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“Food” is an Emerging Topic for
Information Technology.
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Food

Food, clothing and shelter: indispensable for our
daily life.

Food is related to many different fields.

* Nutrition How can IT support them?

* Cooking, Recipes
¢ Healthcare, Diet

e Social Interaction
* Food Marketing

* Agriculture

® CUI'I'U re Oct. 2016
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The report revealed that
every country, with the
exception of those in sub-
Saharan Africa, faces
alarming obesity rates -- an
increase of 82% globally in
the past two decades.
Middle Eastern countries are
more obese than ever,
seeing a 100% increase
since 1990.
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“
b
ic}
T
£
=
=
=
o
o}
2
=
=
-
=
]
r
M
T
&




Fatter Still

(Scientific American Avug.

2016)

* The world is entering

new era of severe
obesity.

* Humans grow heavier.

e BMI growth rate Before
vs After 2000. Positive in
almost all countries.

How Fast We Gain Weight

Average weight since 2000 has risen in
most countries (above horizontal axis) and
dropped in a few (below axis).

BMI
increased
more rapidly
after 2000
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Technology Progress for
Daily Healthcare

Energy(Food) Energy
Intake Consumption

Vial Signs




General smart phones apps for

food recording
e Smart phones are the most familiar device.

* However, text input is not easy.

eaetsalBAAY
Diary

‘ Tue, 4 Jan }

Goal Food | Exercise’ Net
1409 598 -100 498

CANCEL | Q ha T @) 09:54 -

@ Breakfast

oatibix

23V
Limit to a brand:
— HIAUENG

HLIUAG

7 results found

4 100 ~—> 2

alories 181 keal

an Jourite

72RBA BRIFEEDLEAUV Hhvy
730, Bg

My Meal Mate oct 2016 BeCalender




K. Aizawa, M. Ogawa, FoodLog: Multimedia Tool for Healthcare
FoodLoq e b IRERINEEtfons, IEEE MultiMedia, vol. 22, no. 2 pp.4-9, 2015

foolog Inc

publicly available 2009~ ) (publicly available 2013 ~)

(1) FoodLog Web : Food Diary (2) FoodLog App : Food recording assisted by image retrieval
Analysis and visualization of photos of food record http://app.foodlog.jp/
http://www.foodlog.jp/ '

FoodLog s the world's first web service for food-ogging. You can record foods

FoodLog Appisan application which helps us recording dally meals easily
and precisely

you eat and manage your dietary habit just by submitting photos you take You can record the name and amount of meals you eat with little effort

Foodlog service analyzes dietary balance from photos taken and displays the FoodLog App allows users to employ meal photos to help them input textual
result, You can see your food record in a calender format, which makes it easy for discription based on image retrieval, Itis amazinaly helpfull

you ta understand your dietary life with FoodLog
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K. Aizawa, M.Ogawa, K. Waki, H.Takimoto, et al.
FOOd |-09 APP Journal of Diabetes Science and Technology 2014

#Foodlog app (lauched July 2013)

= visual search (within personal data)
m text search

- free 'ex' mput meal name volume energy

Bt (DB EER) 1AM

UFULAROES
WER (KLA)
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Foodlog App

#Foodlog app (vpdated May 31 2016)

= food/non-food image detection : deep learning

= food recognition: deep learning

= visual search (within personal data)

m associative search

= web search
m text search >
m free text input

Oct. 2016



Foodlog App
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Foodlog:
Multimedia Food Recording App

Photo, Food Recognition
food region Visual Search in Personal History

Image based assistance

Update the

Personal
History

Partial Associative Search *
alr(tla tex(‘;  Text Search
or keywor -Web Search

List of Candidates,

- Selection

-Volume

*Free text input if necessary

Food
Record

Text based system
* S.Amano?f{i,&?zlgwa, M.Ogawa, MADiMa 2016



FOODLOG PLATFORM & TOOLS

More than 350,000 users

#MCam'!  Applications

including all.
:‘ " =

i [
i . ;3’3"‘!2’ Healthcare
- . » /Medical
Data-Sources ~J W et
e Social Networks
\crawlmg = A »

Photo Sharing
Service u \

- o S O oy

Smartphone's
Camera

Location &
Restaurant

Food-related Databases

Management Tool

» foo.log Inc, a startup

» Cloud based Platform
for food recording > WebAPI is provided to more

» Reuse in various applications than 30 organizations.

> New services Oct. 2016



Related Works

Below are the food recording services also making

use of

image recognition. Both became public very recently.

Detection of multiple foods.

# TADA | # Snapit (Lose it)

technology assisted
dietary assessment

Research
purpose

Details ?



Collaboration with our Univ. Hospital:
Self Control Assistance Tool For Diabetes

DialBetics assisted by FoodlLog
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Geographical Distribution of

Food Photos of Foodlog

# More than 4M food records with more than150k
unique classes captured by the app since July 2013.




“Food” is very Open World
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Observation of the hig food data

#Huge variation of appearances of objects

= High intra-class diversity

= High inter-class similarity

= Continuous generation of new classes

= Large personal bias

= Object size statistics

#The data of these observation is hefore
avtomatic recognitionrs 0



Distribution Food Data #T1

All classes
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Intra-Class Diversity

® “Yogurt” in our dataset

Significantly different visual appearance
. of|gNly depending on Users



Inter-Class Similarity

® “Curry” in our dataset

Pork curry Beef curry Chicken curry

Indistinguishable by visual appearance

Oct. 2016



Continuous Appearance of New Classes
Foodlog Data #T12

New Class Appearance
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20%
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® W7 > > app. 49/

Date
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A A&
TN LN LN LT e LN Y

“new_class” to the entire database of all users.
The statistics is before the update (image recognition).

Oct. 2016



Close up Foodlog data #T3

# Analysis of first 1M food recoding data of general

public users.
@ “70k” unique food names.
#only 2k names in default DB.
# New names and
customized names.
# Huge variation.
#We produced representative
names for normalization.

User ID

5901

Name

Hot black coffee

Date

Image

2013/7/17 11:14:13

S.Amand, € Rizawa, M.Ogawa, IEEE BigMM2015




Top 100 Representative Food Names among
First 1M FoodLog Records (Average of Users)
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Personal Tendencies
User A Six weeks Data

—
FToi—o B =4 IR FELTer O-Jbr—F DedW I b TFIL sFnin —FoH &5 *ﬁn_ Eﬁ BY /N Sl

—+
I S — . -
VL D= TR TS su—nty 2aag L3y T/ — Fe—ta—dt DOBERM =My AL BB TIE— T

~ - ‘ — .
o h Ij .-/ I\ 4‘)3: Mh 2 T — TR Fao btk FFEIAT a7 ho 3 @y — oo R-nS - jDT’f-f
e NP Jtaesgte g d—F — Fe3UisiET mauEsl (33565

" (sandwich ) 7
-&59\‘ H—FL -z mEourn L 4 Z F-Ri-f- R v=FF0 SAFT

59505 AE—0—T MBEA T 5o I - xne BRIF o D=L vans AFT
EEEEE HouyF mramE wROE £ AT uh pE ( ce cream ) CAL-3Es BUA DI — s ToLT

EED oODwH FBEWM DLOL—T & #E B N7 EN 20TFa— Sei-Z BERESH EBHS—0 J28TILA) -4 FLTa—T a 3 : I/ I\

HIZTY

) — 459l tBAITA Pote Fowia LDS NFEEE SME #1257 BE HEEHA LI oS0l -4 S

Loslt ouzsst ﬂ*ﬂ%id' FAAL &5 &—7)1/ jj j I;l |/ BT Sl — w23 ( rice ba" )
Sy

—

7 °
— M=k k7SS ThAY S (Cafe au Ialt ) JARAYAZ s xti0 Levrim
( rice ) R N

Oct. 2016



User B
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Statistics of Object Slze n Imuges

#ILSVRC2013

#Food 101 dataset

captured from

foodspotting.com

#FoodLog (ours)
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Differences of Distributions-of-Object=Sizeo:s
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#Foodlog

m Log-Normal distribution
= Segmentation process

oct. 201=Multiplicative Process



(Gibra’s Law)
Multiplication of random variables results in
log-normal distribution

Oct. 2016



Current Research Issues

# “Food” is very open world. Variations among
classes and users are high.

# Recognition
= Unknown classes
= New classes
= Personalization

# Analysis of User Behavior in the context of
healthcare

# “Food” is an emerging topic, which is related

to many different disciplines.
Oct. 2016
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