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2.1 Introduction
Light plays a central role in the way we experience the world around us and
this perception is solely based on linear optics.1 For example, the rays with
different colours forming a rainbow can be computed individually and then
superposed without any interaction among them to form the complete shade
of colours.2 This means that all these phenomena can be described by the
linear wave equation and the response of matter to incident light is merely
linearly proportional to the electric field of the optical wave. Formally, the
response of matter is called the polarization P and represents the density of
dipole moments induced by the applied electric field E associated with the
optical wave.3 In linear optics, the polarization is linearly proportional to the
field,

P(r; t)¼ e0w �E(r; t); (2.1)

where e0 is the vacuum permittivity and w the linear electric susceptibility,
and we have assumed an infinite homogeneous material.4 We use the metre
kilogram second ampere (MKSA) unit system throughout this chapter and
consider non-magnetic materials [in which the relative permeability (mr)¼ 1].
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In our previous example of a rainbow, the water droplets are isotropic and
the linear susceptibility w is a scalar, which one often relates to the relative
permittivity er or to the refractive index n of the medium through the relation

w¼ er � 1¼ n2 � 1: (2.2)

However, in eqn (2.1), we emphasize that in the general case of an aniso-
tropic medium, the susceptibility w is a rank 2 tensor, i.e. a 3� 3 matrix.5

Anisotropy plays a key role in non-linear optics, as will be discussed in the
following paragraphs.

The linear eqn (2.1) is valid for small applied optical fields E(r, t), such as
those produced by most optical sources. When the applied field becomes
comparable to the interatomic electric field,6,7 105–108 Vm�1, linear optics is
not sufficient anymore to describe light–matter interactions and additional
terms must be included in eqn (2.1):

P(r; t)¼ e0 w �E(r; t)þ w
¼
(2) : E(r; t)E(r; t)þ w

�
(3) : E(r; t)E(r; t)E(r; t)

� �
: (2.3)

The second-order susceptibility w
¼
(2) is a rank 3 tensor, while the third-

order susceptibility w
�
(3) is a rank 4 tensor and “:” denotes the inner product.5

Eqn (2.3) can be understood as a Taylor expansion of the polarization as a
function of the applied field E(r, t). The susceptibility tensors may have
complex values, with the imaginary parts usually accounting for losses. To
simplify the discussion, we will however assume real-valued susceptibilities
in this section, however we will touch upon the importance of complex-
valued susceptibilities when discussing non-linear absorption in
Section 2.5.2.

For a vanishing applied field, the polarization also vanishes; for a small
excitation field, the response of matter is linear with the field, while it be-
comes non-linear as the field increases. The three terms in eqn (2.3) are
illustrated in Figure 2.1.

Figure 2.1 Illustration of the different polarization responses P of matter for a
given applied field E included in eqn (2.3): (a) linear, (b) second order or
quadratic, and (c) third order polarizations.
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As is customary in a Taylor series, the different susceptibilities in eqn (2.3)
decrease with their order:8 the magnitude of the linear susceptibility w is in
the order of unity as also evident from eqn (2.2) and does not have any units,
whereas higher-order susceptibilities have magnitudes w

¼
(2)B10�12mV�1

and w
�
(3)B10�24m2V�2, which indeed decrease dramatically with the order.8

One may therefore wonder why is it necessary to consider third-order non-
linear effects since they are significantly smaller than second-order ones,
even after multiplication of a higher power of the electric field? The main
reason for that is the symmetry of the non-linear material, which can prevent
second-order effects, whilst allowing third-order ones.

This is illustrated in Figure 2.2, where we show the second-order polar-
ization response P as a function of the applied optical field E at the top and a
centrosymmetric crystal with its atoms marked as black dots, and the centre
of symmetry as a red dot at the bottom. In such a centrosymmetric crystal,
the applied electric field changes the sign under the inversion operation:
E(�x1)¼�E(x1), as illustrated by the black arrows pointing in the opposite
directions. Conversely, the second-order non-linear polarization, which
obeys quadratic dependence on the electric field, must not change sign upon
inversion: P(x1)¼ P(�x1), as shown by the blue arrows pointing in the same
direction. This, however, is in contradiction with the crystal symmetry
constraints, which imply that the second-order non-linear polarization
should also change sign under inversion, i.e. P(�x1)¼�P(x1). The only way
to reconcile this contradiction is to infer that the non-linear polarization
vanishes, i.e. P(x1)¼ P(�x1)¼ 0. Hence, second-order non-linear processes
do not exist in the bulk of a centrosymmetric crystal. Note that the previous
discussion holds only when one considers the dipolar response of matter,
which forms the basis for deriving the macroscopic theory of dielectric
media,9 whereas we review other possibilities of second-order responses in
centrosymmetric material in Sections 2.4 and 2.5.

To conclude this brief introduction, we would like to mention that there
are some comprehensive textbooks, where the topic of non-linear optics is
treated in great detail.10–13

Figure 2.2 Illustration of the inexistence of SHG in a centrosymmetric system, see
text for details.
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2.2 Non-linear Wave Equation
Assuming an infinite homogeneous, non-magnetic, isotropic material, we
can derive from Maxwell’s equations the linear wave equation for the electric
field E(r, t) propagating in this medium:4

r2E(r; t)� 1
c2

@2E(r; t)
@t2

¼ 0; (2.4)

where c is the speed of light in this medium. It is interesting to note that
eqn (2.4) is a homogeneous equation without any source term; furthermore
this equation is linear [the principle of superposition applies and if E1(r, t)
and E2(r, t) are two independent solutions of the wave equation, then
E3(r, t)¼E1(r, t)þE2(r, t) is also a solution]; eqn (2.4) is therefore not fit to
handle non-linear optical effects. A general non-linear wave equation that
would apply to any physical system and be able to account for materials’
properties, such as anisotropy, is extremely difficult to derive. To gain in-
sights into the non-linear response of matter, one still usually assumes
homogeneous and isotropic dielectric media, leading to the non-linear
wave equation,13

r2E(r; t)� m0
@2D(r; t)

@t2
¼ m0

@2Pnl(r; t)
@t2

; (2.5)

where m0 is the vacuum permeability and we have used the relation
c2¼ (e0m0er)

�1 (we remind readers that we are considering non-magnetic
materials). In eqn (2.5) we have introduced the displacement,
D(r; t)¼ e0(E(r; t)þ w � E(r; t)), which accounts for the linear response of the
system, while Pnl(r, t) is the non-linear response of matter:

Pnl(r; t)¼ e0 w
¼
(2) : E(r; t)E(r; t)þ w

�
(3) : E(r; t)E(r; t)E(r; t)

� �
: (2.6)

We note in eqn (2.5) that the non-linear response appears as the source
term in that inhomogeneous equation. Furthermore, the optical field E is
on both sides of eqn (2.5), making it self-consistent. Keeping in mind that
we are dealing with non-linear phenomena, it is interesting to decompose
the solution of this equation in a series of successive solutions in what is
known as a Born series:14 assuming that the initial field is monochromatic
at frequency o, the source term in eqn (2.5) produces one or several new
frequencies through its non-linear response, e.g. o0, which was not present
in the initial field. Solving the wave equation gives an electric field that
contains these two frequencies o and o0 that will also appear in the new
source term in eqn (2.5), which may lead to additional frequencies in the
non-linear response of the system. Overall, this phenomenon repeats,
producing a plethora of interesting physical effects that are outlined in the
next section.
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2.3 Overview of Non-linear Phenomena
Guided by eqn (2.3), let us discuss separately second and third order non-
linearities. This is best done in the frequency domain by considering har-
monic optical fields with an exp(þjot) temporal dependence. Furthermore,
from now on we will assume scalar optical fields ~E(o; t)¼ ~E(o)exp( jot),
where the tilde symbol is introduced to emphasize that we are dealing here
with complex values. Consequently, the physical optical field is given by the
real part of the complex field:

E(o; t)¼<[ ~E(o; t)]¼ 1
2
[ ~E(o)exp( jot)þ ~E (o)exp(�jot)]; (2.7)

where the complex conjugate has been used for the last term. Furthermore,
we will remove any tensorial dependence in the susceptibilities to simplify
the following developments; the interested reader will find an extensive
discussion of tensorial effects in Boyd (2020).13

2.3.1 Second-order Non-linear Phenomena

Let us consider the second-order term in eqn (2.6) for the non-linear re-
sponse of matter: Pnl(o, t)¼ e0w

(2)E2(o, t). Introducing eqn (2.7) in the non-
linear response leads to a constant term plus a term at 2o:

Pnl(o; t)¼ Pnl(0)þ<[ ~Pnl(2o)exp( j2ot)]; (2.8)

with

Pnl(0)¼ 1
2
e0w(2) ~E(o) ~E (o) (2.9)

a time independent term that is proportional to the intensity of the incident
optical field, while the second term reads

~Pnl 2oð Þ¼ 1
2
e0w 2ð Þ ~E2 oð Þ: (2.10)

Eqn (2.8) indicates that light at the new frequency 2o has been created
through the non-linear process, so-called second harmonic generation
(SHG). Keeping in mind that this process is very weak, light at the funda-
mental frequency o remains dominant in the system, as illustrated in
Figure 2.3. We also note the appearance of the DC term, which corresponds
to the generation of a constant polarization density in the non-linear me-
dium, resulting into a DC voltage across this medium. This effect, which is
called optical rectification, does not produce an optical field but rather a
static voltage across the medium,15 which can also damage the material
under test and is very relevant for the topic of this book.16

The SHG intensity depends on the square of the interaction length l be-
tween the incident light and the material, and on the light intensity. Strong
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SHG requires therefore maximizing one or the other. We outline methods for
SHG enhancement in Section 2.6.

We now turn to so-called three-wave mixing process by considering
a polychromatic incident field with two frequencies o1 and o2,
described as

E(o1;o2; t)¼<[ ~E1(o1)exp( jo1t)þ ~E2(o2)exp( jo2t)]: (2.11)

For such an illumination, the second-order non-linear response of the sys-
tem will now include five terms at five different frequencies. First,

Pnl(0)¼ 1
2
e0w(2)( ~E1(o1) ~E1(o1)þ ~E2(o2) ~E2(o2)); (2.12)

which corresponds to a constant (o¼ 0) term, so-called optical rectification,
similar to that in eqn (2.9). Then, two SHG terms at o1:

~Pnl(2o1)¼ 1
2
e0w(2) ~E1

2(o1); (2.13)

and o2:

~Pnl(2o2)¼ 1
2
e0w(2) ~E2

2(o2): (2.14)

Also, finally, there are two terms that depend on the sum of the illumination
frequencies,

~Pnl(o1 þo2)¼ e0w(2) ~E1(o1) ~E2(o2); (2.15)

and on their difference,

~Pnl(o1 �o2)¼ e0w(2) ~E1(o1) ~E2(o2): (2.16)

These different processes are illustrated in Figure 2.4, where we introduce a
description similar to the Jablonski diagrams used in fluorescence,17

Figure 2.3 When a second order material is illuminated by a harmonic electric
field at frequency o (shown in red), light at the second harmonic 2o is
generated (shown in blue), as well as a DC field (shown in green). This
SHG process is weak and most of the transmitted light remains at the
fundamental frequency o.
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although, in the case of harmonic generation, the intermediate energy level
is not a real, but a virtual level.

The phenomenon of three-wave mixing forms the basis for many im-
portant parametric processes, such as optical frequency conversion (the in-
cident waves o1 and o2 are mixed to generate a wave o3¼o1þo2), optical
parametric amplification (the wave o1 is amplified through a pump wave o3,
while an idler wave o2 is created) and spontaneous parametric down con-
version (the material is pumped with o3 and two waves with frequencies o1

and o2 are generated).
While three-wave mixing finds many important applications, we must

point out that it is quite difficult to achieve with an arbitrary material, due to
the prevalence of the dispersion, i.e. the frequency-dependent response of a
material, which prevents achievement of the so-called phase matching
condition. If we consider for example sum frequency, with o3¼o1þo2,
which gives the matching condition for the waves’ energies, we must also
fulfil a similar condition for the momenta of these three waves:

k3 ¼ k1 þ k2: (2.17)

Eqn (2.17) indicates that the phases of the three waves must advance con-
comitantly to sustain the generation of the new wave at frequency o3 from
the original waves at o1 and o2. Keeping in mind that k¼on/c0, with c0 the
speed of light in vacuum and n the refractive index at the corresponding
frequency o, one notes that fulfilling eqn (2.17) in a dispersive material is far
from trivial and can only be achieved by taking advantage of the different
refractive indices available in an anisotropic crystals.12 We will see in
Section 2.4 that this phase matching constraint can be alleviated in specific
nanostructures.

2.3.2 Third-order Non-linear Phenomena

Let us consider the third order term in eqn (2.16) for the non-linear response
of matter: Pnl(o, t)¼ e0w

(3)E3(o, t), where we have again neglected the vectorial

Figure 2.4 The different three-wave mixing phenomena that can occur in a second
order non-linear material: (a) second harmonic generation (SHG),
(b) sum frequency generation (SFG), and (c) difference frequency
generation (DFG). Optical rectification, which produces a constant
(o¼ 0) field is not shown. In the energy level description, the dashed
lines correspond to virtual levels.
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character of the electric field and the tensorial nature of the susceptibility.
Following what was done for second order processes, we could now study
four-wave mixing by considering a polychromatic illumination with waves at
the frequencies o1, o2 and o3, which will produce a response of the matter
at 22 different frequencies, including, for example o1

3, o1þo2þo3, o1þ
o2�o3, 2o1þo2, 2o3�o3, and so on. We will however limit our discussion
to the simpler case where the three incident waves are at frequency o and the
generated wave at frequency 3o, the so-called third-harmonic generation,
illustrated in Figure 2.5.

Using a similar approach as for SHG, we obtain the following two terms
for the third-order non-linear polarization response:

Pnl(o; t)¼<[ ~Pnl(o)exp( jot)þ ~Pnl(3o)exp( j3ot)]; (2.18)

with

~Pnl(o)¼ 3
4
e0w(3)j ~E(o)j2 ~E(o); (2.19)

and

~Pnl(3o)¼ 1
4
e0w(3) ~E

3(o): (2.20)

The first term in eqn (2.19), which contains the non-linear suscepti-
bility and the field intensity is often viewed as a field-dependant
material, which susceptibility changes with the intensity of the applied
field. This effect, known as optical Kerr effect,13,18 can be used to control
light with light, e.g. for switching or self-focusing.19 In Section 2.5.2, we
will see that other important processes that occur in nanostructures,
such as two-photon absorption, stem from the third-order non-linear
response of matter.

2.4 Surface Non-linear Effects
The surface contributions to the even-order non-linear effects are of par-
ticular importance, since, within the dipole approximation, they occur only
in non-centrosymmetric systems.13 In turn, a surface contribution to the
odd-order effects was also reported,20 although it may be generally con-
sidered as negligible.21 In this section we focus on second-order surface
non-linearities, which have remained within the scope of non-linear optics
research for more than half a century.22

Figure 2.5 Illustration of third harmonic generation in a w(3) material.
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In principle, the surface of any material possesses a non-zero surface-
normal component for the second-order susceptibility tensor, since the
inversion symmetry (centrosymmetry) is naturally broken at the interface
between two optically different materials.23–25 This fact was first demonstrated
experimentally in 1962 by Terhune et al. via SHG from a surface of calcite,26

which is a centrosymmetric crystal. A few years later, Brown et al. reported
SHG in reflection from the surface of a silver mirror,27 whereas Bloembergen
et al. demonstrated that this phenomenon is present at the surfaces of other
metals, as well as semiconductors.28 In recent years, SHG from noble
metals has attracted particular interest, as it supports surface plasmon (SP)
resonances.29 SPs – delocalized electron oscillations at metal–dielectric
interfaces – allow concentration of light in regions smaller than the diffraction
limit30 and thus are associated with the significant enhancement and
gradients of the electric field across the metal–dielectric interfaces that lead
to the amplification of non-linear optical processes.13,31,32 Furthermore, it
was recently shown that a strong electric field gradient itself may even
increase the breakage of the symmetry at the surfaces of a plasmonic cavity
made of centrosymmetric materials.33

There are two principal types of SP’s: the surface plasmon polariton
(SPP)34 – an electromagnetic mode that propagates along a metal–dielectric
interface – and localized surface plasmon (LSP)35 – a mode confined to the
surface of subwavelength-sized metal particle in a dielectric environment.
Both SPP and LSP can be used for the enhancement of weak non-linearities
at the interface between centrosymmetric metals and dielectrics. The first
demonstration of the surface plasmon-enhanced optical SHG from a thin
silver film36 was reported by Simon et al. in 1974, whereas a plethora of both
propagating and localized plasmon-enhanced non-linear systems are de-
scribed in recent reviews.22,37–40

Generally, the non-linear surface polarization at frequency o3, induced in
a second-order process by the excitation waves at frequencies o1 and o2 is
given by a product:

P(2)
s (r;o3)¼ e0d(r� rs) w¼

(2)
s (o1;o2;o3) : E(r;o1)E(r;o2); (2.21)

where d is a Dirac delta function and rS is the position vector of the surface.
From symmetry considerations, the second-order susceptibility tensor at
the interface between isotropic and centrosymmetric materials has only
three independent elements: w(2)>>>, w(2)>JJ and w(2)JJ>,23 where > and 8 denote
perpendicular and parallel to the surface components, respectively. Thus,
the surface non-linear polarization for a second-order process can be
written in a simplified form (here, we also omit spatial dependence of the
fields):

P(2)
s ¼ e0 u> w(2)>>>Eo1

> Eo2
> þ w(2)>JJE

o1
J Eo2

J

� �
þ uJw

(2)
J>J Eo1

> Eo2
J þ Eo1

J Eo2
>

� �h i
;

(2.22)
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where u> and u8 denote respectively unit vectors orthogonal and parallel to
the surface. It should be noted, however, that surfaces of crystalline ma-
terials, even simple crystal classes, such as cubic, exhibit additional in-

dependent w
¼
(2)
s elements (making up a total of 11 non-vanishing elements),

which are anisotropic, i.e. which are dependent on the angle between pump
polarization and crystalline axes.41,42

According to Rudnick and Stern,43 the three tensor elements can be re-
lated to the frequency-dependent linear electric permittivity e(o) of the metal
via the phenomenological parameters a and b:

w(2)>>> ¼ a(o)
ee0

8mo2 (e(o)� 1) (2.23)

w(2)JJ> ¼ b(o)
ee0

8mo2 (e(o)� 1) (2.24)

where e andm denote the electron charge and mass. The third element, w(2)>JJ,
was shown to be negligible.44,45 Besides, Rudnick and Stern distinguish
another component of the second-order susceptibility that is related to the

bulk contribution, w(2)bulk ¼ d(o)
ee0

8mo2 (e(o)� 1), and will be discussed in the

following section.
Typically, in the case of an interface between an isotropic metal and an

isotropic dielectric, eqn (2.22) can be simplified even further:

P(2)
s> ¼ e0w

(2)
>>> E>j j2; (2.25)

while the in-plane component of the non-linear surface polarization can be
neglected, P(2)

sJ ¼ 0, since w(2)>>> is larger than other surface and bulk con-
tributions by at least an order of magnitude.44,46–49 Experimentally obtained

absolute values of w 2ð Þ
>>> in SHG experiments with the excitation wavelength

l0¼ 810 nm, widely used for plasmonic metals, are 7.67� 10�20 m2 for gold,
1.07� 10�19 m2V�1 for silver, 5.00� 10�20 m2V�1 for copper and
1.00� 10�18 m2V�1 for aluminum.48

When the simplified eqn (2.25) is combined with an appropriate numer-
ical technique, for example, based on the boundary elements method, this
simplification allows us to efficiently and accurately model surface SHG
from metallic nanostructures.50–53 Here, we consider the topical example of
a gold nanoparticle immersed in water, i.e. the background permittivity is
em¼ 1.77, that mimics typical experimental conditions,54 simulated using
the surface integral equation (SIE) approach.55 Figure 2.6 shows the linear
surface charge density and the non-linear polarization distributions at the
surface of a spherical nanoparticle that has a diameter of 40 nm, as well as
the linear and non-linear near- and far-field distributions, when it is excited
at the fundamental wavelength l0¼ 800 nm. Whereas the linear response of
the nanoparticle is purely dipolar, the second-harmonic radiation shows
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distinct quadrupolar features. This can be clearly seen from the angular
distribution of the x-polarized component of the SHG, shown in Figure 2.6(f),
which exhibits four petals in the scattering diagram that is typical feature of
quadrupolar emission. This observation is consistent with a mode analysis
based on the non-linear Mie theory53,56–60 as well as some other analytical
models.61–63

2.5 Bulk Non-linear Effects
In this section we review second- and third-order non-linear effects that stem
from the bulk structure of the material. Among the second order processes,
we highlight SHG in both symmetric and non-centrosymmetric media. For
the third-order processes, we briefly review some parametric and nonpara-
metric processes that occur in various materials.

Figure 2.6 Linear and second-harmonic response of gold nanoparticle immersed
in water [refractive index (n)¼ 1.33] with diameter of 50 nm under
plane-wave excitation. (a) Normalized electric charge density distri-
bution at the surface of the sphere. (b) Pseudo-color image of the
scattered electric field in the linear regime (logarithmic scale). (c) Far-
field distribution of the x-component of the scattered electric field
(normalized). (d) Non-linear polarization distribution at the surface of
the sphere. (e) Pseudo-color image of the electric field at the second-
harmonic frequency (logarithmic scale). (f) x-Component of the SHG
radiation pattern (normalized).
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2.5.1 Second-order Non-linearities

As opposed to surface non-linearities, only non-centrosymmetric systems
and materials exhibit a bulk second-order non-linear response. Thus, the
number of independent non-zero elements for the second-order suscepti-
bility tensor w(2)

s
depends on the microscopic symmetries of the material. The

second-order bulk polarization is given by:

P(2)
b (r;o3)¼ e0v

(2)
b (o1;o2;o3) : E(r;o1)E(r;o2): (2.26)

Plugging this non-linear polarization into the wave equation [eqn (2.5)]
allows finding nanostructure geometries that produce significant enhance-
ment of SHG (as well as other second-order non-linear processes) in the
presence of resonances at the fundamental and/or second-harmonic (or
other involved waves) frequencies.11 In practice, however, fabrication of such
resonant nanostructures is complicated due to the difficulty of nanoscale
patterning of non-linear materials. Only in recent years have progress in the
nanoprocessing techniques for noncentrosymmetric group III–V compound
semiconductors, such as GaAs,64,65 GaP66–68 and AlGaAs,69–73 and advances
in thin-film LiNbO3 technology, allowed the experimental realization of such
nanostructures.74 We shall return to the discussion of enhancement of the
non-linear response in the nanostructured non-centrosymmetric materials
in Section 2.6.

Although in centrosymmetric material systems, the second-order non-
linear response predominantly stems from the effective surface contri-
bution, the bulk contribution to non-linear response cannot be neglected in
certain configurations when the dipole approximation is no longer appli-
cable, in particular when strong electric field gradients are present.63,75,76

In this case, the non-linear bulk polarization can be rewritten to include
quadrupolar terms:76

P(2)
b ¼ e0(bEr�Eþ gr(E �E)þ d0(E �r)E); (2.27)

where b, g and d0 are the material parameters that describe the electric
quadrupole and magnetic dipole interactions. This bulk contribution is
also often referred to as nonlocal,45 since it involves the spatial deriva-
tives of the electric fields, making the non-linear polarization at a point r
in space dependent on the electric field at other points r 0. Although bulk
and surface contributions to SHG from noble metal surfaces were shown
to be distinguishable,44 the bulk contribution is often considered to be
negligible. Furthermore, since noble metals are opaque to electro-
magnetic radiation at optical frequencies, the non-linear phenomena
occur in the vicinity of the surface, within the penetration depth (a few
tens of nanometers), being effectively a surface effect. On the other hand,
bulk contributions were shown to have a significant role in the second-
order non-linear processes in centrosymmetric dielectrics, such as Si77–80

and Ge.81
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2.5.2 Third-order Non-linearities

Since third-order non-linear effects also exist in the presence of an inversion
symmetry in the system, third-order (and higher odd-order) susceptibilities are
non-zero in the bulk of a much wider range of materials, regardless of their
structural symmetries and state.8,13 For example, THG generation was dem-
onstrated in both crystalline and amorphous solids,82 in liquids,83 gases,84 and
even in plasma.85 Microscopic symmetries of the materials define the number
of non-zero and independent elements of the w

�
(3) tensor.13

Let us consider here an illustrative example of a dielectric that has a
simple cubic crystal structure. Under plane wave excitation along the z-axis
(in a Cartesian coordinate system), only two elements of the w

�
(3) tensor

contribute to the THG process:8,41,86 w(3)xxyy and w(3)xxxx. Thus, the components of
the third order non-linear polarization in a THG process are given by the
following expression:

P3o
j ¼ e0 3w(3)xxyyEj(E �E)þ w(3)xxxx � 3w(3)xxyy

� �
Ej

3
� �

; (2.28)

where index j¼ x, y, z denotes the Cartesian component of the induced
polarization.

In the case of an isotropic medium w(3)xxxx ¼ 3w(3)xxyy ¼ w(3)JJJJ

� �
, eqn (2.28) is

reduced even further since the third-harmonic polarization is parallel to the
excitation electric field:

P3o
J ¼ e0w

(3)
JJJJ(EJ)

3: (2.29)

It should be noted that metals with a cubic crystal structure (such as the
plasmonic metals mentioned in the previous section) also exhibit THG upon
illumination with intense optical fields, however it can be mostly observed in
reflection,87,88 since metals are essentially opaque at optical frequencies,
which renders the description of this process considerably more involved.86

The intensity-dependent refractive index, also referred to as the optical Kerr
effect, briefly mentioned in Section 2.3, is another parametric third-order non-
linear phenomenon, which is widely utilized in various optical devices. For
example, the Kerr effect gives rise to various self-action processes, such as self-
focusing,89 and self-trapping,90 and enables optical biostability for all-optical
switching,91 as well as soliton propagation of laser pulses.13 In its simplest
form, the non-linear index of refraction is given by the expression:

n¼ n1 þ n2I (2.30)

where n1 denotes the (usual) linear refractive index of the medium and n2 is
the second-order refractive index and I is the time-averaged intensity of the
electric field, given by I¼ 2n0

1e0cjEj2. It can be shown that the non-linear
refractive index is related to the susceptibility by:

n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w(1) þ 3w(3)jEj2

q
: (2.31)
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where we omit the indices of the susceptibility tensors, assuming an iso-
tropic non-linear medium.

Apart from the parametric four-wave processes, such as THG and Kerr
effect discussed above, other third-order processes, such as two photon
absorption (TPA), saturable absorption92 and stimulated Raman scat-
tering,93,94 have been studied in a vast variety of samples.13 These non-
parametric processes involve a net energy (or momentum) exchange between
the optical field and the material, i.e. the electromagnetic wave exerts work
on the medium. In a quantum-mechanical picture, upon interaction with
light, matter undergoes a transition from one real quantum state to another
one, as opposed to a parametric process, where the final matter state re-
mains unchanged and involves only short transitions to virtual levels. In the
case of TPA, two photons are simultaneously (via a virtual level) absorbed to
excite an atom of the non-linear medium to a real state. Within our for-
malism, such nonparametric processes can be described using a complex
susceptibility:

w
�
(3) ¼ w

�
0(3) þ jw

�
00(3); (2.32)

where w
�
0(3) and w

�
00(3) denote the real and imaginary parts of the third-order

susceptibility, respectively.
Among the materials discussed above, gold possesses a large, complex,

third-order susceptibility95 that manifests in both THG87,96,97 and TPA,98,99

and has been interrogated using various experimental techniques, e.g.
z-scan100 and non-linear photoluminescence (also often referred to as two-
photon photoluminescence) microscopy and spectroscopy. The exact mech-
anism of TPA in plasmonic metals remains under debate, especially in
nanostructures, where it can be altered by the excitation of the
resonances.101–106 One of the widely accepted plausible explanations is that
TPA is an effective third-order process, which involves two subsequent linear
photon absorptions via a real intermediate state, i.e. it is a cascaded w : w
absorption related to the linear susceptibility,107 rather than a coherent TPA.
More recently, new models of non-linear absorption and photoluminescence
have been discussed, which, in particular, highlight the role of quantum108

and electronic thermal effects.109–111

Non-linear absorption is closely related to the topic of optical breakdown –
irreversible material damage caused by strong interaction of matter with
intense laser pulses.11 Multiphoton ionization of atoms can occur upon
excitation with a laser beam that has an intensity on the order of 10�11 W�2.
Although destructive effects caused by the optical breakdown are often un-
desirable, a controlled disruption or modification (such as two-photon
polymerization112) of the materials is widely applied in modern laser-based
nanoprocessing technologies. Here, we mention a few notable examples, not
attempting to provide an exhaustive list: 3D microscale and nanoscale
printing using photosensitive polymers,113–115 plasmonic color printing
using pulsed laser-writing,116–118 ablation of nanoparticles,119–121 and
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pulsed laser deposition,122–124 whereas many other examples of detailed
descriptions of these nanofabrication methods are provided later in this
book.

2.6 Enhancement of Non-linear Effects with
Nanostructures

The standard approach for maximizing the non-linear conversion efficiency
in traditional non-linear optics – the phase matching technique – is often
not applicable in nanostructures, since their characteristic dimensions are
smaller than the operational wavelength. Thus, alternative methods are
desired to enhance both surface and bulk non-linear phenomena in nano-
structured materials, which we briefly overview in this section.

As mentioned in Section 2.4, surface non-linear effects are typically weak
due to a low light–matter interaction volume, however, they can be enhanced
by virtue of field enhancement associated with the excitation of SP reson-
ance, even in the simplest prism-coupling (also known as Kretschmann)
configuration.36 Bulk non-linearities in dielectrics can be enhanced in a
similar way, by interfacing a non-linear dielectric with a plasmonic metal.125

Figure 2.7(a) shows schematics for an experimental demonstration of SPP-
mediated SHG in a non-linear (non-centrosymmetric) crystal placed atop of a
thin gold film.126 Such a simple arrangement can be improved by nano-
patterning the metal film in the lateral dimensions to match a specific
resonance wavelength and produce a stronger field enhancement to amplify
the targeted non-linear process.127–139

A particularly versatile and robust way to achieve such a resonant en-
hancement relies on rationally designed plasmonic metasurfaces – arrays of
plasmonic resonators with subwavelength dimensions and period –, which,
in recent years, became the subject of a broad interest in the research
community.140–145 One of the first experimental demonstrations is shown in
Figure 2.7(b), where the resonant plasmonic metasurfaces are coupled to the
resonance of the underlying non-linear material, which allowed achievement
of three orders of magnitude SHG enhancement.146 Yet, SHG can be amp-
lified even further by nanostructuring also the non-linear dielectric itself,
such that it supports even stronger field enhancement. Figure 2.7(c) shows
an example of such a metasurface that comprises gold nanorings filled with
LiNbO3.

147

More recently, group III–V compound semiconductors and LiNbO3 me-
tasurfaces became a subject of extensive research, enabled by the develop-
ment of thin-film growth and its subsequent nanopatterning technologies.
Such high-quality fabrication of dielectric nanostructures allows achieve-
ment of very high SHG yield in all-dielectric nanostructures,148–151 without
the need to resort to a plasmonic field enhancement. Figure 2.8(a) and (b)
show two examples of such metasurfaces with record high SHG efficiencies,
which were achieved using Mie-like152 and Fano153 resonances in thin-film
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LiNbO3 metasurfaces. Similar progress was reported for the third-order
[Figure 2.8(c) and (d) show examples of enhanced THG in Si154 and silicon
nitride (SiNx)

155 nanostructures] and even higher-order non-linear optical
processes.156–158

Last, but not least, we should mention that the aforementioned benefits of
nanostructured non-linear materials are also employed in the field of inte-
grated optics. Non-linear components of integrated optical circuits are piv-
otal elements of optical signal processing devices, for instance, fast
modulators, sum and difference frequency generators, isolators, and circu-
lators, to name a few.159 Although the phase-matching technique is applic-
able and widely used in optical waveguides, striving for miniaturization of
photonic chips calls for alternative solutions that involve nanostructured
materials. Figure 2.9 showcases two examples of waveguided SHG enhanced
in a nanoscale form-factor. In both cases, devices are comprised of materials
that are widely employed in standard photonic waveguide technologies:
Figure 2.9(a) illustrates a LiNbO3-based device,160 where enhancement is
achieved using metasurface-assisted phase matching, whereas Figure 2.9(b)
shows a hybrid plasmonic–AlGaInP161 waveguide, which benefits from the
SPP field-enhancement.

2.7 Summary and Outlook
The different non-linear effects that can occur in materials have been dis-
cussed and illustrated with some recent examples from the scientific lit-
erature. We have attempted to keep the underlying formalism as simple as
possible, avoiding for example a tensorial description throughout. However,
the different examples that were discussed have also highlighted that this
field of research is strongly linked to solid state physics and most effects
depend on the anisotropy of the system under study. Whilst this renders
non-linear optics complicated, it is also makes it fascinating and opens up

Figure 2.7 Various schemes for plasmonic enhancement of bulk SHG in non-
linear dielectrics. (a) Kretschmann (prism-coupling) configuration for
SPP-enhanced SHG in a bulk non-linear crystal. Reproduced from
ref. 126 with permission from American Physical Society, Copyright
1984. (b) Resonant plasmonic metasurface-enhanced SHG. Reproduced
from ref. 146 with permission from Springer Nature, Copyright 2014.
(c) Non-linear dielectric-filled plasmonic ring resonators. Reproduced
from ref. 147 with permission from American Chemical Society, Copy-
right 2015.
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many different venues to exploit, tailor and control the non-linear response
of materials and nanostructures. The strong optical fields required to trigger
these non-linear effects can often produce catastrophic optical damage or

Figure 2.8 Enhancement of bulk non-linearities using resonances in dielectric
nanostructures: (a) SHG in a resonant LiNBO3 metasurface. Repro-
duced from ref. 152, with permission from American Chemical Society,
Copyright 2020. (b) LiNBO3 membrane-based non-linear metasurface.
Reproduced from ref. 153 with permission from American Chemical
Society, Copyright 2022. (c) THG in silicon nanoparticles. Reproduced
from ref. 154 with permission from American Chemical Society, Copy-
right 2014. (d) Asymmetric THG image generation in Si/SiNx-based
metasurface. Reproduced from ref. 155 with permission from Springer
Nature, Copyright 2022.

Figure 2.9 Examples in integrated optics. (a) Non-linear metasurface-enabled SHG
in LiNBO3 waveguide. Reproduced from ref. 160, https://doi.org/
10.1038/s41467-017-02189-6, under the terms of the CC BY 4.0 license,
https://creativecommons.org/licenses/by/4.0/. (b) SHG in a hybrid non-
linear plasmonic waveguide. Reproduced from ref. 161, https://doi.org/
10.1038/s41377-020-00414-4, under the terms of the CC BY 4.0 license,
https://creativecommons.org/licenses/by/4.0/.
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useful material modification, which are exploited in other chapters of this
book.

Future fundamental research in this field of study should certainly focus
on improving our understanding of the non-linear response of materials,
including all its subtleties. These include the tensorial nature of the non-
linear susceptibilities, and the distinguishability, competition, and/or cor-
relation between surface and bulk non-linear effects. Overall, one may wish
for a more quantitative description of the non-linear susceptibilities for a
broad range of relevant materials, including for inhomogeneous systems
that can include several phases. Such data are the prerequisite for more
accurate numerical models of light–matter interactions in the non-linear
regime.55,58
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