combine
with drone’s pictures, so it can learn information about its
environment. Our code is available at https://github.com/CS-
433/cs-433-project-2-drop table

I. INTRODUCTION

A drone is an aircraft engine without a human pilot
on board. The flight may operate with various degrees of
autonomy: either under remote control by a human operator
or autonomously by on-board computers[2] referred to as
an autopilot. Because of various constraints, it often cannot
transport high precision camera. An idea would be to uses a
good quality 2D camera and a reasonable quality 3D camera
and merge their data.

To achieve this goal, we try to use the work from a computer
vision paper that does 2D-3D matching[1]. Finding specific
elements from given images or point clouds, which we call
descriptors or features, and being able to match them between
two images or point clouds which have some common points
is a well known task. One key point when finding features
is that we want them to be robust to a lot of factors like
noise, luminosity or point of view. There are a lot of two
dimensions to two dimensions (2D-2D) or three dimensions to
three dimensions (3D-3D) features matching neural networks
architectures. The paper we use describes an architecture that
creates descriptors that are the same for both two dimensions
and three dimensions matching (2D-3D). With those features,
we can switch from one space to another and use both images
and point clouds at the same time in many great applications.

II. MODEL AND METHOD

A. Hardware used

For medium computation we use a Nvidia Geforce GTX
1080 GPU. However, for heavy computation, we have access
to EPFL’s Izar Cluster that provides us nodes with Nvidia
V100 GPUs, which we use for all the networks training.

B. Pre-processing

We use two datasets, each of them containing synthetic
images, point clouds and real images taken by drones to
correspond to synthetic images. The first dataset is picturing

urbanized places since it was taken at EPFL while the other
one taken at ”La Comballaz” is axed on landscapes and
mountains.

The synthetic images are 480 × 720 PNG RGB images.
The real images have a bigger resolution, so when we want
to compare them with the synthetic ones, we need to resize
them. For each synthetic image, the corresponding point cloud
contains the coordinate of each pixel of the image in an
absolute coordinate system. This permits us to have a perfect
correspondence between images and point cloud as a depth
map would do.

The LCD Neural network is not taking full images or point
cloud as input but instead patches. Hence, we have to feed
it 2D patches of 64 × 64 pixels and 3D patches of 1024 × 6
as input. An important pre-processing step needs to be done,
mainly creating 2D and 3D matching patches around randomly
taken points in the picture or sampled as a grid to cover the
whole image.

We generated 1400000 2D-3D matching patches for the ”La
Comballaz” dataset and 2200000 for the EPFL dataset.

C. Description of the paper’s network

The network has a dual auto-encoder architecture as showed
by figure 1, The first auto encoder patchnet is designed
to encode and decode RGB images while the second one,
pointnet, is designed to encode and decode point clouds.
They are trained together using a triplet loss to ensure that
the learned descriptors are cross domains ones since they are
sharing a latent space. The dimension of the latent space is an
hyper-parameter that can be changed, but we only use 256 as
the paper describes it as a good value.

Fig. 1. Network from LCD paper with 2D and 3D auto-encoders

https://github.com/CS-433/cs-433-project-2-drop_table
https://github.com/CS-433/cs-433-project-2-drop_table


D. Paper reproduction

The first step of this project is to train the network, first on
the dataset used in the paper [3], [4] and then using the two
datasets provided by the TOPO lab.
The former was more challenging than expected since the
repository of the author was not up to date and we had to
learn how to use the cluster. It took around 17 hour to train
(100 epochs) leading to similar results as the provided pre-
trained network. The issue with the script before the update
was that the data was not correctly loaded into the RAM. This
would terribly slow down the training as we would need to
get the data back from disk each time we access it. Before
noticing this, we also spent a long time trying to train the
network on multiple GPUs as it was stated in the paper, but
it ended up being too hard and it would not even have been
enough as the RAM problem would still be there. Moreover,
it turned out the network was originally trained on only one
GPU and everything went fine when we understood the issue
after the author told us about the updated version.
The latter was more straightforward. We hence train two
networks for each dataset: one only with synthetic data and
one with both real and synthetic data, which are later called
EPFL-synth, EPFL-mix, comballaz-synth and comballaz-mix.
A particular point here is that we generate the 2D-3D matches
ourself. In the paper the author generates the matches by pairs
by first selecting a point and computing the corresponding 2D
and 3D patches. Then he takes another random point cloud
and project it on the first image. From there he computes the
2D and 3D patches from the projected point of view. The
dataset used by the author is composed of frames from filmed
indoor scenes. There is a really small gap between the different
frames and the 3D space is small. This kind of generation
would maybe not really fit the TOPO dataset as the images
are taken from a drone’s point of view and each picture is
separated by a two seconds interval. Thus, we only generate
the points one at a time. The last version of the training script
the author uploaded on Github uses a small tip to go faster. It
uses two 2D-3D matches at a time, but only the point cloud
of the first one and the image of the second one. As we do
not generate the data the same way, we prefer not to use
this tip and simply train it on the whole dataset. Our first
network using the EPFL dataset was trained with the author’s
script, but with our generation, so we keep it to compare the
two techniques and it will be called EPFL-LHS-old in the
following.

III. RESULTS

1) 2D matching: The idea for this application is to match
two RGB images. We use synthetic images taken by a drone’s
point of view while he is following a predefined trajectory.
Thus, we know the position of the drone and we also have
the 3D coordinate of each pixel of each picture. We pair
each image with the following one and for each pair, we
first choose at random a set of points in both pictures. For
each set, we save the 3D coordinates of theses points and

Fig. 2. 2D-2D Matching, Representation of the 50 best matches between
two different real images from EPFL dataset (using the LCD-D256 network)

Fig. 3. 2D-2D Matching, Representation of the accuracy of each network
on the EPFL dataset; 1024 descriptors per images, 100 pairs of images

Fig. 4. 2D-2D Matching, Representation of the accuracy of each network on
the ”La Comballaz” dataset; 1024 descriptors per images, 100 pairs of images

create 2D patches around them. We encode the sets of patches
of both images into descriptors using the patchnet encoder.
We then use the k-nearest-neighbors algorithms to find the
best match between each descriptor of the first image and all
the descriptors of the second image. Using the distance of
those matches, we can determine which ones are better than
the others and order them. It makes sense since two similar
pictures’ descriptors should be close in the latent space. Using
the saved 3D coordinates, we can then, for each found match,
compute the actual euclidean distances between the two key
points of the match. Given a threshold it is then possible to
classify such a match as correct or not. The figures 3 and 4
show our results while the figure 2 presents a visualization of
the 50 best matches of between two images.
We can make a few observations from those graphs. First
of all, the training data does not seem to need to be too



similar to the given data for this application. The networks
trained with the EPFL dataset perform particularly bad, even
on the EPFL dataset itself. This can maybe be explained
by the noise in the generated images. There are a lot of
missing points in the images and the point clouds. Thus, the
networks seem to perform better when the images have a
good quality. Another observation is that the network trained
with the author’s training script, but with our generation is
really bad, which means that it has an influence. However, the
network trained with the ”La Comballaz” dataset has a similar
behaviour to the D256 network. For this reason, we can argue
that for this application, those techniques do not change a lot
if they are not mixed.
A small note about all the precision we compute. We do not
take into account descriptors that are mapped to an invalid
point (-1,-1,-1) because the distance will always be huge, but
it does not mean the match is incorrect. Thus, we cannot know
if the match can be classified as correct or not. We choose to
simply remove them as it should not change the distribution
of correct points.

2) 2D-3D place recognition: Before talking about the 2D-
3D matching, we will briefly describe how we are generating
patches from a point cloud. To generate 3D patches, the idea
is to down-sample the point cloud using voxels, which is the
equivalent of the pixel, but in 3D. Indeed, for each voxel of
a given size in the point cloud, only the centroid is kept. The
points resulting from the downsampled point cloud are used
as centers for the 3D patches, which are filled with the points
around it in a given radius in the original point cloud to form
a 1024 points patch. It must then be clear that both voxel size
and radius are important parameters that should be carefully
chosen depending on the testing set. We can now details the
2D-3D place recognition application.

The goal here is to provide on the patchnet’s side of the
network an RGB image and a point cloud on the pointnet’s
side, both issued from different images representing the same
scene and then try to match key points between them. To
do so, we encode both the image and point cloud patches
into descriptors. We then try, using the k-nearest-neighbors
algorithm to find the best matchings between theses two sets
of descriptors just as we did in section III-1. We use the same
images as before with their associated point clouds. By com-
puting the distance between the 3D coordinates corresponding
to each pair of descriptors, we can again decide if a matching
is correct or not. The figure 9 shows a visual representation
of such a process.

Our results, shown in figure 7 for the ”La Comballaz”
dataset and in figure 6 for the EPFL dataset show that the
training set has an influence on this application. Indeed in
both case, the networks trained on the corresponding data are
working better than the other ones. For ”La Comballaz”, the
difference is really marked. Another interesting point is that
mix between real and synthetic data tends to perform better,
which means that diversified data is a plus. Finally, we see
again that EPFL-LHS-old, the network trained with the EPFL
dataset, but with the combination of the author’s training and

Fig. 5. 2D-3D Matching, Representation of the 15 best matches between
a synthetic image and a point cloud issued from different ”La Comballaz”
images representing the same scene (using the Comballaz-synthetic network)

Fig. 6. 2D-3D Matching, Representation of the accuracy of each network
on the EPFL dataset; 1024 descriptors per images, 100 pairs of images/point
clouds, voxel size: 2, radius: 500

Fig. 7. 2D-3D Matching, Representation of the accuracy of each network
on the ”La Comballaz” dataset; 1024 descriptors per images, 100 pairs of
images/point clouds, voxel size: 100, radius: 500

our generation is slightly worse.
3) Sparse-to-dense point cloud: The last application we

reproduce is the point cloud reconstruction given an RGB
image and a sparse point cloud of the same scene. We aim
to construct a dense point cloud. To do so, we first randomly
down-sample a point cloud of an image to obtain a sparse
point cloud. We construct 2D patches around each points of
the sparse point cloud, which we encode using patchnet to
obtain descriptors in the latent space. We then decode them
using pointnet to obtain 3D local point clouds. Using the
global coordinates from the points of the sparse point cloud



Fig. 8. Sparse to Dense application’s results for two synthetic images of
EPFL

Fig. 9. Sparse to Dense Matching, Representation of the accuracy of the
colors of each network on the ”La Comballaz” dataset; 3000 downsampled
points per point cloud

associated with each of these local point clouds, we can
reconstruct a new global point cloud with more points that
the previous sparse one. The figure 8 illustrate such a process.
The reconstructed point cloud is however bounded to the point
of view of the image. Indeed, the LCD does not reconstruct
anything on not visible areas in the picture, since the sparse
point cloud has no points in such areas.
The main problem with this application is that we need to
scale the local point cloud to their true size because they are
normalized. It is however hard to find the correct scale value to
choose since it is depending on the image and on the distance
between the point of view and the point cloud. To reconstruct
those images, we use only 3000 points from the base point
cloud and obtain 3000× 1024 = 3072000 points.
The most interesting graph we get from this application is the
graph on the color distance. We see that the ”La Comballaz”
dataset is reconstructed with a color closer to the original when
we use the network trained with the corresponding dataset.
Since the other datasets contain images from urban landscape,
there are no green mountains. Thus, the network does not
really know the true color it should have.

IV. SUMMARY

Each of our applications provides us very different results,
showing that the network would need to be trained in a
different way depending on the wanted usage. We see that
for a 2D matching application, we want to have images with

less noise and more variety in our train dataset. For the 2D-
3D matching application, we see that input data closer to the
training dataset will obtain best results. We also see that again,
noise can have a negative impact on the upgrade we can get
with the proximity of a dataset to the input. Finally, in the
sparse to dense application, the points of the true point cloud
are well approximated by the dense depth. However, we see
that the color of the points in the dense point cloud can be
incorrect when we use data that is far from the training dataset.

V. DISCUSSION

We show some interesting results that can be helpful for
future training of this convolutional neural network. However,
there are still a lot of other things to test and experiment with.
First of all, maybe training the network with data generated
the exact same way as the author’s combined with his training
script can provide better results in some applications. With
the application we tested, we have various possible usage with
drones. With the good dataset, one could obtain a network that
would be able to find features that would correspond between
a synthetic image and a real one using the 2D matching
application. This would permit to recognize real places using
the synthetic pre-generated data. Another usage would be to
use the 2D-3D matching application to do the same thing as
before, but with a real image and a synthetic point cloud.
Using this, the drone could know exactly where it is and
the distance between him and his environment. In addition,
using the sparse to dense application, it would be possible to
use a reasonable resolution depth camera alongside a normal
camera to compute a dense point cloud. Since a drone cannot
be too heavy, it can be interesting to determine the missing
data instead of upgrading the camera. At last, there is one
more application which can combine two point clouds based
on some matching features. It uses 3D matching and the code
is already on the author Github repository, but we do not use
it in our experiments as we do not see any application for
drones for now, but it is one more possibility to explore.

ACKNOWLEDGEMENTS

Geodetic Engineering Laboratory (TOPO), Izar Cluster’s staff,
Machine learning lectures, labs and Google search engine.

REFERENCES

[1] Q.-H. Pham. (2019) Learned cross-domain descriptors for 2d-3d
matching. Last visited Novembere 21th, 2019. [Online]. Available:
https://arxiv.org/pdf/1911.09326.pdf

[2] (3 February 2016) Icao’s circular 328 an/190 : Unmanned
aircraft systems. [Online]. Available: https://www.icao.int/Meetings/
UAS/Documents/Circular%20328 en.pdf

[3] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3dmatch: Learning local geometric descriptors from rgb-d reconstruc-
tions,” in CVPR, 2017.

[4] B. Hua, Q. Pham, D. T. Nguyen, M. Tran, L. Yu, and S. Yeung, “Scenenn:
A scene meshes dataset with annotations,” in 2016 Fourth International
Conference on 3D Vision (3DV), 2016, pp. 92–101.

https://arxiv.org/pdf/1911.09326.pdf
https://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf
https://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf

	Introduction
	Model and Method
	Hardware used
	Pre-processing
	Description of the paper's network
	Paper reproduction

	Results
	2D matching
	2D-3D place recognition
	Sparse-to-dense point cloud


	Summary
	Discussion
	References

