Exploring chord embedding spaces
between musical composers and eras

Authors: Adina Ciubotaru, Sergei Kliavinek, Marcus Gruneau
Mentors: Dr. Fabian Moss, Dr. Andrew McLeod
Hosting lab: Digital musicology, music cognition and language
EPFL, Lausanne, Switzerland

Abstract—In recent years, natural language processing al-
gorithms have become more sophisticated and powerful due
to the development of deep neural networks. In this paper
we have decided to exploit these powerful tools in order to
generate an embedding space of musical chords using two
sets of annotated corpora, containing musical scores from
different eras. The resulting embedding spaces were visualized
in different ways and show that the trained models managed to
catch fundamental similarities between different chords. The
possibility of predicting subsequent chords in context using
various word representation models and a recurrent neural
network was also investigated. It is shown that even using a
small neural network, it is possible to achieve good results.

I. INTRODUCTION

Natural language processing (NLP) [5] is a sub-field of
computer science, where the objective is to program and
build a model such that computers can understand and
interpret natural language to perform data analytical tasks.
Natural language can be anything from regular speech to
singing as well as come in the form of musical notation, such
as a set of chords used to build up a musical score. However,
only recently large labeled corpora combining score and
harmonic annotations have been made available for research.
The Annotated Beethoven Corpus (ABC) [8] represents a
data set of harmonic analyses of all Beethoven’s string
quartets. Since its publication, the data set was enriched with
chord annotations from the pieces of 23 more composers,
that lived during the common practice perio By manipu-
lating these corpora, one can apply NLP techniques in order
to create a model that can be interpreted by a computer.
A previous approach in this sense involved a study on the
structure of the chord lexicon [7] using the initial form of
the data set ABC. This model can be trained using machine
learning methods in order to find similarities between the
different elements (chords) in the data set by generating
an embedding space, where each chord is mapped to a
vector. The resulting embedding spaces can be compared in
different ways, for example by looking at the similarities of
the neighborhoods for each embedded vector per embedding
space. In the following sections we will describe how we

IBetween the years 1600-1910 (Baroque, Classical and Romantic era)

pre-processed the data, applied different ML-based models
and the interpretation of our results.

II. DATA
A. Understanding the data

This project makes use of two data sets that were pre-
processed in different ways, originating from the enriched
ABC data set. They contain the same series of chord
progressions from 24 composers, summing up for a total of
approximately 68000 chords, similar to words in a text. The
corpora are split by composer into separate files, where each
row represents a progression of chords. The progressions can
be distinguished by the mode of their global key (minor or
major), which means that an entire musical piece can span
over several rows if its global key changes.

In the first data set which we denote as A, each chord in
a progression has the format ROMAN_NUMERAL:MODE.
An example of a progression where the global mode is
major would be: “MAJOR; I:MAJ, IV:MAJ, II:MIN”. The
vocabulary consists of 81 unique chords in major and 77
unique chords in minor.

The second data set which we denote as B, is closer to
the original annotations from the ABC since it treats applied
chords (chords that prepare or imply another chord [7])
differently. While data set A reduces applied chords to single
chords, data set B preserves the function of the applied chord
and the tonicized chord, as can be seen in the third chord in
this example: “MAJOR; 1, ii, V/IV”. Here the major chords
are uppercase and the minor ones are lowercase. In this data
set there are 321 unique chords in major and 317 unique
chords in minor.

An augmented or diminished chord in data set A can be
marked as “Il:AUG” respectively “II:DIM”, while in data
set B we find “II+” respectively “iio”. Characters “#” and
“b” mark sharp and flat chords in both data sets.

B. Data pre-processing

In order to use Word2Vec (Subsection [III-A)), we replaced
all characters in each chord that can’t be part of a token
(7 #°,“47,°/”) when using a simple pre-process tokenizer.
After training the models we reversed the process and

mapped each chord back to its normal representation for
visualization purposes.

We decided to further split each data set into two subsets
based on the global key of each progression because of the
natural difference in sound between the two. [1]

For analytical purposes, we decided to split the minor
and major subsets in three ways to obtain different inputs
for the machine learning models which are introduced in
(Subsection [III-A): No splitting, treating each composer
separately and grouping composers based on which era they
lived during (Baroque, Classical or Romantic).

III. MODELS AND METHODS

In this section we describe the different models and
methods that were applied to generate our results and why
we chose them.

A. Word2Vec

One of the most popular word embedding libraries that
exists is called Word2Vec [6] (W2V), which uses neural
networks in order to learn relationships between each word
(chord in our case). We chose to use the Gensi implemen-
tation because we found that it was well documented and
simple to include in our Python machine learning pipeline.

The parameters used when training the W2V model
(for the subsets that include all composers or eras) were
size = 20, min_count = 50, window = 1 and sg = 0
(default). The size parameter adjusts the dimension of the
embedding space. This was manually tuned to 20 which
seemed to give us a good spread between the vectors in
the embedding space. The documentation states that “Bigger
size values require more training data, but can lead to better
(more accurate) models. Reasonable values are in the tens
to hundreds.”. This is important because our vocabulary for
data set A is small (in the hundreds) compared to a large
language corpora such as the English language which can
contain up to hundreds of thousands of words. The window
parameter is according to the documentation the “maximum
distance between the current and predicted word within a
sentence.” This parameter was set to 1 because we assume
that a chord depends mostly on its immediate neighbor.
The min_count parameter filters out any chords which
have a lower frequency than the set value. We chose 50
because it allowed us to keep the most common chords while
filtering out the noise generated by rare chords. We used a
smaller value (15) for the min_count parameter when the
subsets with separate composers were trained because some
of them have a small corpus. The sg parameter determines
if W2V will use a Skip-gram (SG) or continuous bag of
words (CBOW) model. The main difference between these
two is the way they are trained: While the neural network
used by the CBOW implementation tries to predict a word

Zhttps://radimrehurek.com/gensim/

given a context of words, SG tries to predict the context
given single words. We decided to use the (default) CBOW
model because the generated embedding spaces were almost
identical when compared to the ones created when using a
SG model.

There are several ways to compare and visualise the
embedding space generated by each model. A common
method is to project the entire embedding space onto a 2D
plane using FastICA [3]. Even though the resulting plot can
be difficult to interpret for our purposes, the idea is that the
more similar two chords are, the closer they should be on
the projected space.

B. LSTM training

Another interesting topic is the prediction of the next
chord given a set of previous chords. This is important from
several points of view:

o It allow us to compare our Word2Vec model with the

classical one-hot vector representation.

o It allows us to determine if there are any patterns
in the different works of composers or any stable
combinations of chords.

o With the capability of predicting the next chord it is
possible to create a recommendation system, which
could allow musicians to use it for generating new
chord sequences.

To solve the problem of predicting the next chord, a
neural network of the LSTM type [2] (Long short-term
memory) can be used. This is a subspecies of recurrent
neural networks, which is actively used in the tasks of
predicting and analyzing time series and recognizing human
speech. The main advantage of such a network is that the
“forgetting” of information is regulated, not by the usual
activation function, but by special gates that allow storing
information for a long time. As a result, it is possible to
get a dependence on several previous chords. This requires
a large amount of data due to the complexity of the model.

We chose to use a simple architecture, in which the num-
ber of input and output neurons is equal to the dimension
of embedding space containing a single 100 neuron hidden
layer. The neural network was trained for 10 epochs.

During the training phase, three different embedding
spaces generated by Word2Vec with a dimension of 20,
77 and 100 were used. As a reference, a one-hot vector
representation with 77 dimensions was also used. The pre-
dictions based on the 2-5 previous chords were analyzed:
If the next chord was the nearest neighbor of the predicted
one, the prediction was scored as successful, otherwise—as
unsuccessful.

IV. RESULTS

A. Word2Vec

We plotted the minor and major progressions separately
using all models resulted from the grouping possibilities

described in Subsection [[I-B] Each chord point was scaled
proportionally to its log-frequency in the corpus making the
common chords stand out in the plots.

In Figure [I] the chords that are in the same key as the
tonic (:MAJ, ILMIN, HI:MIN, IV:MAJ, V:MAJ, VI:MIN,
VII:DIM) and which are also the most frequent, are close
together except VII:DIM and III:MIN. Common chords are
usually grouped together, as we noticed in most of the
FastICA plots regardless of the subset used for training the
models. This can be explained by the fact that common
chords also occur together in progressions.

Minor N
Major 1I1:DIM EMAJ
Aug/Dim IV:MAJ
1I:MAJ
#v:MAJ - VEMIN V:MAJ
® VIMAJ
#:MAJ
VI:MAJ HI:DIM #/:DIM
4 BVIEMAY givDIM IV:MIN
: VII:MIN
BVIIEMIN V:AUG
) II:MIN l:AUG
VI:DIM ’
#:DIM
IMIN bll:MAJ
11:DIM
pVIMAJ blll:MAJ
V:MIN 2
\VII:DIM
1I:MAJ

Figure 1. FastICA projection of the embedding space (major context)
using dataset A.

Other than studying the chords for each individual model
we also compared the different models to each other. To
do this we used the similarity function from the Word2Vec
gensim module which returns a list containing the top n
most similar chords given a single one, along with their
similarity scores, which is based on the cosine similarity
(because of the high dimension of the embedding space).
Each comparison involved either several major models or
minor ones. We compared all data sets (using the models
that were trained on all the composers), all eras and all
composers to each other. To get a better overview we created
a clustered heat map using the similarity matrix between
each chord in an era and compared the resulting plots.

Dividing the data sets by eras, we notice the same patterns
repeating through each period, namely the common chords
in the major models (:MAJ, ILMIN, IV:MAJ, V:MAJ,
VII:DIM) being the most similar and sticking together as
in the left cluster formed in Figure [2]

-
[=lalelalaid
[=]1 S ¥-NeTs le]

-blll:MAJ
= -bVI:MAJ
MAJ

Figure 2. Clustered heatmap based on the similarity between the chords
of the classical major model

Another approach we adopted was to apply the K-means
clustering [4]] algorithm over the different embedding spaces
generated from the models which were trained across all
composers. Since our vocabulary is relatively small, we
could iterate over a narrow range of values for the K
parameter in order to manually choose the one that produced
the most meaningful split.

Figure [3]is the fastICA projection of data set B in minor
context. It supports the clustering obtained by K-means on
the same data set, for example the cluster formed around
the point (—0.1,0.0) which maps to each chord in cluster
3, or the cluster which is concentrated around the point
(0.2, —0.05) which maps to cluster 5.

Figure [] shows the distance between each pair of clusters.
We can assign a cluster a label signifying its repetitive
tonicized chord: cluster 1 — v, cluster 3 — III, cluster 6 —
iv, cluster 7 — VII, cluster 8 — VI, cluster 9 — bll. Clusters
2 and 4 can’t be categorized in this way since they do not
signify any repetitive tonicized chord. Cluster 5 contains the
common chords in minor which are also displayed in the
right side of Figure [3] This result is meaningful because we
observe that most clusters contain applied chords with the
same tonicized chord.

In Figure [clusters 1, 3 and 7 are grouped together and
separated from all the others, which makes sense in the
minor key, because they are related to the relative major
key. The left side of Figure [3] presents the same separation
for the tonicized chords: III — at the top, VII — in the middle

and v — at the bottom.

wiio/Ill Minar
- VI L Major
02 . Jdiofiv Aug/Dim
i AN v wbl Vv,
viloVL. o i Fvila/iv
virl ivfiv I
o1 vl
i Wi o
wiio/Vil v & #viio
MV jii vo G
b0 iivil #iii Vilo/ %
VI : li4FVioN iy
il #vi . viio j
: - #vio NV
#ivo v
ViV i
01 Vi !
W #viiofii
ii
-02
s
0.3 iiofw, #viiofv
v
Vv
-03 -02 -01 0o 01 0z
Figure 3. FastICA projection of the embedding space (minor context)

using dataset B.

o Cluster 1:
o Cluster 2:
e Cluster 3:
o Cluster 4:
#ivo
o Cluster 5:
o Cluster 6:
e Cluster 7:
e Cluster 8:
e Cluster 9:

v, iio/v, iv/v, Vv, #viio/v

V1, #vio, I, viio, vo, i/iv, #viio/V, I+

111, viio/III, i/, V/III, vi/III, TV/III

IV, V/IV, #viiofii, V/ii, ii, #iii, vi, iii, #vi,

i, ilo, V, #viio, viio/V, V/V, vii/V
iv, #viio/iv, iio/iv, iv/iv, V/iv
V/VII, viio/VII, V11, ii/VII, IV/VIL
viio/VI, V/VI, vii

bIl, V/bIl

B. LSTM results

During the study, three models were considered:

o Word2Vec input with Word2Vec output
o Word2Vec input with one-hot vector output
¢ One-hot vector input with one-hot vector output

In all three cases we found that there exists a dependence
between a chord and the previous chords. The prediction
accuracy was between 35-40 % (for the W2V in/out model),
which we believe is successful in the presence of several
dozen different chords. Since this was applied across multi-
ple composers of different eras we come to the conclusion
that there exists stable combinations of chords for each era.

Another interesting result is that the prediction results
seem to be weakly dependent on the length of the previous
sequence of chords. They were only slightly different when
comparing the predictions for 2, 3 or 4 of the previous

OO PN
cuoneouno

083 091 12 1 0 07 1.5 -«
15 14 15 1 0.7

0 [13

083 15
13 0 12 1 091
12 |15

1 1 0 1
12 0 1 12

5 6 9 8 2

Figure 4. Clustered heatmap based on the distance between the clusters
formed on the minor model.

chords (the difference fluctuating within 5 percent). Stable
dependencies are clearly observed only for pairs of chords.

As a final step, we compared the LSTM model when
trained using a Word2Vec embedding vs. a one-hot vec-
tor encoding. A one-hot vector model is simple and it
is interesting for us to compare it and see if we over
complicated things by using W2V. The best result using the
Word2Vec embedding was about 35-40 %, which is almost
double performance when comparing it with the result of
the one-hot model, which was less than 20 % (and higher
than predicting a one-hot vector from Word2Vec vectors
~ 20%). These results can be explained by Word2Vec
having a connection between the relative position of the
chords and their similarity (in a musical sense). Therefore,
gradient descent would make more sense with this model
than with a one-hot vector representation, in which our
chord arrangement is fairly random. The result of predicting
using a Word2Vec embedding is weakly dependent on the
dimension of the chord representation space which causes it
to fluctuate between 35-40%.

V. SUMMARY

Our main objective was to explore how well the different
proposed models would fit to the initial data set of annotated
chord corpora and if we could find some interesting patterns,
since most of the learning we applied is unsupervised.
Using the proposed Word2Vec model to generate a word
embedding space of chords, we discovered that it did
cluster meaningful chords with each other. This was easy
to visualize using K-means clustering, as similar chords
were put in the same groups. We also experimented with
training a LSTM model to predict the following chord given
a sequence of previous ones, which gave us an accuracy of
around 40%.

ACKNOWLEDGEMENTS
We thank Dr. Fabian Moss, Dr. Andrew McLeod and
the Digital and Cognitive Musicology Lab at EPFL for
providing the dataset, supervising the project and advising
us throughout.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

Edward Aldwell and Carl Schachter. Harmony and
Voice Leading. Vol. 2. 1979.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-
term memory”. In: Neural computation 9.8 (1997),
pp. 1735-1780. DOI: |10.1162/neco.1997.9.8.1735.

A. Hyvirinen and E. Oja. “Independent component
analysis: algorithms and applications”. In: Neural Net-
works 13.4 (2000), pp. 411-430. 1SSN: 0893-6080.
DOI: https://doi.org/10.1016/S0893-6080(00)00026-5.
URL: http://www.sciencedirect.com/science/article/pii/
S0893608000000265.

Stuart P. Lloyd. “Least squares quantization in pcm”.
In: IEEE Transactions on Information Theory 28
(1982), pp. 129-137.

Christopher D. Manning and Hinrich Schiitze. Foun-
dations of Statistical Natural Language Processing.
Cambridge, Massachusetts: The MIT Press, 1999. URL:
http://nlp.stanford.edu/fsnlp/.

Tomas Mikolov et al. Efficient Estimation of Word
Representations in Vector Space. 2013. URL: http://
arxiv.org/abs/1301.3781.

Fabian C. Moss et al. “Statistical characteristics of
tonal harmony: A corpus study of Beethoven’s string
quartets”. In: PLOS ONE 14.6 (June 2019), pp. 1-16.
DOI: |10.1371/journal.pone.0217242. URL: https://doi.
org/10.1371/journal.pone.0217242,

Markus Neuwirth et al. “The Annotated Beethoven
Corpus (ABC): A Dataset of Harmonic Analyses of
All Beethoven String Quartets”. In: Frontiers in Digital
Humanities 5 (2018), p. 16. 1SSN: 2297-2668. DOT: |10.
3389/fdigh.2018.00016. URL: https://www.frontiersin.
org/article/10.3389/fdigh.2018.00016.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/S0893-6080(00)00026-5
http://www.sciencedirect.com/science/article/pii/S0893608000000265
http://www.sciencedirect.com/science/article/pii/S0893608000000265
http://nlp.stanford.edu/fsnlp/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1371/journal.pone.0217242
https://doi.org/10.1371/journal.pone.0217242
https://doi.org/10.1371/journal.pone.0217242
https://doi.org/10.3389/fdigh.2018.00016
https://doi.org/10.3389/fdigh.2018.00016
https://www.frontiersin.org/article/10.3389/fdigh.2018.00016
https://www.frontiersin.org/article/10.3389/fdigh.2018.00016

	Introduction
	Data
	Understanding the data
	Data pre-processing

	Models and Methods
	Word2Vec
	LSTM training

	Results
	Word2Vec
	LSTM results

	Summary

