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Abstract—Covert speech is performed everyday by most people
without even noticing, Decoding covert speech directly from the
neural signal could be life-changing for patients who are unable
to speak. In this work, we assess the importance of several
frequency bands and areas of the brain in classifying two syllables
of imagined speech. We use the optimal features to improve three
classifiers: a random forest, logistic regression and convolutional
neural network, by reducing their overfitting.

I. INTRODUCTION

Covert speech, also called imagined speech, is the internal
pronunciation of phonemes, words, or sentences, without the
movement of the phonatory apparatus or any audible output
[1]. Although speech related disabilities such as in aphasia
or locked-in-syndrome commonly restrict overt production of
speech, even in these conditions it is possible to actively imag-
ine speaking [2]. Brain-Computer Interfaces (BCIs) interpret
brain activity into digital form that acts as a command for a
computer, allowing users to control external devices by using
brain signals [3]. A BCI system which is able to decode
the electrical activity of the brain during covert speech and
translate it into words would therefore improve the quality of
life of people with disabilities [2].

Among the neuroimaging techniques currently available
for BCI systems, electroencephalography (EEG) has the ad-
vantage of being cost-effective and non-invasive with high
temporal resolution of less than 1 millisecond. Nevertheless,
such systems present some challenges, including low signal-to-
noise ratio, low spatial resolution and frequent artifacts due to
eye blinking or muscular activities [2], [3]. Furthermore, even
though some areas of the brain are known to be specifically
dedicated to speech perception and production, there is a
relevant inter-subject and intra-subject variability in the spatial
features of speech related tasks [4], which makes finding a
model that provides reliable decoding challenging even for a
single person over several days.

A. Objectives

The study surrounding this work aims at using machine
learning methods to classify two imagined syllables (“fo”
and “gi”) based on EEG signals. Such a system, although
developed using offline data, would potentially be useful in the
clinical context, if the complexity of the algorithm allows for
real-time application. The objective of this work precisely is to
apply the pipeline used in [5], based on Convolutional Neural
Networks (CNNs), to our dataset. However, a secondary

Fig. 1. Ant Neuro System channel map with electrode grouping. Purple:
frontal electrodes, green: left and right temporal electrodes, red: central
electrodes, orange: parietal electrodes, black: occipital electrodes.

objective is to understand which areas of the brain, as well
as which frequencies, give the most information regarding
the imagined speech. By limiting the features to the essential
electrodes and frequencies using this knowledge, we hope to
help the CNN avoid overfitting.

II. MODELS AND METHODS

A. Dataset

EEG data was acquired from 1 subject trained for 5 con-
secutive days. Each day, the subject performed a total of 90
trials imagining different syllables (45 times “fo” and 45 times
“gi”).

The participant is asked to imagine the syllable “fo” or
“gi” depending on color cues shown on a screen (pink and
blue, respectively), and internally pronounce it multiple times
guided by the fixed rhythm of an auditory cue. The duration
of the imagery task is 5 seconds. EEG signals were recorded
using a 64-channel Ant Neuro System with sampling rate
512 Hz. During each trial, a Random Forest model tries to
predict which syllable was imagined based on the subject’s
brain recordings. As the days and trials go on, the subject
learned to adapt to the model. Therefore, we expect the
classification task to be easier for the trials from day-4 and 5
than day-1 and 2.

Eventually, the brain signals are extremely sensitive to many
environmental conditions, making the recordings from two



different days and even trials potentially very different. Hence,
a crucial point of the study is that the models are trained
and evaluated for each day separately and independently.

While we originally worked on the raw EEG signals using
denoising and filtering methods such as EMD decomposition
and Independent Component Analysis, we were at some point
provided with a clean dataset including 5 days of trials from
a single subject.

B. Pre-processing

The following pre-processing was performed:
1) Time window selection, to isolate the speech imagery

time window in each epoch;
2) Baseline correction, by subtracting the average of the

signal between -1.5 s and -1 s of each trial;
3) Electrode grouping according to the electrode position,

as shown in Figure 1;
4) Frequency band division, as shown in Table I.

EEG Waveform Frequency Range
Delta 1-4 Hz
Theta 4-8 Hz
Alpha 8-12 Hz
Beta 12-25 Hz

Low Gamma 25-40 Hz
High Gamma 40-70 Hz

TABLE I
FREQUENCY BANDS IN EEG SIGNALS.

C. Features

Following [5], the pre-processed channels from Section II-B
are transformed into images to be given to a Convolutional
Neural Network (CNN). The input of the CNN is a matrix that
contains the FFT of the differences between every couple of
electrodes. The resulting input is an image of a single channel,
of dimensions NT

2 xNE(NE−1)
2 where NT is the number of

timesteps and NE the number of electrodes.
Feature selection, i.e. choice of electrode group and fre-

quency band, was done based on the results in Section III.
For electrode group and frequency band selection, the power
spectrum of the channels was given as input to the model.

D. Models

The following models were tried out:
• Random Forest

We used a standard Random Forest Classifier with a
maximum depth of 3 nodes. This shallow depth allows us
to use numerous trees (their number being fixed at 300)
and still train and evaluate rapidly.

• Logistic Regression
We used Logistic Regression adjusted using Ridge regu-
larization.

• Convolutional Neural Network

The random forest and logistic regressions were chosen for
their short training times and simplicity. Those two models

were thus used to perform the features optimization. They
approach the representation of the data in two very distinct
manners, which allows us to better estimate the relevance of
our features for different types of machine learning techniques.
The CNN was the final model to which the features optimiza-
tion supposedly benefits.

III. RESULTS

A. Features optimization

The following section evaluates the different combinations
of features, i.e. electrode groups and frequency bands, by opti-
mizing random forest and logistic regression. The models were
optimized on each combination from the recordings of day 4,
as they are supposedly better adapted to the classification task.
The best model in each case is then evaluated on the remaining
days (1, 2, 3, 5) (Figures 4 and 5).

The Random Forest model, used on the clean data of
day 4, produces the results shown in Table II. The best
combination appears to be Gamma frequencies and Right
Temporal electrodes, reaching around 0.9 accuracy. Since the
test subset contains a small number of samples (15 samples, 5
cross-validation folds), a slight difference in accuracy should
not necessarily be interpreted as significant.

The Logistic regression model, used on the clean data of
day 4, produces the results reported in Table III. The best
combination appears to be High Gamma frequencies and
Right Temporal electrodes, reaching around 0.87 accuracy.
The Param column indicates the inverse of the regularization
weight (the higher the Param, the less the model is penalized).
As expected, the logistic regression needs that the number of
features be limited to perform well on unseen samples.

Using both models, we compared the performances using
different groups of electrodes (Figure 2) and different fre-
quency bands (Figure 3). We can conclude that the right
temporal lobe area gives the most valuable information among
all brain areas considered. The central area gives similar
information, while the others drop significantly. The occipital
area does not seem to help the classification task. Regarding
the frequency ranges, the Gamma band is essential - especially
the high gamma frequencies. According to Figure 3, using
only the high gamma frequencies instead of both low and high
gamma or all frequencies allows to gather almost all of the
important information while reducing the number of features.

B. Convolutional Neural Network

Two CNN models were trained and evaluated. The Baseline
CNN is trained on the FFT of electrodes difference input
using all electrodes and all frequencies. The dimensions of
those images are 1x1281x1891. The Optimized features CNN
is trained on the FFT of electrodes difference input but the
features are filtered accordingly to our findings during the
features optimization phase:

• Right and left temporal electrodes only;
• Applying a bandpass filter of critical frequencies (40Hz,

70Hz) corresponding to the High gamma frequencies;



Frequencies Electrodes Train acc Train std Acc Std Param n features
hgamma, lgamma right temporal 0.9968 0.0063 0.9125 0.0935 2 4509
hgamma, lgamma right temporal 1 0 0.9125 0.0637 3 4509

all central 1 0 0.8991 0.0632 3 9519
all right temporal 1 0 0.8983 0.0853 2 4509

hgamma, lgamma right temporal 0.9494 0.0116 0.8875 0.1000 1 4509

TABLE II
BEST COMBINATIONS WITH RANDOM FOREST.

Frequencies Electrodes Train acc Train std Acc Std Param n features
hgamma right temporal 1 0 0.8733 0.0685 10 4509
hgamma right temporal 1 0 0.8733 0.0685 100 4509
hgamma central 1 0 0.8616 0.0911 10 9519
hgamma right temporal 0.9810 0.0063 0.8608 0.0916 1 4509
hgamma central 1 0 0.8491 0.0927 100 9519

TABLE III
BEST COMBINATIONS WITH LOGISTIC REGRESSION.

Fig. 2. Average accuracy over all combinations of frequencies and model
hyperparameters, for different selections of brain areas. The random forest
yields the upper accuracy for every area, while the lower is logistic regression.

• Keeping only the coefficients of the spectrum correspond-
ing to frequencies 25Hz to 70Hz after the FFT has been
computed. While frequencies 25Hz to 40Hz have been
filtered, keeping them keeps the images dimensions closer
to a square image.

The dimensions of the images for the optimized features CNN
are 1x225x153.

Both models use the same type of architectures and are built
upon the same convolutional blocks. However, the baseline
CNN includes more of these blocks as its input images
have larger dimensions, requiring more downsampling before
the linear layers that constitute its classification head. The
difference in architecture did not play any role in the difference
in performances between the models, as the baseline CNN
could not yield better accuracies even with fewer weights and
filters. We compare the models in the following manner:

Fig. 3. Average accuracy over all combinations of electrodes and model
hyperparameters, for different frequency bands. Once again, the Random
Forest classifier is the upper accuracies and logistic regression is the lower
ones.

Fig. 4. Evaluation of a random forest with optimal features and maximum
depth on each day. The optimized features do not significantly change the
results, which is result of the random forest’s ability to avoid overfitting.



Fig. 5. Evaluation of a logistic regression with optimal features and regu-
larization parameter on each day. Contrary to the random forest, the logistic
regression is unable to correctly predict unseen samples if all frequencies
and electrodes are used. The optimized features succeed in bringing enough
valuable information to almost catch up to the best random forests’ accuracies
while considerably reducing the amount of features.

• Each CNN is trained and tested on each day indepen-
dently using 4-fold cross-validation;

• The Binary Cross-entropy is used as cost function.
• The training phase lasts for 20 training epochs, which

was found to be sufficient to reach optimal test results.
• For each day, we gather the mean training loss, test loss,

accuracy as well as their standard deviations.
• No dropout is used in either model.

An NVidia RTX 3060 Laptop was used to train the models.
The Optimized features CNN is significantly quicker to train as
it includes less parameters and takes smaller inputs, requiring
only a few seconds to complete 20 epochs. The results of
the comparison are given in Figures 6 and 7. The Optimized
features CNN performed significantly better overall, reaching
accuracies superior to those of the best random forests on days
2 and 5. It still performed worse than the random forests on
the other days, even though those are much simpler models.
Nonetheless it is likely, given those results, that a CNN can
outperform the simpler algorithms by fine-tuning its number
of weights and using specific layers such as dropout.

IV. DISCUSSION

Through this work we were able to identify the important
features for decoding covert speech in terms of frequency
bands and electrode locations. We showed that simple Random
Forest models are able to reach accuracies of over 90% in the
precise conditions of the experiments, with subject training
over several days. Eventually, we showcased the beneficial
effect of using the best specific frequencies and electrodes
to help logistic regressions but also a convolutional neural
network to avoid overfitting. Nevertheless, the conditions of
the study are extremely precise and testing the same method
on another subject is critical to confirm the efficiency of the
method. Eventually, the possibility of using such models in

Fig. 6. Comparison of the two CNN models in terms of loss.

Fig. 7. Comparison of the two CNN models in terms of prediction accuracy.

practical application remains a question, which requires online
testing to be answered.
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