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ABSTRACT

In this work, we address the task of Speech Emotion Recognition
(SER). Inspired by the success of end-to-end systems to model
acoustic information, we make use of a CNN based end-to-end
framework for the classification of four emotion classes namely -
angry, happy, neutral and sad. The framework use raw-speech for
the classification task hence eliminating the step of extracting hand-
crafted features. Further, inline with this task we investigate and
address three specific research questions related to- 1) the efficacy
of the model, 2) the training setup and 3) modelling the network
derived information. The study was conducted using the standard
IEMOCAP corpus.

Index Terms— Speech Emotion Recognition, Convolution
Neural Network, Representation learning

1. INTRODUCTION

There exists rich literature in the field of psychology which investi-
gates the role of acoustics in human emotions. Blanton [!], in his
article, writes- “the effect of emotions upon the voice is recognized
by all people. Even the most primitive can recognize the tones of
love and fear and anger; and this knowledge is shared by the an-
imals. Dogs, horses, and many other animals can understand the
meaning of the human voice. The language of the tones is the oldest
and most universal of all our means of communication.” With the
remarkable progress made in the field of automatic speech recogni-
tion(ASR), the time has come where machines should now learn to
recognize human emotions efficiently via speech.

There are several factors which makes Speech Emotion Recog-

nition (SER) a challenging task, for example:

1. Human emotions exhibit fuzzy temporal boundaries which
makes it difficult to predict the onset or the completion of
an emotion.

2. Each individual has a different way of expressing emotions
and there could be more than one emotion in an utterance.

3. Spoken language (ex: French, German, English) plays a key
role in detecting emotions from speech.

Even with multiple challenges, SER still remains a highly active area
of research, due to its several applications, from affective computing
to human-computer interfaces.

An important and critical aspect of SER is feature extraction,

traditional SER research was mainly devoted in the search for ‘best’
speech features that could discriminate between different emotions
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on turn-level [2, 3]. Usually ‘brute-force’ methods were used to
select the most indicative acoustic features which could help in
discriminating between the various emotions. With the advent of
representation-learning, breakthrough results were obtained in the
field of Speech recognition and signal processing. Convolutional
neural network (CNN, or ConvNet) in particular became very handy
for learning representations from the data (signal) [4], which made it
easier to extract useful information when building a classifier. In this
work, we exploit the representation learning prowess of 1D-CNNs
to build an emotion detector by modelling directly the raw speech
signal.

This paper builds upon the previous works on end-to-end acous-
tic modelling, where a segment of raw waveform is first modeled by
convolution layers followed by a hidden layer and output classifi-
cation layer (e.g. see Figure 1). This approach was originally pro-
posed in the context of speech recognition [5] and has subsequently
been extended to other tasks such as, speaker verification [0], gender
recognition [7], depression detection [8]. In all of these tasks, the
neural network is trained to classify the output classes using cross
entropy error criterion by taking a speech segment of about 250 ms
as input and further the output frame level probabilities are aggre-
gated at utterance level to make the final decision. This network has
shown to deliver competitive results for the tasks mentioned above
and without the need for relying on the handcrafted features. The
network learns the ideal filters during the training phase so as to ex-
tract the task specific information from the raw speech signal, for the
optimal classification results.

Inspired from the studies based on the raw-waveform CNN-
based architecture, for this project we adapted this network for SER
task and further investigate the following questions:

1. whether such an approach is feasible for SER. More precisely,
can speech emotion recognition be effectively achieved by
training the end-to-end acoustic model to classify emotion by
modeling a short-segment of speech at frame-level and aggre-
gating the output frame-level probabilities?

2. How does the network behave when trained in a subject-
dependent manner and subject-independent manner?

3. Can the representations/embedding derived via CNN be fur-
ther improved for the classification task by capturing and
modelling the temporal dynamics information by computing
approximate first order temporal derivative (denoted as delta)
and approximate second order temporal derivative (denoted
as delta-delta)?

We investigate these questions using the IEMOCAP - a bench-

mark corpus in the field of SER. The rest of the report is organised
as follows. Section 2 covers in brief the proposed method. Section 3
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presents the short description of the database and the experimen-
tal setup used, Section 4 describes the systems we are proposing in
detail, Section 5 deals with the results and analysis. Section 6 con-
cludes the paper.

2. PROPOSED METHODOLOGY

Figure 1 illustrates the proposed end-to-end framework adopted for
speech emotion recognition task. The input to the neural network is
a raw-speech waveform of duration Ws., (about 250 ms), which is
processed by IV convolution layers followed by a multilayer percep-
tron (MLP) to output speech emotion class conditional probabilities.
Similar to conventional short-term spectral processing, the speech
segment is shifted by 10 ms to estimate class conditional probabil-
ities for the next frame and so on. During the training phase, the
neural network is trained with frame-level cross entropy error crite-
rion. During the recognition phase, speech emotion class conditional
probabilities estimated for each frame are summed and normalized
by the number of frames to estimate utterance-level speech emotion
class conditional probabilities. The decision is then taken by select-
ing the class with maximum probability.

To validate that the neural network is indeed learning informa-
tion from 250 ms of speech that is indicative of speech emotion, we
also investigate an approach where, an utterance level representa-
tion is obtained from frame level neural embeddings by computing
functionals (Funct) such as, mean, standard deviation, skewness
and kurtosis, we call this static-representation. Further to investigate
if these frame-level neural embeddings could be enhanced by pro-
viding them with the temporal dynamics information, we computed
the first and second order temporal derivative, delta(D) and delta-
delta(DD) respectively on frame-level embeddings. We use these
frame-level D & DD embedding, containing temporal information
to compute utterance level representation using F'unct in a simi-
lar manner as for static representations, but calling these as delta
and delta-delta representation. We then use an SVM classifier to
compare which representation either static or the one with temoral
knowledge performs better for our classification results.

Finally, the above methods were applied and evaluated for two
scenarios, speaker-independent setup and speaker-dependent setup
for SER task.

3. DATABASE AND PROTOCOLS

The Interactive Emotional Dyadic Motion Capture IEMOCAP) [9]
is a benchmark dataset used for emotion studies and in particular
for speech emotion recognition tasks. It consists of recordings from
10 skilled actors (five female and five male) who recorded 12 hours
of audio-visual data organized in 5 different sessions, among which
some were scripted and some improvised. The recording comprises
of audio, video and face motion capture samples. Each sample of
recording is called an utterance. The audio recording is sampled
with a 16kHz samping rate and duration is between 3 and 15 sec-
onds. Each utterance has a corresponding emotion label. There are
ten different emotion labels in the corpus: anger, sad, neutral, happi-
ness, frustrated, excited, fearful, surprised, disgusted and other. The
emotion label was chosen by majority vote among three annotators.
Furthermore, to be consistent with the previous studies, we decided
to work with four emotions categories: anger, sad, happy and neu-
tral. The detailed description of emotions distribution is provided in
table 1.

We conducted speaker-independent experiments following the
leave-one-session-out methodology for training. For testing the ‘k’-
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Table 1: The proportion of the four emotions among the selected
data of IEMOCAP-dataset

Class Number of utterances | Proportion (%)
Anger 1103 19.94
Happy 1636 29.58
Neutral 1708 30.88
Sad 1084 19.6

th session, the model was trained on the remaining four sessions. For
the speaker-dependent experiments the complete data was pooled
and shuffled then k-fold cross-validation methodology was used for
training and testing, where k=5. Following the literature, the perfor-
mance is measured in terms of unweighted average recall (UAR).

4. PROPOSED SYSTEMS

4.1. CNN based system

Table 2 presents the architecture of the raw waveform modeling
CNNs for emotion recognition, illustrated in Figure 1. We did not
optimize the architecture of the neural network for the speech emo-
tion recognition task. Rather, we chose this architecture from the
previous work on depression detection [8]. This neural networks
have four convolution layers followed by one hidden layer MLP and
output layer consisting of four emotion classes. The output layer had
softmax activation, while all the layers had ReLU activation. This
CNN network, has the kernel width set to 30 samples (about 1.8 ms)
in the first convolution layer kW;. This network is referred to as a
Sub-segmental(denoted as subseg) model.

For training the neural network, we split the train portion in
each fold into training subset and cross validation subset in 80:20 ra-
tio. The network was trained using cross-entropy loss with stochas-
tic gradient descent. The learning rate was halved, in the range
10! to 106, between successive epochs whenever the validation-loss
stopped reducing. We used Keras [10] deep learning library with
tensorflow backend.

Table 2: CNN architectures. nf: number of filters, KW: kernel width,
dW: kernel shift, MP: max-pooling.

Conv
Model ‘ Layer of kKW dW MP
1 128 30 10 2
2 256 10 5 3
RawCNN | subseg 3 512 4 2
4 512 3 1 -

4.2. Neural-embedding based systems

As mentioned in Section 2, apart from the CNN-based system, where
the frame-level speech emotion class probabilities are averaged and
the class with maximum probability is chosen as the output. We
also setup systems where the neural embeddings derived from the
subseg network were modelled to form a utterance level embedding
using functionals (F'unct.)), the different functionals we computed
were: mean (m), standard deviation (sd), skewness (sk) and kur-
tosis (k). In first setup we directly use the 10 dimentional neural
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Fig. 1: Illustration of the proposed speech emotion recognition method. (A)illustrates the processing in the first convolution layer. kW
denotes kernel width, dW denotes kernel shift and n; denotes number of convolution filters; (B) denotes the approach of aggregating frame-
level probabilities for speech emotion classification; and (C) denotes the approach of speech emotion classification using utterance level

representations obtained from frame level neural embeddings.

embeddings (S-embeddings) to create its utterance-level representa-
tion using F'unct(.) whereas, in the second setup we modify the S-
embeddings by computing its approximate first order and the second
order derivatives, D-embeddings and DD-embeddings respectively
and then create utterance-level representation.

Delta and Delta-delta features: A common method for extract-
ing information about transition dynamics is to determine the first
difference of signal features, known as the delta of a feature and
the second difference in known as delta-delta of a feature. A triv-
ial observation/interpretation of the delta and delta-delta features is
that they approximate first and second derivatives of the signal. For
speech recognition tasks where the features are spectrum based, ex-
ample: mel-frequency cepstral coefficients (MFCCs), the delta and
delta-delta features computed on spectrum provides better informa-
tion than the static features [11]. One of the question we put for-
ward was to probe if adding transition dynamics information to the
static neural-embedding would help in classifying the emotions from
speech better. We implemented Eq 1, to compute the delta coefficient
based on the HTK-toolkit [12] regression formulation .
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where:

« D¢ is the delta coefficient calculated at time from ¢ of dimen-
sion embedding dimension d (N x 10)

¢ O is the window considered for the delta calculation. 6 goes
from 1 to ©.

* ¢Z corresponds to the frame-level embedding d time frameo
t. Where N are the total frames in an utterance.

For our study we set © = 2 that is the temporal information of
2 preceding and 2 successive frames were considered for the delta
computation.

After the computation of 10 dimensional frame level embeddings-
S-embedding, D-embeddings and DD-embeddings, we converted
them to utterance based representations by using F'unctm, sd,sk,k
this representation was of dimension 40, 10 corresponding to each
each functional namely, mean, standard deviation, skewness and

Table 3: Performance of different systems measured in terms of
UAR.

IEMOCAP
Systems Classifier UAR
Proposed systems - Speaker Dependent(SD)
Raw-CNN Softmax 66.7
Functy, s4,sk,k(S-EMBEDDINGS) SVM 67.3
Funct,, sd,sk,k(D-EMBEDDINGS) SVM 61.7
Funct,, s4,sk,k((S+D)-EMBEDDINGS) SVM 66.9
Funct,, sd,sk,k((S+D+DD)-EMBEDDINGS) SVM 66.2
Proposed systems - Speaker Independent(SIn)
Raw-CNN Softmax 57.4
Funct,,, sd,sk,k(S-EMBEDDINGS) SVM 56.7
Functy,,sd,sk,kx(D-EMBEDDINGS) SVM 54.9
Funct, sd,sk,k((S+D)-EMBEDDINGS) SVM 56.6
Funct,, sd,sk,k((S+D+DD)-EMBEDDINGS) SVM 55.5

kurtosis. We used these utterance level representation for the clas-
sification task, SVM with linear kernel was used as a classifier,
sklearn [13] implementation was used for SVM. Apart from the in-
dividual representations (static and delta) used for classification, and
for better understanding of the features, we augmented the feature
space by concatenating the different representations, for example
we combined static representation with delta representations we
also combined static, delta and delta-delta representation for one ex-
periment. This complete setup with combination experiments were
repeated for speaker-dependent and speaker-independent settings as
mentioned in Section 3.

5. RESULTS AND DISCUSSION

It can be observed from the results reported in table 3, that the raw-
speech CNN-based end-to-end framework proposed here, has the
potential for the SER task. It is worth mentioning that the results
reported are comparable and on par with the frameworks which uses
handcrafted/knowledge based features [14—16].

We can see the speaker dependent systems performing better
than the systems trained on speaker independent setup. This may not



be very surprising since it is know in the literature that speaker infor-
mation present during training help attain better results. In our case
the difference in speaker dependent setup as compared to speaker
independent is of approx. 10% gain for every experimental study.
From the confusion matrix shown in fig 2 we can observe a gain in
emotion class recognition for all the labels but the neutral class is the
one which gains the most with the speaker dependent settings for all
the experiments. Also, the framework is very capable in distinguish-
ing the emotions like happy and sad which can be observed from
fig 2.

Contrary to our hypothesis, we do not see any improvements by
using delta representations, this tells that the static neural embed-
dings are robust enough for the SER task. But the delta representa-
tion do not perform too inferior on its own, and when concatenated
with static embedding it gives similar results like the static embed-
ding on its own, which suggests that deltas do not provide any com-
plementary information to the static features for better classification.
Even the second derivative the delta-delta representation is not much
useful for the SER task.

6. CONCLUSION

We studied speech emotion recognition task using IEMOCAP cor-
pus, and asked three specific research questions inline with this task.
From the research and experiments conducted, we were successfully
able to answer all the three questions. We showed that our end-
to-end raw speech framework is capable of carrying out the SER
task and is comparable to the networks using handcrafted/knowledge
based features. We further demonstrated empirical results showing
speaker-dependent and speaker-independent settings do have an af-
fect on the performance of the system. Lastly, our attempt to enhance
the neural embedding by providing temporal dynamic information
for improving the performance did not gave better results which was
contrary to our hypothesis. For future work we wish to optimize the
network settings and for the embedding based systems use different
classifier like random forest and experiments with different kernels
of SVM. We would also like to extend this study to different corpora.
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