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Pulling force enabled by unlocking the optical phase
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We demonstrate the possibility of achieving an optical pulling force without complex beam-shaping tech-
niques. By using optical pulses detuned from the resonant frequency of the structure, we create conditions in
which the spectral maxima of the excited current and of the incident field do not match. Therefore, the phase shift
between the two, which controls the optical force, becomes time dependent, thus enabling unexpected optical
effects. Particularly, it is shown that tuning the central frequency of the pulse produces a temporary pulling force
directed towards the illumination source.
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I. INTRODUCTION

Is it possible to induce on an object an electromagnetic
pulling force directed toward the illumination source? In-
terestingly, the contemporary answer to this question differs
from the one that could be given in the 17th century. Back
then, only optical pushing forces were known, e.g., as the
primary explanation for the comet tail deviation away from
the Sun [1,2].

Much later, in the second part of the 20th century, a series
of works performed by the Nobel Prize winner A. Ashkin
demonstrated the possibility of stable particle trapping with
light [3,4]. This ability to trap [5–7] stimulated further re-
search aimed at testing the limits of control over the position
of an object in terms of pushing [8], pulling [9], lateral control
[10–12], or a full three-dimensional (3D) manipulation [13].
Clearly, from the momentum conservation point of view, light
can transfer momentum to an object, leading to a pushing
force collinear with the light propagation direction. An oppo-
site effect may a priori appear impossible: A photon traveling
along one direction in the same medium cannot gain momen-
tum from a passive time-invariant system. Therefore, only a
pushing effect seems possible.

However, there are multiple approaches to circumvent this
limitation and obtain optical pulling on an object [9]. The
majority of them are related to the increment of the projec-
tion of momentum of a photon along a certain direction by
means of structured light, thus providing a recoil pulling force
on the object [9,14–16]. Other methods involve the use of
photophoretic forces [17], blackbody radiation [18], Casimir
forces [19], chirality [20–22], active media [23], plasmonic
surfaces [24], photonic crystals [25], gratings [26], metama-

*Contact author: andrei.kiselev@epfl.ch
†Contact author: olivier.martin@epfl.ch

terials and metasurfaces [27–30], and resonance frequency
detuning [31–33], among many others, as summarized in a
review article [9]. These pulling effects are always associated
with an average force that does not change over time.

Quite recently, temporal studies of optical forces in
nanophotonics revealed a plethora of effects that stem from
the intrinsic nonlinear character of electromagnetic forces.
Indeed, excitation with continuous wave illumination at fre-
quency ω0 effectively produces an optical force that oscillates
at frequency 2ω0 [34]; optical forces in the time domain
have many similarities to second harmonic and sum-frequency
generations [35–37]. For example, for illumination with two
slightly detuned waves ω0 and ω0 + �, the optical force
acquires a frequency difference component at frequency �,
which can lead to mechanical oscillations of macroscale
[38–40] and microscale [41–48] objects. An interesting fea-
ture of multifrequency illumination is the enhancement of
the instantaneous optical force caused by the beatings be-
tween different frequency components [34]. This effect was
observed in experiments with atoms and molecules for
two-frequency [38,49–53], four-frequency [54], and multifre-
quency [55] illuminations. In the case of nanoparticles, pulsed
illumination can also lead to an enhanced instantaneous op-
tical force that helps release stuck nanoparticles [56,57] or,
alternatively, helps fuse them [58,59]. It was shown, however,
that the total momentum transferred to the particle depends
only on the pulse power and not on beating effects [60].

Time-dependent studies of optical pulling forces also re-
vealed several interesting effects; for example, even a single
plane wave impinging on a film under normal incidence can
lead to a pulling effect that is reached for a fraction of the
pulse cycle [34]. This temporal pulling appears periodically at
frequency 2ω0 and is related to the oscillating (reactive) com-
ponent of the Poynting vector [61]. Since such a pulling effect
can be reached only for a fraction of the period, the time-
average force remains positive, which is consistent with the
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momentum conservation law [61]. One can also specifically
tailor temporally decaying fields such that the processes of
momentum transfer to the object and its back-conversion into
forward-propagating photons are separated in time, leading to
a temporal pulling effect over a few optical cycles [62].

Here, we explore a different approach to produce a pulling
force based on the idea of dynamic phase variation. We first
highlight in Sec. II the relation between the optical force and
the phase shift between the incident field and the response
of the structure. Generally, this phase shift is locked by the
geometry of the structure when continuous wave illumination
is applied; in this case, the average optical force is always
positive. To overcome this limitation, in Sec. III we show an
approach to dynamically change this phase shift by illuminat-
ing a structure with a pulsed laser with a central frequency
slightly shifted with respect to the object’s resonance fre-
quency. We demonstrate in Sec. IV that in specific cases the
phase shift starts to gradually change with time, leading to
the reversion of the optical force (optical pulling) for a few
optical cycles. Finally, we show in Sec. V other cases where
either fully positive or alternating positive and negative forces
can be achieved with a pulse and provide a comprehensive
explanation of these effects.

II. OPTICAL FORCES AND THE ROLE OF PHASE

Let us recall the fundamentals of optical force analysis
and provide a simple formula for an optical force acting on
a subwavelength object. In what follows, we highlight that the
phase difference �ϕ(J, Hi ) between the current J(t ) induced
within the structure and the incident magnetic field Hi(t ) in
the structure is responsible for the direction of the optical
force. Indeed, from the definition of the Lorentz force [61],

F(t ) =
∫

V
Re[ρ(r, t )]Re[E(r, t )]

+ Re[J(r, t )] × μ0 Re[H(r, t )]dV, (1)

where ρ(r, t ) is the charge density, E(r, t ) and H(r, t ) are
the total electric and magnetic fields, μ0 = 1.26 × 10−6 H

m
is the magnetic permeability of vacuum, and integration is
performed over the volume V of the object. Also, we assume
vacuum as the background throughout. Let us simplify Eq. (1)
by taking into account that the object is subwavelength and
that the incident wave is a plane wave propagating along the
z axis. In general, the electric, E(r, t ), and magnetic, H(r, t ),
fields in Eq. (1) can be represented as a sum of the incident (i)
and scattered ones (s) as

E(r, t ) = Ei(r, t ) + Es(r, t ), (2)

H(r, t ) = Hi(r, t ) + Hs(r, t ). (3)

The charges and current are related to the fields as

ρ(r, t ) = ε0∇ · E(r, t ), (4)

J(r, t ) = 1

μ0
∇ × B(r, t ) − ε0

∂E(r, t )

∂t
. (5)

Here, ε0 = 8.85 × 10−12 F
m is the permittivity of vacuum. By

inserting Eqs. (2)–(5) into Eq. (1), we obtain the force as
a result of interactions between the incident field and itself,

the incident-scattered fields, and the scattered-scattered fields.
The supplement of Chen et al. [63] showed that the incident
field does not produce an optical force on interacting with
itself. Indeed, without a scattering response, there can be no
force. Additionally, the scattered-scattered interaction is zero
when we assume only an electric dipolar response: An isolated
dipole radiates symmetrically and cannot produce an optical
force on its own. If we assume that the object scatters only as
an electric dipole (valid for subwavelength metallic nanopar-
ticles), the force arises only due to the interaction between the
incident and scattered fields; see Eq. (39) of the supplement
of Ref. [63]. Let us focus on the force along the z axis, which
can be either pushing or pulling. It can simply be verified that
since the field propagates along the z axis, the first component
in Eq. (1) is zero as there is no field along the z axis. Thus, the
optical force along the z axis takes the form

Fz(t ) =
∫

V
{Re[J(r, t )] × μ0 Re[Hi(r, t )]}zdV. (6)

For a subwavelength object, the fields and currents in
Eq. (6) can be approximated by their values at the center of
the structure, Hi(r, t ) ≈ Hi(r = 0, t ) = Hi(t ) and J(r, t ) ≈
J(r = 0, t ) = J(t ). Let us assume that the object is illumi-
nated at a single frequency ω0 with e−iω0t dependence. Let
us then find the time average of Eq. (6) by using the follow-
ing definition: 〈C(t )〉 = 1

T

∫ T
0 C(t )dt , where the averaging is

performed over the period of the wave T = 2π/ω0. Using
the fact that for two arbitrary complex numbers A and B
the relation Re(A) Re(B) = 1

2 Re(AB + AB∗) (where ∗ stands
for the complex conjugate) holds, Eq. (6) can be similarly
separated into two terms. The first one, Re(AB) in Eq. (6),
is proportional to Re[J(t ) × Hi(t )] ∼ Re(e−2iω0t ). This term
gives zero on averaging over a period T . The time-average
term in Eq. (6) is then attributed to the Re(AB∗) part and reads

〈Fz(t )〉T = 1
2μ0{Re[J(t ) × H∗

i (t )]}zV. (7)

For what follows, it is important to emphasize that for light
scattering, the response of an object, described here by the
current J(t ), is usually dephased with a factor �ϕ with respect
to the excitation—here the incident magnetic field Hi(t ) [64].
This phase shift depends on the scatterer and on the excitation
conditions.

We consider a harmonic incident magnetic field Hi(t ) =
Hi,0e−iω0t and the current retarded by �ϕ(J, Hi ), J(t ) =
J0e−iω0t ei�ϕ(J,Hi ), where Hi,0 ∈ Re, J0 ∈ Re and we have
introduced the phase shift �ϕ(A, B) = �ϕ(A(t ), B(t )) =
arg[A(t )/B(t )]. Here, arg is the argument of the complex
value. The time-average optical force then reads

〈Fz(t )〉T = 1
2μ0[J0 × Hi,0]z cos[�ϕ(J, Hi )]V. (8)

Therefore, the phase �ϕ(J, Hi ) determines the direction of
the time-average optical force. The total instantaneous force
along the z axis has the following form:

Fz(t ) = 1
2μ0[J0 × Hi,0]z Re(e−2iω0t+i�ϕ(J,Hi ) )V. (9)

Let us analyze the time-dependent and average terms in
Eq. (9), taking as an example a silver nanoparticle with
the radius R = 10 nm illuminated with an x-polarized plane
wave. The scattering cross section (SCS) corresponding to this
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FIG. 1. Scattering cross section (SCS, black line) of an isolated
Ag spherical nanoparticle with radius R = 10 nm. Relative phase dif-
ference �ϕ(p, Ei ) (orange line) between the electric dipole excited
in the nanoparticle and the incident electric field Ei as well as the
relative phase difference �ϕ(J, Hi ) (blue line) between the current J
induced within the object and the incident magnetic field Hi.

situation is shown by a solid black line in Fig. 1. For such
a system, only a single electric dipole is excited [65]. This
dipole can be described by a damped harmonic oscillator
model [66], which classically predicts the phase shift between
the electric dipole p and the incident electric field Ei within
the limits �ϕ(p, Ei ) ∈ [0, 180◦] (see the orange curve in
Fig. 1) [61,67]. Indeed, for a mass mh on a spring with spring
constant kh and losses 
h that is excited by a harmonically
oscillating force F (t ) = Fhe−iω0t , the equation of motion is

mh
d2x

dt2
+ 
h

dx

dt
+ khx = Fhe−iω0t . (10)

The solution for this equation is

x(ω0, t ) = Fh/m(
ω2

h − ω2
0

) − iω0
h/m
e−iω0t , (11)

with ωh = √
k/m. For ω0 
 ωh and low losses, the phase

shift between the coordinate x and the driving force is zero,
and the first two terms of Eq. (10) do not contribute to the
solution. The object therefore appears massless and lossless.
For ω0 � ωh the phase shift is 180◦ and is related only to the
first term in Eq. (10). Hence, at high frequencies the presence
of a mass introduces a phase shift. Finally, for ω0 = ωh, the
losses introduce a phase shift of 90◦. This harmonic oscillator
model is applicable for many systems, including plasmonics,
and can be applied to the system at hand [64,68].

In plasmonics, the harmonic oscillator model usually de-
scribes the dipole excited in the system [68]; to obtain the
current used in Eqs. (8) and (9), one has to recall that the
electric dipole p and the current are related by J ∼ dp/dt =
−iω0p. The factor −i leads to an additional phase shift
of −90◦ for J. The phase shift for the current then reads
�ϕ(J, Hi ) = �ϕ(p, Ei ) − 90◦, with �ϕ(p, Ei ) obtained di-
rectly from the oscillator model (see the blue and orange lines
in Fig. 1).

Let us now discuss the average and the instantaneous forces
in Eqs. (8) and (9). This will allow us to understand the
different force dynamics that one can obtain. Overall, the
amplitude of the average and instantaneous terms scales with
the SCS of the object as J ∼ √

SCS [61]. Additionally, the
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FIG. 2. Electromagnetic forces on an isolated Ag spherical
nanoparticle with radius R = 10 nm due to the magnetic component
of the Lorenz force in Eq. (9) for different phase shifts �ϕ(J, Hi ).
The dynamics for each curve is normalized with respect to the corre-
sponding absolute maximum.

average force is proportional to cos[�ϕ(J, Hi )] [see Eq. (8)].
Consequently, when the frequency of the incident wave ω0

matches the resonance frequency ωr of the system, the phase
shift �ϕ(J, Hi ) = 0◦, and the average force is equal to the
amplitude of the oscillating component of the force, which
follows from Eqs. (8) and (9). Therefore, the optical force is
positive at all instances of time; see Fig. 2, where Eq. (9) is
plotted for different �ϕ(J, Hi ). In this graph, we normalized
the force with respect to its maximum to highlight the overall
transition between purely positive and alternating positive and
negative forces. On the other hand, for a plane wave excitation
with a frequency ω0 
 ωr , the average force will be equal to
zero because the phase shift �ϕ(J, Hi ) → −90◦. This case
of zero average force with ω0 
 ωr is shown as a red line in
Fig. 2. Additionally, we indicate the phase shift �ϕ(J, Hi ) =
−45◦ as a green line, which corresponds to the intermediate
case where h̄ω0 ≈ 3.66 eV. In this situation, the force is over-
all positive, with short periods of time when the force reaches
negative values. However, this work aims to achieve optical
pulling with a negative average force. Equation (8) indicates
that this would be the case if �ϕ(J, Hi ) surpassed ±90◦,
which is not possible for monochromatic illumination (Fig. 1).
Indeed, if we plot the dynamics of the force for �ϕ(J, Hi ) =
−135◦, the average force becomes negative (black solid line
in Fig. 2).

In the following section we will show how to achieve a
phase shift that is inaccessible in Fig. 1 and obtain optical
pulling over a series of consecutive optical cycles using a dy-
namic phase variation based on electromagnetic interference
and beating.

III. UNLOCKING PHASE VARIATIONS

As seen from Fig. 1, the phase �ϕ(J, Hi ) that controls the
sign of the force appears to be locked by the structure and
the monochromatic illumination. Changing the geometry of
the structure does not solve the issue: The phase is still locked
within the bounds [67]. If we manage to change the phase
such that it surpasses ±90◦, the force can be reverted, which
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FIG. 3. (a) Schematics of the spectral representation of an object
with a response function r(ω), illuminated with an incident wave
having the spectrum ill(ω). The resulting scattering spectrum s(ω)
for a linear system is then s(ω) = ill(ω)r(ω). (b) Transformation of
an incident spectrum into a scattering one by a structure with a high
quality factor. (c) The incident magnetic field Hi and the excited
current J oscillating at frequencies ω1 and ω2 have a dynamically
varying phase shift �ϕ(J, Hi ) and produce an optical force that has
a beatinglike dynamics.

follows from Eq. (9). This can be achieved by simultaneously
using two frequency components, ω1 and ω2, in the illumina-
tion spectrum ill(ω) [see Figs. 3(a) and 3(b)]. Let us assume
that the structure has a single resonance frequency response
function r(ω) (one can link this response to the polarizability
of a small plasmonic object). In this example, the component
of the incident field with frequency ω1 is off resonant and has
a large amplitude, while the component ω2 is at the structure’s
resonance and is chosen to be much weaker than the first
component. Since, for a linear system, the scattered spectrum

s(ω) = ill(ω)r(ω), (12)

the scattered component at frequency ω1 is expected to be
suppressed since it is off resonant, whereas the component
ω2 remains strong, as seen in the right panel of Fig. 3(b).
Let us now estimate the dynamics of the optical force in this
case. The incident magnetic field in Eq. (9) can be considered
to be composed mostly of the component at frequency ω1,
whereas the current J is dominated by frequency ω2. Since
the current and the incident field now oscillate at different
frequencies, the phase shift between them dynamically varies

as �ϕ(J, Hi ) = (ω2 − ω1)t . Therefore, we have unlocked the
classical limit on the phase, which can now dynamically span
the whole 360◦ range.

For a subwavelength structure, it follows from Eq. (8) that
the total force will change sign with time since the phase
shift has different values at different instants of time [see
Fig. 3(c)]. Such a force dynamics has the form of beating at
frequency ω2 − ω1, as shown by a gray line in Fig. 3(c). For
this example, we considered ω2 = 0.95ω1. We also performed
an averaging of the force for this plot (red curve) by separately
finding the average within each consecutive oscillation. The
dynamics of the magnified area in Fig. 3(c) is shown on the
right. As a remarkable result, the optical force is now directed
toward the source of the illumination and does not change sign
for about 10 optical cycles. In the next section, we exploit
this effect with optical pulses instead of a continuous wave
illumination.

IV. PHASE VARIATION WITH A PULSE

We now excite the spherical nanoparticle considered in
Sec. II with a femtosecond Gaussian pulse with a width of
τ = 22 fs. The form of the pulse at the center of the structure
(in the paraxial approximation) is

Ei(t ) = A exp[−t2/(2τ 2)] cos(ω0t ), (13)

where A is the amplitude of the field. The power transmitted
by this pulse given by Eq. (13) can be found as

P = cε0

∫ +∞

−∞
|Ei(t )|2dt =cε0

|A|2τ
2

√
π

[
1+exp

(−ω0
2τ 2

)]
.

(14)
In the following, we will present the optical force dynamics
normalized with respect to the pulse power. For the force dy-
namics Fz(t ) divided by the pulse power, the units are N m2/J
(here, J = joule).

With a pulse, we aim to produce an illumination spectrum
that is asymmetric with respect to the response function of
the object, similar to the example shown in Fig. 3(b). This
can be done by detuning the pulse from the resonance, as
shown in the inset of Fig. 4(c). In this case, h̄ω0 = 3.54 eV,
which corresponds to the phase shift �ϕ(J, Hi ) = −82.5◦
(see Fig. 1). For a subwavelength system, the spectrum of
the current J(ω) can be obtained as J(ω) ∼ −iωα(ω)Ei(ω),
where α(ω) is the polarizability of the object. This is similar
to Eq. (12), where the response function of the structure is
multiplied by the spectrum of the incident field. Therefore,
the results developed in Sec. III can also be applied here.
The resulting current spectrum is shown in green in the inset
of Fig. 4(c). Let us now analyze the dynamics of the signal
in the time domain. For the incident field, we observe in
Fig. 4(a) a Gaussian pulse profile given by Eq. (13). To obtain
the dynamics of the current, we perform an inverse Fourier
transform of the scattered signal calculated in the frequency
domain with the surface integral equation (SIE) method [69]
as described in Refs. [36,37]. As can be seen from Fig. 4(a),
the current oscillations last longer than the oscillations of the
incident field. In addition, the current is retarded with respect
to the incident field, which is a classical effect seen in resonant
systems [67,70]. By comparing the dynamics of the current
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FIG. 4. (a) Dynamics of the incident electric field along with
the current excited within the structure. (b) Phase shift between the
current and incident magnetic field calculated from (a) and from the
model given by Eq. (15) with vφ,0 found by fitting. (c) Dynamics
of the force found with the full-wave simulations for the excitation
close to the resonance, as shown in the inset. The red curve shows the
time average calculated for each consecutive cycle. (d) The profile of
the force found by solving the harmonic oscillator equations with a
pulsed excitation profile and using only the dipolar approximation in
Eq. (9).

and of the incident field in Fig. 4(a), one notices that the phase
shift between the two is not the same during the pulse cycle.
Indeed, at time instances close to t = −20 fs the current and
incident field are almost in phase, whereas close to t = 20 fs
the two are out of phase. This effect can be explained by
the dynamic phase variation highlighted previously. Indeed,
since the current has a frequency response that is maximized
at a slightly higher frequency, closer to ωr , the phase shift
between the current and incident field changes with time. In
the first approximation, one can assume that the incident field
oscillates at frequency ω0 and the current oscillates at ωJ ,
which is the maximum of the curve in Fig. 4(c). In our case,
we found h̄ωJ = 3.66 eV. Then, the velocity of the phase shift
can be found analytically as approximately vϕ = ω0 − ωJ . In
Fig. 4(b) we plot the phase shift between the current and the
incident magnetic field (magnetic and electric fields oscillate
in phase) as a function of time and approximate this depen-
dence with the model

�ϕ(J, Hi ) = vϕt + vϕ,0. (15)

As can be seen in Fig. 4(d), this model describes well the
dynamics of the phase shift at time instances above t > 5 fs.
The dynamic variation of the phase shift leads to nontrivial
dynamics for the optical force [see Fig. 4(c)]. This dynamics
is obtained with the full-wave calculation of fields on the
surface of the structure and involves the calculation of the
Maxwell stress tensor in the Abraham form, as discussed in
Refs. [71,72]. Additionally, we perform a volumetric integra-
tion of the momentum of the electromagnetic fields inside the
structure to find the dynamics of the force [34]. As can be
seen, the optical force is overall positive from the beginning
of the pulse until approximately t = 8 fs. After this time, the
force switches to negative values. This can be better visualized
by looking at the average of the force that we calculated for
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FIG. 5. (a) Dynamics of the optical force given by full-wave
simulations for off-resonant excitation. (b) Dynamics of the force for
off-resonant excitation obtained from the dipolar approximation in
Eq. (9). (c) Dynamics of the optical force given by full-wave simula-
tions for resonant excitation. (d) Dynamics of the force for resonant
excitation obtained from the dipolar approximation in Eq. (9).

each consecutive cycle. By comparing Figs. 4(b) and 4(c), we
notice that as the phase shift surpasses −90◦, the optical force
becomes negative, as predicted by Eq. (8).

To further verify the correctness of our simulations, we
created a simplified model, in which the incident field dynam-
ics is taken from Eq. (13) and the dynamics of current J is
found by solving the harmonic oscillator model in the time
domain by extracting the properties of the oscillator (width,
resonance frequency) from Fig. 1. Then, from Eq. (9) we find
an approximate dynamics of the force and plot its normalized
values in Fig. 4(d). As can be seen, there is almost a perfect
correspondence between the forms of the approximate solu-
tion and the full-wave results in Fig. 4(c).

V. OFF-RESONANT AND RESONANT EXCITATION
WITH A PULSE

Let us now discuss the case when the central frequency of
the pulse is much less than the resonant frequency of the struc-
ture ω0 
 ωr [see Fig. 5(a)]. In this situation, the presence of
the resonance will barely affect the response function. Indeed,
for the Lorentzian function

L(ω) ∼ 1

ω2
r − ω2 − iγω

ω
ωr∼ 1

ω2
r

. (16)

Therefore, the response function r(ω) ∼ const. Consequently,
the spectrum of the incident field and the spectrum of the
current J have peaks at almost the same frequencies [the
spectrum of the current is therefore not shown in Fig. 5(a)].
Let us consider the dynamics of the optical force under off-
resonant excitation. For the Gaussian pulse considered before
with h̄ω0 = 3.25 eV, the dynamics of the force calculated with
the full-wave simulation is shown in Fig. 5(a). We see that
the force oscillates from positive to negative values during the
entire pulse duration. Such dynamics can be explained if we
assume that the incident field and current oscillate at the same
single frequency. Then, the situation is the same as that in
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Fig. 2 for �ϕ(J, Hi ) = −90◦, where we observed the same
positive to negative oscillations. To ensure the correctness
of our simulations, we also test in Fig. 5(b) the profile of
the force with the model based on Eq. (9), as discussed in
the previous section. As can be seen, the profile of the force
given by the model matches that obtained with the full-wave
simulations.

For the resonant excitation, where ω0 = ωr , the current
and the incident field also oscillate at the same frequency
[see Fig. 5(c)]. Here, we do not show the spectrum of the
current, as it only slightly deviates from that of the incident
field. The dynamics of the force obtained with the full-wave
analysis is shown in Fig. 5(c). As can be seen, the force is
positive during the entire pulse duration. This effect can be
explained if we assume that the current and the field oscil-
late at the same frequency and �ϕ(J, Hi ) = 0◦ (because of
the resonant excitation). Then, the dynamics resembles that
shown in Fig. 2 for �ϕ(J, Hi ) = 0◦. To verify the correctness
of our simulations, we again show the profile of the force in
Fig. 5(d) with a dipolar model and find very good agreement
between Figs. 5(c) and 5(d).

VI. CONCLUSIONS AND OUTLOOK

By utilizing pulsed excitations, we were able to create
conditions such that the maximum of the excited current and
the maximum of the incident field did not match spectrally.
Therefore, the phase shift between these two quantities be-
came time dependent, with the ability to span the whole 2π

range. In this way, we overcame the classical limitation on
this phase shift and temporally reversed the optical force.

A limitation of the obtained pulling force, however, is
related to its very short duration of only about 10 fs in this
case. A possible way to increase this duration would be to
decrease the driving frequency. Indeed, due to the scalabil-
ity of Maxwell’s equations, one can decrease the operational
frequency while increasing the size of the object. In this case,
the effect of the negative force will last longer. However, more
power will be required to act on larger objects.

We found possible applications of the observed dynamic
phase variation in other types of photonic systems. For in-
stance, the proposed mechanism may serve as a promising
platform for beam steering applications. Indeed, in optical
systems such as metasurfaces, the ability to control the phase
shift opens the way for comprehensive 3D scans of the space
surrounding the metasurface, as well as dispersion engineer-
ing and time-varying optical transformations.

Finally, more exotic manipulations of objects in time can
be attained by taking into consideration higher-order multi-
ples. Further inspiration can be taken from existing works on
space manipulation [73–75] and rotations [76–79] of nano-
objects with multipoles.
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