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Preface

This thesis consists of three theoretical essays in economics and finance. A common
characteristic of these essays is their emphasis on mathematical methods to generalize
existing results in their respective areas, which are 1. Monotone comparative statics
[MCS], 2. Games played through agents [GPTA], and 3. Performance-sensitive debt
[PSD]. In all essays, agents are utility or profit maximizers. MCS considers a simple
economic setting in which an agent maximizes a parameterized objective function
with respect to a constrained decision vector. The aim of the essay is to find robust
relations between parameters and optimal decision variables. In GPTA, decision mak-
ers are divided into two types: principals and agents. Principals move first, proposing
monetary contracts to agents, who then take actions to maximize their respective util-
ity. The essay is primarily concerned with the construction and analysis of contracts
that implement socially efficient outcomes. PSD considers a firm whose shareholders
carry the common objective of maximizing the firm’s equity value while raising a given
amount of cash, through the issuance of a performance-sensitive debt contract, whose
interest payments depend on some performance measure of the firm.! The share-
holders’ decision variable is a stopping time, at which the firm declares bankruptcy,
and which is affected by the particular debt contract that shareholders choose to issue.

The economic questions analyzed in the essays are introduced in Chapter 1, which
also summarizes my contributions to these questions. Because of the mathematical

emphasis of the thesis, Chapter 1 also contains a presentation of the quantitative

YContracts with fixed interest rate are considered performance-sensitive, with a trivial, mull sen-
sitivity.
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methods that have proved useful in my research.

Chapter 2 is an adaptation of the paper “Monotone Comparative Statics: A Geo-
metric Approach,” which was co-written with my principal adviser, Thomas Weber.
When we started this project, Thomas proposed an analogy with the “Reynolds
Number”: in the same way as this number, in fluid mechanics, is all the information
needed from a system in order to determine its turbulence behavior, we would look
for a number summarizing all relevant information about the parameters of a prob-
lem, to describe movements in the optimal decision variables resulting from changes
in the parameters. To guide us, we also had an example? where decision variables
and parameters had been transformed to obtain monotone comparative statics: in a
multi-period production planning problem with convex production and storage costs,
the optimal cumulative production vector was nonincreasing in the cumulative sales
vector.® In this example, the reason to consider cumulative variables, as opposed to
more natural period variables, precisely stems from the fact that monotone compar-
ative statics only obtain with the former. Using cumulative variables also permits to
model any sales delay as a decrease in the vector of cumulative sales, and thus obtain
the intuitive fact that a sales delay reduces the optimal vector of cumulative produc-
tion. In this example, therefore, the transformation of parameters and variables was
instrumental in obtaining monotone comparative statics. For us, the challenge was
to find a systematic way to obtain such transformations of the parameters in any
problem. The first essay of this thesis proposes a way to take it up.

“Constructing Efficient Equilibria in Games Played Through Agents,” a paper also
co-written with Thomas Weber, constitutes the third chapter of the thesis. I first got
involved in this project when Thomas was working with another doctoral student,
Hongxia Xiong,* on a very similar problem in the context of two-echelon supply chains.
In the operations management literature, a supply chain is said to be “coordinated” if

the firms in the supply chain take actions that maximize the sum of their payoffs, as if

2This example was suggested to us by Arthur F. Veinott, Jr. and first introduced to me in his
class on Supply Chain Optimization, in Fall 2000.

31In this problem, demand at each period is assumed to be deterministic, and must be perfectly
met by the scheduled production.

4See Weber and Xiong (2004).
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a planner were coordinating the different firms to achieve this optimal outcome. The
supply chain literature contains many instances of parametric contracts coordinating
supply chains in particular contexts. Prat and Rustichini (2003) offered a basis to
unify and generalize these results, which have many economic applications beyond
the context of supply chains. The essay proposes a conceptual framework to think
about efficient contracts in games with multiple principals and multiple agents, and
provides explicit constructions to obtain a general set of such contracts. Moreover, it
characterizes, within this set, the contracts that are most beneficial for the principals,
and thus most likely to be chosen by them.

Finally, Chapter 4 is based on the paper “Performance-Sensitive Debt,” which was
co-written with two other doctoral students, Alexei Tchistyi and Gustavo Manso, and
supervised by Darrell Duffie. At the time we started this project, in January 2002,
step-up bonds, the main protagonist in our class of performance-sensitive debt con-
tracts) had experienced a surge of popularity. In addition to their volume increase,
step-up bonds also starred in several major financial magazines. By the completion of
our paper, however, the step-up bond craze had faded.® This is comforting: the main
theorem of our paper shows that, compared to fixed-coupon bonds, step-up bonds
are socially inefficient.®

5In fact, the popularity of rating-triggered step-up bonds, which we investigate, has been so much
surpassed by other bonds, that the expression “step-up bond” has come to designate a different kind
of bonds.

SThis result calls for agency-cost and renegotiation-cost justifications for the existence of
performance-sensitive debt contracts. In fact, performance-pricing loans are still popular, espe-

cially among syndicated loans, where these costs are particularly salient (see Asquith, Beatty an
Weber (2002)). “
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Chapter 1

Introduction

1.1 Motivations

The essays address several types of economic questions. GPTA focuses on social
efficiency of contracts: given agents’ action sets and players’ payoff functions, can
principals propose contracts' inducing actions that maximize the total surplus of
the economy? Bernheim and Whinston (1986) study the case of multiple principals
and a single agent. In order to prove the existence of socially efficient contracts,
they introduce a refinement of subgame perfect Nash equilibrium (the game has two
stages, with principals moving first, and the agent moving second), called truthful
Nash equilibrium. In this refinement, the contract between any principal and the
agent perfectly reflects the impact on the principal’s payoff of the agent’s possible
deviation. For example, suppose that some principal P gets a gross payoff of 100

and pays 10 to the agent at equilibrium. Then, in a truthful Nash equilibrium, P’s

1By definition, a contract between a principal and an agent is a function of the agent’s action,
specifying the monetary transfer from the principal to the agent for each possible action in the
agent’s action set.
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CHAPTER 1. INTRODUCTION 2

contract will compensate any deviation by the agent causing his payoff to shift to
100 4+ A by a modified transfer of 10 + A to the agent, resulting in P’s net payoff to
be unaffected by A’s deviation. Bernheim and Whinston show that — under general
conditions — any efficient outcome can be implemented as a truthful Nash equilib-
rium.? In numerous applications, there are several agents. For example, lobbies (prin-
cipals) influence multiple decision makers (agents) to weigh on political decisions. In
multi-unit auctions, bidders (principals) sometimes face several auctioneers or own-
ers (agents). In the context of supply chains, producers (principals) enter advertising
contracts with multiple retailers (agents) to promote their products. In the insur-
ance industry, insurance companies (the principals) propose compensation schemes
to insurance brokers (the agents). These examples raise the following questions: does
Bernheim and Whinston’s existence result generalize to the multiple-agent setting?
For practical applications, is it possible to go beyond the existence result, and propose
explicit contracts implementing a socially efficient outcome? In general, there may
exist several equilibria whose contracts implement a given efficient outcome. Is there
a solution concept that reduces the set of such contracts for predictive and normative
purposes? If such refinement exists, can we characterize contracts that satisfy the
corresponding additional requirements?

PSD considers social efficiency in a different context: among the class of performance-
sensitive debt contracts® raising a given amount of cash for a firm, which contracts
minimize expected bankruptcy cost? In our model, this minimization is equivalent to
equity maximization. The question of social efficiency is therefore closely related to

shareholders’ optimal decision problem. Choosing which debt contract to issue has

2Since an efficient outcomes is by definition a maximizer of the total surplus, there can exist
several of them.

3As defined in the Preface, these are contracts whose interest rate depends on some performance
measure of the issuer.
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CHAPTER 1. INTRODUCTION 3

become a more salient issue in the past decade, which has experienced a populariza-
tion of contracts bearing various covenants with potential influence on firms’ default
behavior.* Since the type of debt contract chosen may influence default, how should
investors value performance-sensitive debt contracts? A first difficulty stems from the
particularity that coupon payments are stochastic. The type of stochasticity consid-
ered here is of another nature than floating-rate debt contracts: the former is based
on credit risk, while the latter is based on interest rate risk. Secondly, payments are
interrupted whenever the firm defaults, which clearly affects the value of debt.5 Since
default is determined endogenously by shareholders, whose behavior depends on the
type of debt issued, investors should discount the effect of performance-sensitivity of
debt in their valuation. Moreover, performance measures often depend on a third
party’s perception of the issuer’s performance (such as the credit note delivered by a
rating agency). How does performance sensitivity of debt affect this perception, and
how does this perception affect 1. shareholders’ default behavior after a debt contract
has been issued, and 2. shareholders’ choice of debt contract?

MCS studies a cross-sectional issue in economics: in a parameterized problem, how
do parameter moves affect agent decisions? The concept of comparative statics® was
introduced by Samuelson (1941) to formalize this ancient question. A classic example
is the impact of distortionary tax on the total surplus of an economy. It is well-
known that when tax is added to the market price faced by consumers, the reduction
of their demand results in a surplus loss (even when the proceeds of the tax are

given back to consumers), graphically represented as the celebrated deadweight loss

4See Section 4.2 for examples.

5While interest risk clearly plays a role on the value of debt contracts, we focus on credit risk
and assume constant interest rate, in the spirit of Leland (1994).

5For simplicity, we adopt the usual convention that “comparative statics” stands for monotone
comparative statics, meaning there is a stable relation between optimal decision variables and pa-
rameters.
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CHAPTER 1. INTRODUCTION 4

triangle. This result can be proved analytically using the implicit function theorem.”

Unfortunately, in a more complex setting, it might not be possible to obtain such
simple comparative statics. For example, Giffen and Veblen® goods generate consumer
(uncompensated) demand that is not monotonic in their price. When comparative
statics fail to obtain with the original parameters of the problem, is there a way to
construct a function of the parameters, an “index”, such that variations of optimal
decision variables following changes in the parameters can be monotonically described
by the index? How does one interpret such index? What type of economic questions

can be addressed using comparative statics with transformed parameters?

1.2 Contributions

GPTA is based on Prat and Rustichini (2003), who introduce the concept of weakly
truthful equilibrium to give a nonconstructive proof (based on the notion of “balanced-
ness”) for the existence of efficient contracts® in their game of complete information
with multiple principals and multiple agents. The solution concept of weakly truthful
equilibrium is a refinement of subgame perfect Nash equilibrium but, as the name
indicates, weaker than the truthful Nash equilibrium introduced by Bernheim and
Whinston. The approach presented in GPTA goes further by explicitly constructing
efficient contracts, which proves de facto their existence. We show that in the generic
case, efficient contracts can be determined by simple differentiation of principals’

payoff functions.'® In order to further investigate efficient contracts, we introduce

See for example Mas—Colell, Whinston, and Green (1995), pp. 331-332.

8See Section 2.5.3.

9Throughout, “efficient contracts” means contracts that implement an efficient outcome of the
game.

10We assume, like Prat and Rustichini, that payoff functions are concave.
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CHAPTER 1. INTRODUCTION 5

concepts that clarify the mathematical structure of weakly truthful equilibria, allow-
ing us to construct a general — under some conditions, exhaustive — set of weakly
truthful equilibria implementing any given efficient outcome. GPTA also investigates
the allocation of total surplus between principals and agents. Since principals move
first and possess all bargaining power, it is reasonable to predict that they will (or
assert that they should) try to extract the highest possible fraction of the surplus.
We refine the set of weakly truthful equilibria constructed earlier by characterizing
the subset of contracts that are Pareto optimal for the principals.

PSD is based on the endogenous-default model of Leland (1994), which it gen-
eralizes in two ways. First, while Leland focuses on fixed-coupon bonds to derive
an important formula ‘for the optimal default triggering level of the firm, our ap-
proach allows for any performance-sensitive (including discontinuous) debt profiles.
Such profiles include step-up bonds,!! performance-pricing loans, and other exam-
ples described in the essay. This generalization allows us to compare the efficiency
of different debt contracts in terms of bankruptcy cost. Specifically, we introduce a
partial order within the class of performance-sensitive debt contracts, and show that
this partial order is stronger'? than the efficiency order, where debt contracts are
ranked according to their implied expected bankruptcy cost. In order to be carried
out, the analysis requires consideration of both endogenous default and performance-
sensitivity of debt, which the essay is the first to explicitly model together. The
relation between the two orders implies that risk-compensating debt contracts, whose

interest payments increase with credit risk, are inefficient compared to contracts with

UThroughout, “step-up bonds” stands for bonds whose coupon rate at any time is a function
of the issuer’s credit rating (e.g. the credit note given by Moody’s or Standard & Poor’s rating
agencies), with the coupon rate increasing as the rating deteriorates. This definition should not be
confused with another sense of “step-up bonds”, in which the coupon rate increases according to a
predetermined schedule. With this second sense, the coupon rate is a deterministic function of time.

20rder > is stronger than order > if x > y implies = > y for any z,y in the decision set.
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CHAPTER 1. INTRODUCTION 6

fixed interest rate. Second, the ordinary differential equation that Leland uses to com-
pute the value of the equity and optimal default triggering level is generalized to the
case where the asset level follows any diffusion process (up to the usual assumptions
for the existence of a strong solution to the stochastic differential equation defining its
dynamics). Moreover, the inefficiency result of the essay is shown to hold under these
much weaker conditions. We then consider the fact that performance measures often
depend on a third party’s perception of the issuer’s performance (such as the credit
note delivered by a rating agency). We formalize the circularity issue arising from
the reciprocal influence between shareholders’ and the third party’s behaviors. We
resolve it in the case of step-up bonds, where asset thresholds defining credit ratings
reflect the firm’s actual probabilities of default. We draw implications of our model
for the behavior of credit-rating agencies.

The field of monotone comparative statics has experienced a revolution with!3
the introduction of the concept of supermodularity. The supermodularity assump-
tion (and the related “quasisupermodularity” and “single-crossing” properties) plays
a similar role in comparative statics as convexity in optimization theory: it drastically
simplifies the theory, and yields very strong results, as Milgrom and Shannon (1994)
illustrate. On the other hand, it also rules out many interesting problems: restrict-
ing comparative statics to supermodularity is analogous to restricting optimization
theory to convex objective functions. Much research so far has focused on develop-
ing sophisticated techniques based on supermodularity to derive comparative statics.
The implicit function theorem (IFT) has been used to show comparative statics be-
fore the concept of supermodularity even existed, but only to solve ad hoc problems.

MCS restores its status to this theorem, making it the cornerstone of a systematic

13Gee Veinott (1965) and Topkis (1968).
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CHAPTER 1. INTRODUCTION 7

way to derive comparative statics. When a problem involves multiple parameters,
we create paths in the parameter space — whenever our information about the struc-
ture of the problem is precise enough — along which optimal decision variables (or a
subset, or a function, thereof) are monotonic. We then show how these paths can
generate a new parametrization of the problem. Under some differentiability and
regularity assumptions, we also establish the connection between our approach and
supermodularity-based results. We show that the joint condition of supermodularity
among decision variables and between decision variables and parameters implies that
optimal decision variables are nondecreasing along any path pointing “north-east”
in the parameter space.'* We illustrate the potential of the method though several
applications. First of all, the approach allows one to deal with examples where classic
results simply do not hold: there are no initial parameters in which decision variables
are monotonic. In this case, the approach constructs new parameters, an undertaking
that is clearly beyond the scope of the supermodularity approach. Second, even when
classic MCS results hold, it proposes a systematic way to discover them. To get their
full force, the supermodularity approach requires significant expertise in its numer-
ous techniques. By contrast, our method only requires differentiation and inversion
of a matrix, to compute the pseudo-gradient introduced in MCS. If optimal decision
variables are monotonic in the parameters, all pseudo-gradients will necessarily be
nonnegative, which will be usually be clear from a simple inspection of their formula.
Third, the supermodularity approach assumes that a constraint set is a lattice, a

restriction that rules out, for example, any budget constraint in an economy with

MHowever, this result is less powerful than the most advanced results on supermodularity, for
two reasons. First, it requires differentiability and regularity assumptions, which are unnecessary
under the supermodularity-based approach. Second, it requires supermodularity (or any increasing
transformation thereof), instead of the weaker quasisupermodularity and single-crossing property
required by Milgrom and Shannon (1994).
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CHAPTER 1. INTRODUCTION 8

more than two goods.!® By contrast, our method, combined with the Kuhn-Tucker

theorem, allows for general constraint sets, such as budget constraints.

1.3 Quantitative Methods

The essays offer several simple closed-form formulas, which can be easily used in
applications, and more complex algorithms. PSD proposes closed-form formulas to
price step-up bonds with any finite number of steps, whenever the asset level follows
a geometric Brownian motion. The formula involves the computation of the equity
value of the firm as function of its asset level. The equity value is shown to satisfy a
second-order ordinary differential equation (ODE) with coefficients that are constant
on any interval where the coupon rate is constant and whose boundary conditions
are partly obtained by imposing the celebrated “smooth-pasting” condition on the
default level. Jumps in the coupon rates are included by solving the ODE piecewise
on each interval where the coupon is constant, and imposing that the equity value be
continuously differentiable everywhere (including where jumps occur), which allows
the determination of integration constants. Continuous differentiability is a distinct
requirement from smooth-pasting, and is imposed to allow the application of It6’s
formula to verify optimality.'® When the asset level follows a general diffusion process
and the coupon payment is any function of the performance measure with a locally

finite number of jumps, obtaining an ODE for the equity value is more difficult.!” To

15In a two-good economy, there is an astute way to get rid of the problem, by considering a
particular order on planar vectors.

161t6’s formula can be applied to any function that is continuously differentiable and has a second
order derivative with a locally finite number of discontinuities. See Karatzas and Shreve (1991).

1"Harrison (1985) treats the case of Brownian motion and, by an easy extension, the case of
geometric Brownian motion. However, the monograph does not consider general diffusions in an
optimal stopping problem.
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CHAPTER 1. INTRODUCTION 9

understand why, observe that the equity value'® takes the form

W () = Bxyes [ /0 " e f(Xt)dt] ,

where {X:}i>0 is a diffusion and f is some function with a locally finite number
of jumps, satisfying integrability conditions. To compute W(z), the first step is to

remark that, under some technical assumption, W(z) can be rewritten as

W = | T e By [ (X0)] de.

Therefore, we have simplified the computation of W (z) to the evaluation of the inte-

grand
Exo=a [f(X0)] -

This integrand, however, looks deceptively simple. In the case of a general diffusion,
its computation involves the entire functions u(-) and o(-) defining the dynamic of
the process {X; }+>0. We circumvent this problem by deriving an ordinary differential
equation for W, instead of trying to compute it directly (as would be possible with
geometric Brownian motion). A first approach consists in using Malliavin calculus,'®
to compute W’(z) and W”(z). However, this approach, relatively simple in the case of
geometric Brownian motion, becomes intractable with general diffusions. PSD uses
instead the concept of fundamental solution of a diffusion process, as analyzed by
Friedman (1974). The fundamental solution attached to a diffusion process directly

connects stochastic differential equations and partial differential equations, allowing

18We assume for the moment that default does not occur. Optimal default is considered separately,
see the end of this section.

19Gee the excellent papers by Fournié et al. (1999) and (2001) in the context of financial engineer-
ing, and Nualart (1995) for a mathematical treatment.
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CHAPTER 1. INTRODUCTION 10

one to analyze quantities like the integrand Ex,—, [f(X})]. The approach is illustrated
in Section 4.4.1. The literature on stochastic calculus contains similar optimal stop-
ping problems. For example, Karatzas (1984), Section 3, studies an optimal stopping
problem with continuous payoff (whereas we need discontinuous payoffs to account for
step-up bonds). His strategy is to solve a variational inequality, involving an ODE,
and use classic ODE techniques (based on the Wronskian) to express the solution of
the optimal stopping problem as a function of homogeneous and particular solutions
of the ODE, then verify optimality. By contrast, the strategy used in PSD is to first
express the optimal solution as a function?® of the expected reward if the process is
never stopped, using the strong Markov property, then show that this latter function
satisfies an ODE on any continuity interval of the payoff function. With this second
approach, the (piecewise) ODE appears as a necessary condition, rather than an ed-
ucated guess for sufficiency. In particular, the simplicity of the approach allows to
deal with discontinuities in the payoff function, an undertaking that seems more com-
plex with Karatzas’ approach, whose proofs are already significantly more tedious.
The approach of the essay is new to my knowledge, and the corresponding optimal
stopping problem does not seem to appear in the finance literature at that level of
generality. The approach has potential applications in other optimal stopping prob-
lems involving more general processes than geometric Brownian motion, and general
payoff functions.

MCS uses the implicit function theorem (IFT) in a novel way: when the opti-
mizer’s location in the constraint set is only partially known (or even unknown), the
IFT is used to identify potential directions, called pseudo-gradients of monotonicity.

These potential directions are then used to extract — whenever possible — a vector

200ptimality is characterized by the “smooth-pasting condition,” which appears naturally in my
approach, as an immediate consequence of the envelope theorem.
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CHAPTER 1. INTRODUCTION 11

field of the parameter space, such that at each parameter, the corresponding element
of the vector field makes non-negative scalar product with all pseudo-gradients corre-
sponding to the parameter. Trajectories of the vector field are paths of the parameter
space, such that comparative statics obtain along these paths. We can connect the
approach to the supermodularity approach. When the objective function is super-
modular or any increasing function of a supermodular function (which constitutes
a much larger subset of the class of quasisupermodular functions, see Milgrom and
Shannon (1994)) in the decision variables and in each pair consisting of one decision
variable and one parameter, all pseudo-gradients are nonnegative, from which it is
immediate that any vector field consisting of nonnegative vectors makes nonnegative
scalar product with the pseudo-gradient. This implies that optimal decision variables
are nondecreasing along any path always pointing in the positive orthant of the pa-
rameter space and, therefore, nondecreasing in the parameters. In that sense, our
approach encompasses the supermodularity-based approach. In general, it is often
possible to integrate the paths of the vector field to obtain a new parametrization
of the problem, where some of the new parameters are indices with respect to which
comparative statics can be expressed. In order to deal with constrained optimization
problems, the IFT can be used in conjunction with the Kuhn-Tucker theorem (see
for example Bertsekas, 1995, p. 255). This combined approach provides a systematic
way (the first, to my knowledge) to analyze situations where parameters affect not
only the objective function, but also the constraint set of the optimization problem.
The essay provides an example of this type.

In GPTA, the proof of the existence of socially efficient contracts is based on a

characterization of weakly truthful equilibria due to Prat and Rustichini (2003) and
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CHAPTER 1. INTRODUCTION 12

refined by Weber and Xiong (2004), in terms of a system of inequalities whose vari-
ables of the contracts’ excess payment functions (where excess is understood with
respect to the efficient outcome). The essay presents an algorithm to derive a solu-
tion of this system of inequalities based on an iterative application of the separating
hyperplane theorem.?! The separating hyperplane theorem allows one to find excess
payment functions, principal by principal. Construction of a general class of contracts
implementing any given efficient outcome is made possible by a leveling algorithm,
which generates minimal additive functions above the excess payoff function of each
principal. The essay provides conditions — based on submodularity — under which the
minimal functions are all equal, in which case we call them the additive upper envelope
(at a given point) of the excess payoff function. Pareto optimality is characterized
through an ironing algorithm.??

In the context of this game, where principals’ decision variables are entire functions
(as opposed to mere vectors), focusing on the maximization of a given principal’s
payoff is usually not enough to obtain a Pareto optimal equilibrium. In fact, there
are in general many contracts maximizing both total surplus and a given principal’s
payoff. The ironing algorithm is crucial to isolate contracts that “care” just enough
about the given principal to achieve her optimal payoff, but otherwise distribute to

other principals all remaining slack in agents’ utilities.??

ZFor this algorithm to work, we need to impose that all payoff functions are concave, which Prat
and Rustichini also assume in their nonconstructive proof.

22In economics, “ironing” usually refers to the procedure introduced by Mussa and Rosen (1978) in
the context of screening. However, this procedure and the algorithm of the essay have no connections
(apart from the visual effect of their application that motivates the name).

#When the utility of a given consumer is increasing with respect to all goods, maximizing this
consumer’s utility leads to a Pareto optimal alloecation: it is impossible to increase other consumers’
utilities without reducing that of the singled-out consumer. The situation in games played though
agents is more complex, as principals only care about the minimum of their excess payment functions,
which are the variables of the efficiency problem (see Section 3.5).
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Chapter 2

Monotone Comparative Statics

We consider comparative statics of solutions to parameterized optimization problems.
A geometric method is developed for finding a vector field that, at each point in the
parameter space, indicates a direction in which monotone comparative statics obtain.
Given such a vector field, we provide sufficient conditions under which the problem
can be reparameterized on the parameter space (or a subset thereof) in a way that
guarantees monotone comparative statics. A key feature of our method is that it does
not require the feasible set to be a lattice and works in the absence of the standard
quasi-supermodularity and single-crossing assumptions on the objective function. We

illustrate our approach with a variety of applications.

2.1 Introduction

In many problems of economics, important insights can be derived from a formal
model by comparing its predictions for different parameter values. The model’s pa-
rameters are exogenously specified and can often be varied for analysis purposes while

its variables, which constitute the building blocks for its predictions, are endogenously

13
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CHAPTER 2. MONOTONE COMPARATIVE STATICS 14

determined by (i) imposed model relations and (ii) parameter values. For instance,
an economic model might be concerned with a firm’s optimal production of widgets
(e.g., in terms of capital and labor requirements), given both a production function
relating output to inputs and a set of prices (e.g., the market price for widgets, the
cost of capital, and an average wage rate). The model would then in the neoclassical
tradition impose maximization of the firm’s profit to determine optimal amounts of
factor inputs as a function of their respective prices. More generally, if a model’s
predictions can be expressed as an optimal action in some finite-dimensional space,
then comparative statics studies the direction in which the optimal action changes
consequent upon some disturbance in the values of the model’s parameters (Samuel-
son, 1941).! Thus, in our example, normalizing the price of the firm’s output to one,
the optimal choice of inputs critically depends on the prices of the production factors
which are this model’s parameters.

The key question of monotone comparative statics is to determine under what con-
ditions the model predictions vary monotonically with the parametefs (Topkis 1968,
1998). A general answer to this question for optimal actions chosen from feasible sets,
which are usually assumed to be lattices satisfying a set-monotonicity requirement
with respect to the parameters, is provided by Milgrom and Shannon (1994). They
provide a necessary and sufficient condition for optimal actions to exhibit monotone
comparative statics with respect to the parameters. For the special case of our neo-
classical production decision problem, where the production function is independent
of the factor prices, monotone comparative statics (i.e., inputs nonincreasing in prices)

obtain if and only if the production function is supermodular, which — assuming twice

L1f an optimal action is infinite-dimensional (e.g., the solution function of a variational problem),
then comparing the model’s predictions for different parameter values is often referred to as “com-
parative dynamics.” We limit our attention here to the finite-dimensional case corresponding to
“comparative statics.”
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CHAPTER 2. MONOTONE COMPARATIVE STATICS 15

continuous differentiability — amounts to requiring that all cross-partial derivatives of
the production function are nonnegative.

The practical importance of monotone comparative statics, justifying its widespread
use in economics, lies in the fact that robust insights can be obtained in the absence
of an analytical solution to the model: the monotonicity of optimal actions in param-
eters is guaranteed if the system’s objective function satisfies certain easy-to-check
requirements. In addition, monotonicity of optimal actions can yield useful rules of
thumb for decision makers and thus help in arriving at “optimally imperfect deci-
sions” (Baumol and Quandt, 1964). Clearly, in our production example (which is
examined more closely in Section 2.5.2) it would be helpful for the firm to be able
to immediately (i.e., without any further computations) translate price movements
into appropriate input changes which at the very least vary in the right direction,
even when its production function is not supermodular due to anticomplementarities
between factor inputs. Unfortunately, the currently available theory on monotone
comparative statics returns negative results in situations where the aforementioned
characterization of monotone comparative statics by Milgrom and Shannon fails. We
argue that this failure is often due to the fact that the parameterization of the prob-
lem is taken as given.? Indeed, our results indicate that it may be possible to achieve
monotonicity of solutions in new parameters that are obtained by a one-to-one map-
ping from the original parameter space. In fact, for problems with a smooth analytical
structure we show that, provided sufficiently precise knowledge about the location of
an optimal action in the action space, it is always possible to find a reparameterization

that achieves monotone comparative statics in any single component of the decision.

2This is true in the literature, except for some rare cases where trivial reparameterizations such
as a change of sign or other simple ad hoc reparameterizations are chosen under very special circum-
stances, e.g., by Granot and Veinott (1986) in a network flow problem.
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CHAPTER 2. MONOTONE COMPARATIVE STATICS 16

Our central goal is to provide a new method for achieving monotone comparative
statics of solutions to parameterized optimization problems, first by relaxing and
thereby generalizing the standard monotone comparative statics problem, and second,
by providing a systematic way to reparameterize the problem in such a way that
monotone comparative statics can be achieved.? In addition to addressing cases where
the standard results do not apply, our method can, by offering a new description of
the parameter space, shed light on important relations between decision variables and
parameters of economic problems.

The approach developed here builds on tools in differential geometry and we thus
require models with a smooth structure (e.g., a parameterized optimization prob-
lem with a twice continuously differentiable objective function), even though — as we
are well aware — none of our statements fundamentally depends on the differentiable
structure. All of our results can be expected to also hold, if the problem is suitably
discretized; nevertheless we prefer to adopt a differentiable approach for ease of expo-
sition, since then the tools of differentiable geometry can be applied seamlessly. We
decompose the problem of changing problem parameters to achieve monotone com-
parative statics (MCS) into two parts. First, the decision maker needs to solve a local
MCS problem by finding for each point ¢ in the parameter space 7 a direction vec-
tor v(t) (i.e., an element of the tangent space at ¢) that would increase the unknown
optimal action z(¢) if parameters were to be locally changed from ¢ in the direction
of v(t). If the location of x(¢) is not known precisely, as is generally the case, then
the direction v(t) must be such that it induces local monotonicity with respect to all

points in a subset R(t) of the action space X which is known to contain the optimal

3Even though not explicitly developed, our methods apply equally to equilibrium problems,
by replacing the first-order necessary optimality conditions of the optimization problem with the
equations specifying equilibria.
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CHAPTER 2. MONOTONE COMPARATIVE STATICS 17

action xz(t), given the possibility that any point in R(¢) might turn out to be optimal.
A full solution to the first problem consists in a vector field v(t) defined for all values
of ¢ in the parameter space. Second, given the vector field v(¢) the decision maker
needs to find a reparameterization solving the global MCS problem. We show that
this can always be achieved locally through “rectification” of the vector field. Under
a few additional conditions rectification can also be achieved globally, leading to the
desired global MCS reparameterization of the decision problem.

The chapter proceeds as follows. In Section 2.2 we introduce the problem of
obtaining monotone comparative statics (i.e., monotone dependence of solutions on
parameters) for parameterized optimization problems, both from a local and a global
viewpoint. When considered locally, obtaining monotone comparative statics corre-
sponds to finding directions in the parameter space in which solutions to the opti-
mization problem are nondecreasing in parameters. A solution to the local monotone
comparative statics problem is provided in Section 2.3 using a vector field method.
Subsequently, in Section 2.4, we take a more global perspective: having obtained a
vector field of monotone comparative statics directions defined at each point of the
parameter space, we demonstrate that it is possible to (at least locally) change the
parameters of the optimization problem, i.e., to reparameterize it, such that mono-
tone comparative statics of the solutions of the reparameterized problem obtain. We
show that the reparameterization can be global if a hyperplane can be found that is
transverse to a vector field that solves the local MCS problem at each point of the
parameter space. To illustrate our results we then discuss a number of applications
in Section 2.5 before concluding with a discussion and directions for further research

in Section 2.6.
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2.2 Problem Formulation

We consider a decision maker who, given a parameter value t € T, aims to select
an element x(¢) of an action space X so as to maximize her objective function f :

X x T — R. She thus tries to solve the parameterized optimization problem

z(t) € argsup f(z,t), (1)
zeX

where X is an open subset? of R* and 7 is an open subset of R™. Provided that
a solution to (1) always exists,® the decision maker is interested in the comparative
statics of the maximizer z(t) as ¢ € T varies. More generally, we assume that the
decision maker is concerned with the behavior of the composition ¢ o z(t) = ¢(z(t)),
where ¢ : X — R¢ (with 1 < d < n) is an evaluation function that the decision
maker uses to assess any solution z(t) that satisfies (1). For instance, if the deci-
sion maker is only interested in the comparative statics of the first component of
the maximizer x(t) = (21, ...,%x)(t), she can choose p(z) = z;. From Milgrom and
Shannon’s (1994) Monotonicity Theorem, we know that if p(z) = z and X is a lat-
tice, then ¢ o z(t) = z(t) is increasing in ¢ if and only if f is quasi-supermodular®

in z and satisfies the single-crossing property” in (x,t). Conversely, for any objective

4 If X lies in a lower-dimensional submanifold of R”, the analysis can still be applied, but
differential calculus should be understood on this submanifold, and openness should be understood
relative to the submanifold, cf. Section 2.3.5.

5Tf for any parameter t € 7 the function f(-,t) is continuous and X is bounded, a solution to
the parameterized optimization problem (1) exists in the closure of X by Weierstrass’ Theorem
(Bertsekas, 1995, p. 540).

6A real-valued function f defined on a lattice X C R” is quasi-supermodular if f(z) > (>
)f(z Ay) implies f(zVy) > (>)f(y), for all z,y in X, where.z Vy = (max{z1,y1},..., max{zn,yn})
and z Ay = (min{z1,91},..., min{z,,y }). Asits name suggests, quasi-supermodularity is a weaker
condition than supermodularity.

7A real-valued function f defined on the product X x T of two partially ordered spaces has the
single-crossing property if, whenever 2’ > z and t' > ¢, f(2/,1) > (>)f(z, t) implies f(z/,¥) > (>
)f(z,t'). The single-crossing property is a weaker condition than supermodularity in (z,t).
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CHAPTER 2. MONOTONE COMPARATIVE STATICS 19

function f that does mot satisfy these conditions together with a monotone evalua-
tion function ¢, the expression ¢ o 2(t) cannot be nondecreasing on 7. Nevertheless,
despite this negative result using the standard theory, it may be possible for the de-
c¢ision maker to at least find a path v in the parameter space, so that starting at
a given t € T the function ¢ o z is nondecreasing along 7. Monotone comparative
statics (MCS) may thus be obtained following certain directions in the parameter
space. It is useful given any ¢ € 7 to state the decision maker’s MCS problem (at ¢)

in precisely these terms.

MCS PROBLEM (AT t). Given a continuously differentiable evaluation function ¢
and a parameter value t € T, find a nonempty open interval I, C R with 0 € Z, and

apath vy, : T, — T, such that pox (v (X)) is nondecreasing® for all X € Z; and y(0) = t.

If a solution (Z,7y:) of the MCS problem at ¢ is such that the path - cannot be ex-
tended in 7', then we call the solution mazimal. We can restrict our attention, without
any loss of generality, to a maximal solution of the MCS problem at ¢{. Monotone com-
parative statics relative to an evaluation function ¢ and a parameter starting value ¢
obtain whenever the vector ¢ o x is componentwise nondecreasing along an appro-
priate path ; in the parameter space 7. Along any such path, x(y())) solves (1)
for all XA € Z;. A solution to the MCS problem for all ¢ € T results in a global flow
O(A,t) = v(X), for which 6(0,¢) =t and

A<p = pox(@(ht) < ¢ ox(dut), (2)

8A vector v()) is nondecreasing in A if and only if each of its components is nondecreasing in A.
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for any A, pu € Z;. If it is possible to represent the global flow in the form

0(Ae, ¥ (1)) =1, 3)

where ); is uniquely determined and v : T — P is a function that maps the parame-
ter space to a fixed (m —1)-dimensional hypersurface P transverse® to the vector field
induced by the MCS paths v, then using the new parameters s(t) = (s1,...,8m)(f) =
(A, m(1p(¢))) guarantees monotone comparative statics of pox(s) in s = A, at least lo-
cally, where 7 is a diffeomorphism from P onto a subset of R™~! (details are provided
in Section 2.4). Letting F = |J,c; Z¢ % {t}, we formulate the global parameter-change

problem accordingly.

GLOBAL MCS REPARAMETERIZATION. If the flow 8 : F — T solves the MCS
problem everywhere in T, find a new parameterization s(t) = (s1,...,8m)(t) =

(A, m(¥(2))) such that (3) is satisfied for allt € T.

A global MCS reparameterization provides the decision maker with new problem
parameters s = (8y, ..., ) that guarantee monotonicity of ¢(Z(s)) in the first com-

ponent s; € Z, where

@(s) = argmax f(z, s) 4)

and f(z,s) corresponds to the objective function f(z,t) after the parameter change.

98ee Assumption 6 for the precise definition.
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2.3 Solving the MCS Problem at ¢

Our goal is to find directions in which solutions of the parameterized optimization
problem (1) (or functions thereof) are increasing. For this we introduce a “pseudo-
gradient” W (z,t) which mimics the gradient matrix V,z(t) = W (z(¢t), t) correspond-
ing to all potential solutions x € R(t) with respect to the parameters ¢ on a set R(t)
that is known to contain the actual solution z(t). We refer to R(t) as a “reduced fea-
sible set,” for it is a subset of the set of all feasible actions X'. The cardinality of R()
is a measure of how much information the decision maker has about the location of
the solution to (1) at ¢. If for a given ¢t € T all row-vectors of the pseudo-gradient
lie in the same m-dimensional half-space for all points of the reduced feasible set (a
subset of X'), then a direction v(t) € R™ \ {0} exists in which monotone comparative
statics obtain locally. Naturally, if such a direction can be found for all points ¢ of
the parameter space 7, then the resulting wvector field v : T — R™ constitutes a
solution to the MCS problem on T. The flow induced by this vector field can then
be used to obtain an MCS reparameterization of the optimization problem (1), which
is discussed in Section 2.4. In what follows we first introduce a number of assump-
tions needed for the vector field method. We then provide techniques to implement
the method, and relate the vector field method to classic supermodularity results.
Finally, we provide important methods to deal with problems that contain equality

and/or inequality constraints.

2.3.1 Preliminaries

In order to use standard tools from differential geometry, we require that f be suffi-

ciently smooth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. MONOTONE COMPARATIVE STATICS 22

ASSUMPTION 1 (SMOOTHNESS) The objective function f is twice continuously dif-
ferentiable in x and has continuous cross-derivatives with respect to each tuple (x;, tx),

foralll<i<nandadll<k<m.

Let us denote by

2 n
H(:v,t) = vza;f(x7t) = I:%%}gi?}

ij=1
the Hessian matrix of f(-,¢) evaluated at (z,t), and by

K(x,t) =V f(z,t) = [

Pflx,t)]""
Bxiatk

4,k=1

the matrix of cross-derivatives of f between decision-variable and parameter com-
ponents, evaluated at (x,¢). In order to bypass (at least for now) any difficulties
arising from binding constraints at the optimal action, we will assume that the pa-
rameterized optimization problem (1) possesses a unique unconstrained optimum.
Constrained optimization problems can often be restated equivalently so as to sat-
isfy this assumption, and Section 2.3.5 is dedicated to this issue. We also emphasize
that nothing in our method requires that the feasible set X be a lattice (cf. also

footnote 19).

AssUMPTION 2 (EXISTENCE AND UNIQUENESS) For eacht € T, the parameterized

optimization problem (1) has a unique solution x(t).

In general, the set of maximizers is guaranteed to be nonempty and in the interior
of X if, in addition to being continuous, f is coercive relative to X, in the sense that
for any ¢+ € T there exists a point #(t) € X such that'® f(%(2),t) > max f(0X,1),
cf. Bertsekas (1995, pp. 8, 540). If f(-,t) possesses multiple strict local extrema

198X denotes the boundary of X.
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for some t € T, our results can be applied with respect to the comparative statics
of each local maximum. Since X is open, Fermat’s Lemma (Zorich, 2004, Vol. I,
p. 215) implies that each strict local extremum c(t) (and in particular the unique
global maximum z(t) guaranteed by Assumption 2) is a critical point of f(-,?), i.e.,

V.f(c(t),t) = 0. We denote by C(t) the set of all critical points'! of f(-,¢) in X at ¢,
Cit)y={re X :V,f(x,t) =0}

Thus, if the decision maker can determine C(t), she might be able to find the optimal
action x(t) as the solution of a reduced optimization problem, z(t) = arg max.ccq) f(c, t),
using the first-order necessary optimality conditions. Assumption 2 also implies that
for any ¢t € 7 at the unique global optimum z(¢) the Hessian matrix of f(-,t) is
negative semidefinite, i.e., 2(t) satisfies the second-order necessary optimality condi-

tion x(t) € D(t), where
D(t) ={z € X: H(z,t) <0}

This allows the decision maker to further reduce the optimization problem combining

the first-order and second-order necessary optimality conditions and solve

x(t) = arg Jnax, f(z,1), (5)

where we refer to R(t) C X as a reduced feasible set; in this case R(t) = (C N D)(t).

More generally, we refer to any subset R(t) of X which is guaranteed to contain

Note that if f(-,t) has a critical point (i.e., X N C(t) # @) and is strictly concave on X for
all t € 7, then Assumption 2 is automatically satisfied, since f(-,) is necessarily single-peaked
on X.
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the solution z(t) of (1) as an admissible reduced feasible set. Any element of R(t) is
called a reduced-feasible action. If the decision maker can determine an admissible
reduced feasible set R(t) (e.g., by using first- and second-order necessary optimality
conditions), so that she is able to solve the (reduced) parameterized optimization
problem (5) on 7, then the MCS problem always has a trivial solution, as will become
clear below (cf. Theorem 1). Unfortunately, in many practical applications, a closed-
form solution of (1) is not possible, or the objective function is not perfectly known by
the decision maker (see Milgrom (1994) and Section 2.6). In that case, by constructing
a reduced feasible set R(t) C X’ that is guaranteed to contain the optimal action z(t)
(e.g., by using heuristics related to the special structure of the problem), the decision
maker may still be able to solve the MCS problem without an explicit solution to the
(equivalent) parameterized optimization problems (1) and (5). To obtain a solution
to the MCS problem when the optimal action z(t) can only be imperfectly localized in
the set R(t) C X, we require that all critical points of f(-,¢) in R(¢) be nondegenerate

(i.e., such that the Hessian matrix of f(-,) is nonsingular there).

AssuMPTION 3 (NONDEGENERACY) For any t € T the Hessian matriz H(z,t) s
nonsingular for all x € R(t), for some reduced feasible set R(t) C X which con-

tains x(t).

This assumption guarantees that the inverse H~!(z, t) is well defined and continuous
at any point (z,t) € R(t) x 7. Hence the expression — (H 1K) (z,t), evaluated at a
point (z,t) possibly different from the optimal (z(t),t), is well-defined. Assumption 3

is automatically satisfied if the objective function is strictly concave.
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LEMMA 1 Under Assumptions 1-3 the unique optimal solution x(t) of the parameter-
ized optimization problem (1) is continuously differentiable on T. The corresponding

Jacobi matriz is given by

Va) = | %0~ (1K) el0). ). ©)

forallt € T.

Proof. By Assumption 2, a unique interior solution z(t) to the parameterized

optimization problem (1) exists for all ¢t € T, satistying H(z(¢),t) < 0 and
Vaf(2(1),t) = 0. (7)

By Assumption 1 we can differentiate (7) with respect to ¢ (using the chain rule) and

obtain

Ve (Vaf (z(t), 1)) = (Ve f (2(2), £)) (Ve (t) + Vaur f (@(2),8) = 0,

or equivalently

H(z(t), t)Vea(t) + K (z(t),£) = 0,

for all t € 7. Since H(z(t),t) is nonsingular by Assumption 3, we get expres-
sion (6) after left-multiplication with H~1(z(t),t) in the last equality. We now show
that V,xz(t) is continuous. Since the maximizer x(t) is unique and the objective func-
tion f continuous, we have that, as a consequence of Berge’s (1963, p. 116) Maximum
Theorem, the maximizer z(t) is continuous in ¢ (for it is upper-semicontinuous and
single-valued). By virtue of Assumption 1 and nonsingularity of H, all entries of the

matrix (H1K) (z(¢), t) are well defined and as a composition of continuous functions
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also continuous. Hence, the Jacobi matrix V,z(t) on the left-hand side of equation (6)

must also be continuous, which completes the proof. ]

In order to study the monotonicity of ¢ o z(t), we require some smoothness as well

as functional independence (Zorich, 2004, Vol. 1, p. 508) of the evaluation function.

AssuMPTION 4 (FUNCTIONAL INDEPENDENCE) The evaluation function ¢ is con-
d,n
tinuously differentiable on X, and its Jacobi matriz ®(z) = Vyp(z) = [?—%&(—P]l‘ .

has (full) rank d for any (reduced-)feasible action x.

Assumption 4 is not critical for our results and can (except for the smoothness portion)
be relaxed. Functional independence guarantees that the MCS problem is locally
never trivial, since no two of ¢’s components are collinear. If Assumptions 1-4 hold,

then for any (reduced-)feasible tuple (z,t) we can define the (d x m)-matrix
W(z,t) = —0(x)H ' (z,t)K(,?), (8)

which we term the pseudo-gradient of the MCS problem at (x,t). In analogy to
Lemma 1, it is easy to show that the pseudo-gradient evaluated at any optimizing
decision-parameter tuple (z(¢),t) describes the comparative statics of ¢ o z(t) along

paths parallel to the standard coordinates in the parameter space 7, i.e.,

Vip(x(t)) = W(x(t),1)- 9)

We say that the pseudo-gradient of the MCS problem is orientable at (x,t), if the
collection of all of its row vectors is a subset of a common half space of R™. If for a

given t € T the row vectors of W(z,¢) lie in a common half space of R™ for all z in
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a set Y C X, then we say that the pseudo-gradient is orientable on Y at t.

2.3.2 The Vector Field Method

To find a path 7 that solves the MCS problem at ¢t € 7, our method requires tracking
down some information about the direction of the gradient V.(¢(z(t))), given that
the decision maker only knows that z(t) lies in some reduced feasible set R(t) C X.
More specifically, we need to determine a direction forming acute angles with the
pseudo-gradient of the MCS problem. Such a direction exists if the pseudo-gradient

is orientable.

AsSUMPTION 5 (PSEUDO-GRADIENT ORIENTABILITY) There erists a continuously

differentiable vector field v(t) € R™ \ {0} such that for eacht € T,

Wz, t)v(t) >0, (10)

for all x € R(t), where R(t) C X is an admissible reduced feasible set.

Under Assumption 5, v(t) defines a vector field on 7 and a phase diagram with
paths corresponding to the flow of this vector field.!? The key result of this section

is that ¢ oz is nondecreasing along the paths.

THEOREM 1 Under Assumptions 1-5, let T C R be an open interval and v : T — T

a differentiable path such that
YA = v(v(A)),

for all A\ € I. Then, p(xz(¥()\))) is nondecreasing for all X € T.

12The trajectories of a vector field v(t) exist and are unique on the whole domain 7 if the vector
field is Lipschitz there (Khalil, 1992, pp. 74-77), and in particular when v is continuously differen-
tiable on 7.
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2

0

Figure 1: Solution to the MCS Problem at ¢ for ¢(x) = ;.

Proof. Since + is differentiable on Z, Lemma 1 implies (using Assumptions 1 and 2)

that
Viz(v(N) = — (H'K) (a(y(A)), 7(N))-

Thus, using Assumption 4 and equation (9), the gradient of ¢ (z(y(\))) with respect
to A is given by

Vap(e(v(A))) = W(z(v(A), yW)1(A) = W (z(v(A), v(A)v(v(X)).

By virtue of inequality (10) in Assumption 5, the latter expression is nonnegative.ll

Under the assumptions of Theorem 1, we say that ¢(x(t)) is nondecreasing along the

trajectories of v(t).

2.3.3 Implementation

Under Assumptions 1-5 the vector field method can be implemented using the follow-

ing techniques. First, for any ¢t € T determine a reduced feasible set R(¢) C X that
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is guaranteed to contain the interior solution z(¢) of the parameterized optimization
problem (1). Second, to satisfy Assumption 5, verify that the pseudo-gradient W (z, t)
is orientable on R(t). Note that for any given ¢ € 7 it may be possible to achieve ori-
entability by premultiplying the evaluation function ¢ by some diagonal (d x d)-matrix
of the form M(t) = diag(m,, ..., mq)(t) where my(t) € {—1,1} for alll € {1,...,d}.
Indeed if $(x,t) = M(t)p(x), then it is possible to find a matrix M (¢) such that the

pseudo-gradient W(m, t) corresponding to the modified evaluation function ¢,
W(z,t) = M)W (z,t) = —M(8)®(z)H (1) K (z, 1),

is orientable at (z,t). In particular, if a matrix M can be found that is independent
of ¢, it may be advantageous for the analysis of the problem if the decision maker
uses the evaluation function ¢ instead of . Third, find a vector field v that sat-
isfies (10). To accomplish this, a systematic, algorithmic procedure to determine a
vector field v(t) that is “maximally aligned” with the pseudo-gradient W(z, t) consists
in solving the maximin problem,!?

v(t) € arg max {min {min (Wl(m,t),v)}}. (1)

veRm:fo|=1 | zeR(t) | 1<I<d
When the assumptions of the Min-Max Theorem (Kakutani, 1942) are satisfied, any

solution v(t) to problem (11) also satisfies

v(t) € arg min { max {min (Wi(, t),v)}}. (12)

zeR(t) | veR™:|)=1 | 1<I<d

13, is the I—th row vector of W, and (-,-) denotes the scalar product in the relevant Hilbert
space.
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Motivated by the minimax formulation (12), since W is orientable by assumption,

one obtains the set of candidate vector fields

_f WA@'@),1) Wa(2°(t), %)
V= { [Wa(@ @), Ol [Wa(z(), 1) }

(13)

’
teT

where for any [ € {1,...,d} we have set
a1 .
= t .
&(t) = arg min |Wi(z, )]

One can now check whether some element of V is a suitable vector field on T, or

possibly a subset thereof.

The above three steps can be iterated to tighten the reduced feasible set. It can also
be useful to only consider subsets of the parameter space 7. Note that if an exact
solution to the maximization problem (5) is known for some ¢ € 7, then the MCS

problem at t has a solution if any only if W (x(t),t) is orientable at (z(t),t).

ExAMPLE 1 Consider a firm that has the option to invest in a number z of geographi-
cally dispersed markets'* (e.g., cities in the US) at an increasing convex cost C(z) > 0.
For simplicity, the market price p € (0,1) for the firm’s product is assumed to be the
same in each market; it is announced nationally and is a parameter of the problem.
Marginal costs for hamburgers are zero. The demands in the different markets are
uncorrelated and the firm is risk averse with constant absolute risk aversion p. By
investing in x markets the firm also reaps an increasing concave side benefit B(z) > 0

(e.g., through real-estate transactions).'®* With a probability ¢ € (0,1 — p) that is

4We allow z to take non-integer values.
15By imposing the Inada conditions C'(0) < co and B’(0) = oo one can easily gnarantee that the
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at most directly proportional to the quantity sold in each market, the firm incurs
a unit loss in any market due to a liability claim. The firm’s expected payoffs are

approximately'6

(z,q,p) = p(1—p)+B&)— BL — Lvar (L) - ()

(r1-p - 0= 252 ) o4 B - CCo)

i

where the random variable L € {0,1,...,x} represents the firm’s total losses. Max-
imizing profits we thus obtain z*(q,p) = £(p(1 — p) — ¢ — pg(1 — q)/2), where £ is
the (increasing) inverse of ' — B’. Hence, the maximizer z(t) is increasing in the
parameter t € T = {(¢,p) € R2, : p+¢ < 1} if and only if p(1 —p) —q—pg(1—q)/2

is increasing. The corresponding pseudo-gradient at the optimum is

W (z(t)) =[-1+pg—p/2,1=2p] &' (p(1 —p) — q— pg(1—q)/2),

so that with v(f) = (—p, go/2) we obtain

W), o) = 552 (2 4 a-ape) > L 50

for all £ € 7 and p > 1/4. The simple elliptic vector field v thus solves the MCS prob-
lem on 7. In Example 3 we show how to obtain a global MCS reparameterization of
the problem based on the vector field v, cf. Figure 2. Let us remark that clearly in this

example R(¢) = {z(t)}, if £ is known precisely (for any given B and C). However,

optimum is interior, i.e., z(t) > 0, so that we can without loss of generality set X = (0, ).

16The dependence of II on the parameter p is not explicitly noted. In fact, in this problem
the comparative statics with respect to p are obvions. We ean thus use p itself in solving the
MCS problem and finding an appropriate simple reparameterization, which illustrates an interesting
“partial reparameterization” variant of our technique.
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7(A)

Figure 2: Global MCS Reparameterization in Examples 2 and 3.

our conclusions can be obtained without further specifying the firm’s payoffs. Also
note that it would have been possible to trivially replace p(1—p) —q— p(1—q)g/2 by
a scalar parameter A, which would somewhat decrease the resolution of insight (not
a one-to-one mapping from the parameter space) for the decision maker somewhat,

yet clearly provide trivial but precise monotone comparative statics. 0

2.3.4 Relation to Classic Supermodularity Results

We now derive a well-known supermodularity result as a particular case of Theo-
rem 1. Under Assumption 1, we recall that f(x,t) is supermodular in x if ‘Zﬁfi—gz? is
nonnegative for all (2,¢) € X x 7 and 1 < ¢ # j < n. We call the function f(z,t)
supermodular in (x,t) if in addition %a%c(x, t) is nonnegative for all (z,t) € X x T

and 1 <1 <n,1<k<m.
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COROLLARY 1 Suppose that Assumptions 1-8 hold and that f is supermodular in (z,t).

Then z(t) is nondecreasing in t.

Proof. We show that z(f) is nondecreasing in each component of t = (¢1,...,m)-
Supermodularity in (z,t) implies that all components of K(z,¢) are nonnegative
on X x 7. It also implies that H;;(z,t) > 0 for all 4,5 € {1,...,m} with ¢ # j
on X x T. Without loss of generality we can restrict our attention to the reduced fea-
sible set R(t) = (CND)(t). Hence H;(x(t),t) < Oforalli € {1,...,n}, for the Hessian
matrix is negative definite at the optimum. Since H;' = (—1)" det(H”")/ det(H),
it is a simple linear algebra exercise to verify that Hi? <0on X x7T for all 4,j
in {1,...,n}.1" For any vector v(¢) > 0 all entries of —H (z,t) K (z, t)v(t) are there-
fore nonnegative. As a result, Assumption 5 is satisfied for p(z) = z and v(t) = e
where ¢y, is the k-th unit vector in the canonical basis of R™. An application of The-

orem 1 with ¢(x) = x concludes the proof. |

An important case that is not currently dealt with in the monotone comparative
statics literature is when f is supermodular in z but does not have the single-crossing

property in (z,t).!® In that context, Assumption 5 can be simplified as follows.

ASSUMPTION 5’ For eacht € T, there exists a vector v(t) € R™ such that K(z,t)v(t)

is nonnegative for all x € R(t), where R(t) C X is an admissible reduced feasible set.

COROLLARY 2 Suppose that Assumptions 1-3 and 5’ hold and that f is supermodular

in z. Then, x(t) is nondecreasing along the trajectories of v.

1"The adjoint matrix H* is obtained by removing the i-th row and the j-th column from H.
8In particular, f is not supermodular in (z, ).
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Proof. We modify the proof of Corollary 1. Supermodularity in z ensures that H igl <
Oon X x7T foralli,j € {1,...,n}. This together with Assumption 5’ implies that all
entries of —H !(z,t)K(x, t)v(t) are nonnegative. A direct application of Theorem 1

with ¢(z) = x concludes the proof. |

Corollary 2 applies to situations in which there are complementarities between the
different decision variables, but not between decision variables and parameters. Since
the maximizer under the original parameterization can be nonmonotonic, it is clear
that Assumption 5’ relaxes the tight single-crossing requirement put forward in Mil-

grom in Shannon (1994) for the price of an MCS reparameterization of the problem.

2.3.5 Constrained Optimization Problems

Assumption 2 requires that the optimizer be in the interior of the feasible set X’. This
assumption can be relaxed in different ways, either by reducing the dimensionality
of the decision space (using a substitution approach for equality constraints) or by
augmenting the dimensionality of the decision space (using a Lagrange-multiplier
approach for equality and/or inequality constraints).

Substitution Approach. Any equality constraints that are part of the definition of
the feasible set X’ define in fact a lower-dimensional set A’ that forms a submanifold
of X (with or without boundary). If the equality constraints can be solved globally for
a number of decision variables, the parameterized optimization problem can be viewed
as unconstrained on X’ after backsubstitution of these variables. More specifically,
if X’ is diffeomorphic to an open subset of R* with A4 < n, the problem can be seen

as unconstrained on an open subset of R™. To render our discussion precise, consider
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the problem?®
max f(z,1), (14)

zeX(t)
with
X(t) = {:U ey: g(x&t) = 0}}

where ) is an open subset of R”, ¢ belongs to an open set T of R™, and g takes
values in R* (for some 1 < k < n) and is twice continuously differentiable. Suppose
that the level set g(x,t) = 0 can be expressed explicitly as (Tn—ki1,...,2%n)(t) =
d(x1, ..., Tn-k,t), for (x1,...,2, ) € X', where X’ is the projection of ) on the
plane {(x1,...,%n_k,0,...,0) : (z1,...,Zn_k) € R**} C R™. The problem is then

reduced to the (n — k)-variable unconstrained problem on A’

max fl21, ... Top,t) = max L1y oo Lrks Q{T1s . Tk, L), T).
N f( 1 sy bn—ky ) (zl,...,zn,k)ex'f( 1, s dim kag( 1s s bn—ky )7 )

The application discussed in Section 2.5.3 provides a simple example of this transfor-

mation.

Lagrange- Multiplier Approach. Equality constraints can also be approached with
Lagrange multipliers. In the previous example, a necessary condition (Bertsekas,
1995, p. 255) for optimality is the existence of a k-dimensional vector v such that, at
the optimum,

V.f(z,t) + v V.g(z,t) = 0.

19Note that in this formulation it is possible to have the feasible set depend on parameters. In
contrast to standard MCS results obtained on lattices, we do not assume at the outset that X'(¢) is
monotone in ¢ with respect to the Veinott set order (Milgrom and Shannon, 1994). We are grateful
to Pete Veinott for pointing out that his set order (originally termed “lower than” relation) was first
introduced by him in a 1965 unpublished paper.
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Together with the k equations g(z,t) = 0, this determines the system of n + k
equations in 1 + k + m variables z, ¢, and v

V. flx, t I .q9(z,t
o tv) = flx,t) + v Vaug(z,t) —o

g(,t)

The implicit function theorem implies that, if G, is invertible, then locally
Vi(z,v)(t) = — [G;Vl Gt] (z,1,1).

Even though the position of the optimal 2 and v in X x R* is unknown, it might be
possible to find directions in the parameter space, such that z(t) is nondecreasing in
these directions. The following example illustrates this Lagrange-multiplier approach

with equality constraints.

EXAMPLE 2 Consider an economy with two goods (z,y) € R%, with the produc-
tion frontier {(z,y) € R2 : g(z,y) = 2® + y* — 1 = 0} and a representative agent
with utility f(z,y) = u(z) + tv(y), where u,v are twice continuously differentiable,
increasing and concave. We would like to determine the monotonicity properties of
the optimizer (x,y)(¢) with respect to the parameter ¢{. The constraint set is clearly
not a lattice, hence classic supermodularity results do not apply directly.?’ Using the

Lagrange-multiplier approach we have

w(x) + 2vx
G(.’L‘, vV, t) = tv’(y) + 21/‘3/ s
2Z2+y?—1

XHowever, classic results could be applied in conjunction with the substitution approach described
earlier.
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which implies that

v’ (z) + 2w 0 2z
Goyu(Z,y, 1, 1) = 0 W (y)+2v 2y
2z 2y 0
and that
0
Gi(z,y,v,t) = | v'(y)
0

An application of the implicit function theorem then yields

z —4zy

d _ V() R

% Yy it D 4x )
v 2y(v'(x) + 2v)

where D = —4y2(u”(x) + 2v) — 42%(tv"(y) +2v). In this problem, the condition V f +
vVg = 0 implies that v is negative, since the gradients of f and g both belong to the
positive orthant of R2. This, along with the concavity of « and v, implies that D is

positive and that Vix < 0 < V., i.e., monotone comparative statics obtain. M

Inequality constraints can be approached in a similar fashion. Consider again prob-

lem (14), this time with

X(t)={xe)Y:g9(z,t)=0h(z,t) <0},

where Y is an open subset of R", ¢ belongs to an open set 7 of R™, g and h take values

in respectively R* and R" (with k£ < n) and are both twice continuously differentiable.
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The Kuhn-Tucker necessary optimality conditions (Bertsekas, 1995, p. 284) imply the

existence of adjoint variables v and p in respectively R* and R’,, such that

Vaof +{¥,Vag) + (u, Vih) = 0,

and

ﬂi(xa £, t) = “i(t)hi(w7 t) =0

for all i € {1,...,r}. Letting

G(z,v, p,t) = g(z,t) )

iz, p,t)

a necessary optimality condition is that G(x,v,p,t) = 0. This defines a system
of n+k +r equations in n+ k +r +m variables, so that we can apply (if the relevant
matrix is invertible) the implicit function theorem to compute V,(z, v, u), and proceed
as in the equality case. In some problems, it is possible to know in advance which
inequality constraints are binding at the optimum. In this simple case, non-binding
inequalities are ignored, while binding ones are treated as equality constraints. This

approach is illustrated in the applications of Sections 2.5.2 and 2.5.3.
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2.4 Finding a Global MCS Reparameterization

Given a smooth solution v : 7 — R™ to the MCS Problem, it is interesting in practice
to find an MCS reparameterization of the optimization problem (1). The idea is to
start with the flow @ : 7 — T induced by the vector field v and note that this flow is
smooth and unique on what we refer to as the maximum “flow domain” F C R x 7,
beyond which the integral curves of the vector field cannot be extended. By taking
a plane that is transverse (i.e., never collinear) to these integral curves, it is possible
to construct new parameter coordinates under which monotone comparative statics

obtain, at least locally.

2.4.1 Global Flows

As a consequence of the standard theory of ordinary differential equations (ODEs;
Arnold, 1973), if the solution v is smooth, then integral curves to the vector field
exist, are unique, and induce a smooth local flow 6.2! To define the concept of a
local flow, let us first introduce a flow domain F C R x T with the property that for
any t € T, the set

FO={AeR:(\t)eF}CR

is an open interval containing zero. A local flow on T is a continuous map 6 : F — 7T

that satisfies the two group laws:

00,t) = t, (15)

2lExistence and uniqueness of integral curves is also obtained when the vector field v merely
satisfies a Lipschitz condition (cf. footnote 12).
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for all t € T, and
OO 81, 1)) = O(A+ 1), (16)

for all A € F® and p € FEOD such that A+ p € FO. In addition, for a given local
flow 6, we define

0x(t) = 6 (\) = 0(\ 1)

whenever (A, t) € F. A local flow (sometimes also referred to as a “one-parameter
group action”) relates for any ¢t € 7T the vector field v(¢) to its orbits 0 ()). If the
flow domain is such that the map 0 is surjective (i.e., 0(F) = 7T), then we call 6 a

global flow.

THEOREM 2 (ODE EXISTENCE, UNIQUENESS, AND SMOOTHNESS) Let v : 7 —

R™ be a smooth vector field. Consider the initial value problem

Var(A) = v(w(A),  %(ho) =t (17)

(i) EXISTENCE: For any Ag € R there exist a nonempty open interval T which
contains Ag and an open set U C T such that for any t € U there is a smooth

integral curve 7y, : Z — T which solves (17) for all A € T.
(i) UNIQUENESS: Any two smooth solutions to (17) agree on their common domain.

(iii) SMOOTHNESS: Let F =T xU as in (i). If we define the local flow 6 : F — T
with O(A, 1) = %(A), then 6 is smooth.

Proof. See e.g., Lee (2003, pp. 452-459). |
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In the following we use global flows corresponding to the solution vector field v to the
MCS problem on 7 (or a subset thereof) in order to find a global MCS reparameter-

ization of problem (1) as previously indicated in Section 2.2

2.4.2 Coordinate Change in Parameter Space

By construction, if v is a solution to the MCS problem on 7, it is nonsingular every-
where. The lack of singular points allows us to give a canonical, local representation
of v using a change of coordinates in 7. Consider a point ¢ty of 7. If v is smooth,
there exists an open interval Z C R containing the origin and an open subset U of
T satisfying the conclusions of Theorem 2 (with Ay = 0). Moreover, since v(to) is
nonsingular, it uniquely determines an orthogonal hyperplane H C R™ containing %,.
Let
P=UNHCR™

Since H is diffeomorphic to R™~1, P can also be seen as an open subset of R™1. To
avoid confusion, let II = w(P) denote the image of P under the diffeomorphism = :
H — R™ 1. Theorem 2 implies the existence of a smooth flow 8(\,t), which we
restrict to the domain Z x P. The flow can be reparameterized, with a slight abuse of
notation, by (A, 7) on the product & = Z x Il C R™. Moreover, the corresponding
range 7 = 6(S) is an open subset of 7 by Theorem 2. Last, 6 is one-to-one and
smooth from S to 7, also by Theorem 2. We have therefore defined a local change
of coordinates around #y: any ¢ in the open neighborhood 7 of ¢y can be uniquely
expressed by a tuple (A, 7(10(t))) € S. The (m — 1)-dimensional component #(¢) of ¢
is the intersection of the trajectory going through ¢ with the hyperplane H. Moreover,
since t = yy()(A¢), Theorem 1 implies that ¢ oz is nondecreasing along the trajectories

of the flow 6 as X increases. We have thus proved the following result.
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THEOREM 3 (LocAL MCS REPARAMETERIZATION) If v solves the MCS problem

on T, there erists a local MCS reparameterization of the form

8 = (s1(t), 82(8); s 8m () = (Ao, 7( (1)), (18)

around any tg € T, such that p(x(s)) is nondecreasing in s;.

In practice, this result can often be applied globally as the following example illus-

trates.

EXAMPLE 3 In Example 1 we obtained a vector field of the form v(t) = (—ts, aty)
(for some o > 0) as the solution to an MCS problem on some 7 C RZ \ {0}.
Since ve(t) = aty # 0 on T, we can choose the plane P = {t € T : t = (¢1,0)}, which

is transverse to the vector field. The (global) flow of the vector field v(¢) is

Ox(t1,t2) = (t1 cos vak — Ezf}—l—l\/—g———a-)‘—, tiv/asinv/al + t; cos \/5)\) )

Thus, for any (s,0) € P, we obtain

01(s,0) = (scosVa, syasinyal),

for A € (0,7/(2y/a)) and s > 0. Hence, on any contractible?? compact subset 7T

of T, we obtain the global reparameterization ¢ — (A, s) with A = % arctan \/ﬂftl
and s = v/t + (t3/a), cf. Figure 2. In the context of Example 1, the key insight for
the decision maker from the MCS reparameterization is that the optimal number of

markets to invest in varies monotonically in the ratio p/q, i.e., the product price in

22 An m-dimensional open set with nonempty interior is contractible if it is homotopy equivalent
(i.e., it can be deformed via a continuous transformation) to an m-dimensional open ball. Intuitively,
contractible sets have no “holes.”
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Figure 3: Global MCS Reparameterization.

relation to the risk of Liability lawsuits. 0

We now formally generalize the reparameterization technique used in the local case

by providing a general condition under which Theorem 3 holds globally.

AssUMPTION 6 (TRANSVERSE HYPERSURFACE) There erist subsets T and P of T,

with T open and P C T, such that:

(i) there exists a conver, open subset I1 of R™! and a diffeomorphism = mapping P

onto I1;
(i) for eacht € T, w(FD)NP is a singleton {1(t)}.

This last assumption ensures that trajectories of an MCS vector field v lead to a
foliation of the subset 7 of 7. In other words, the existence of a set P of points,
each element of which can be associated with exactly one trajectory, allows projection
of the set T onto P and — via the length (from ¢ to ¥(t)) of the trajectory (which
could pass outside 7) — obtain a bijection between 7 and a set S C R™. This

bijection corresponds to the desired global MCS reparameterization containing the
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length of the MCS trajectories as one new parameter in which the solution to the

reparameterized problem (4) (when evaluated with ¢) varies monotonically.

THEOREM 4 (GLOBAL MCS REPARAMETERIZATION) If the vector field v is a so-
lution to the MCS problem on T and Assumption 6 holds, then there erists a global

MCS reparameterization of the form

s = (81(t), 82(0), -, sm (1)) = (Ar, m(9(2))), (19)

such that p(x(s)) is nondecreasing in s.

Proof. Each element t of 7 uniquely determines an element 1(t) of P and a real X
such that v, (A) = t. The set & = Jycp F® x {x(4)} is an open subset of R™.
Moreover, the mapping t +— s = (A, 7(¥(t))) € S is one-to-one from 7 to S, and
smooth by Theorem 2. Last, since t(s) = (A,v) follows the trajectories of v as A

increases, Theorem 1 implies that ¢(z(s)) = ¢(x(\, 7)) is nondecreasing in s, = \.

When v has a potential?® v : 7 — R, a good candidate for P in Assumption 6 is any
iso-potential that crosses all trajectories.2* Although this need not always be the case,
it is likely that iso-potentials will be diffeomorphic to an open subset of R™1 and to
a convex subset if one chooses 7 carefully. The following classic theorem (essentially
Poincaré’s Lemma) gives a necessary and sufficient condition for the existence of a

potential, which can be tested on any vector field v satisfying Assumption 5.

23That is, v is the gradient of u.
241n that case, trajectories cross P only once, because the potential increases along them.
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THEOREM 5 (EXISTENCE OF A POTENTIAL) Let 7 C T be a contractible compact
domain with nonempty interior and v be a vector field on T. Then Svy/dt; = Ou /Oty
for all k,1 € {1,...,m} with k # 1, if and only if there exists a twice continuously

differentiable potential v : T — R, i.e.,
v(t) = Veu(t),

forallteT.

Proof. See Zorich (2004, Vol. II, p. 296).

2.5 Applications

2.5.1 Optimal Capacity Choice and Product Distribution

Suppose that a firm can choose the quantity (or, equivalently, the quality) ¢ of a
product that will be provided to each of m geographically dispersed consumers. Each
consumer k € {1,...,m} is located at a point ¢; € R, representing his or her type.
To deliver the product to consumer i the firm incurs a quadratic transportation (or,
customization) cost d(z — t;)%, where z € R is the location of a distribution center
that the firm is able to freely determine and d is a positive constant. The firm’s unit
transportation cost from its factory (located at the origin) to the distribution center
is given by the smooth convex function C(z) with C’(0) = C(0) = 0. To keep our
analysis simple, we assume that each consumer’s demand can be represented by a

linear inverse demand function of the form a — bq, where a, b are positive constants.?’

25This corresponds to a quadratic utility function uz(q) = ag — bg?/2 for all consumers k €
{1,...,m}. Allowing for demand heterogeneity with ux(q) = arg — brg®/2 leads to analogous
results.
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The firm’s profit can therefore be written as

T(g, 2,t) = mg(a — bg) — dg Y _(tx — 2)* — mgC(2), (20)

k=1

where t = (t3,...%,) € R™. The firm thus solves the parameterized optimization
problem

max Il(g, z,t). (21)

(9,7)€R 4+ xR
Provided that « is sufficiently large, it is easy to verify that problem (21) has a unique
interior solution (¢*(), 2*(¢)) and satisfies Assumptions 1-3. The firm’s MCS problem
is: how does the optimal per-consumer production quantity ¢* vary with t? Starting
from a market characterized by the parameter vector t € R™, is there a direction in
the parameter space in which the optimal production quantity q* increases? We first

determine the first-order necessary optimality conditions for (21),

ol -
— =a—2bg—d t —2)2 —mC(z) =0, 22
30 q kEZI(k ) (2) (22)
and
o _ o4 Zm(t_ ) —mgC'(z) = 0 (23)
5 = qk:Ik z) —mqC’'(z) = 0.

Therefore, we can restrict R(t) to the subset of tuples (¢,2) € X = R; x R that
satisfy (22) and (23). To apply the method, we also compute ®, H~! and K. Since

(g, 2) = ¢, we have that ® = (1,0) and Assumption 4 is satisfied. Moreover,

—2b 2d E;nzl (tk — z) — mC’(z)
24, (te—2) —mC'(2)  —2mdg —mgC"(2)
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The first-order necessary optimality condition with respect to z, given in (23), sim-

plifies the Hessian matrix H to

—2b 0
H =
0 —2mdg —mgC"(2)
It follows that?®
1 1 —2mdq _ quIl(z) 0
~ 2bmg(2d + C"(2)) 0 o |
whence
1
et (L o)
OH (%, 0)
The first row of K is given by?”
o211 o211

Therefore, in order to satisfy Assumption 5, we are looking for a vector v(t) € R™
such that

{((z—t1,...,2 —tm),v(t)) >0,

o Q.

for all z € R, or equivalently

((ze — ), v(t)) > 0, (24)

26Qbserve that the determinant is nonzero, since C”(z) > 0 by convexity of g.
2"There is no need to compute the second row, since K is left-multiplied by —®H !, whose second
component is zero.
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for all z € R, wheree = (1,...,1)/m is the unit vector of the first bisectrix®® A in R™.
It is easy to see that if v(¢) is orthogonal to e and has a nonnegative scalar product
with —t, the condition is satisfied. The vector v(t) = —t + m(t, e)e is such that first,
{e,v(t)) = 0, since {e,e) = 1/m; and second, {—t,v(t)} = (¢,t) —m({t,e))* > 0 by
the Cauchy-Schwarz inequality. Moreover, the inequality is strict if ¢ is not collinear
with e. Last, observe that, when seen from ¢, v(t) points directly?® to the first bi-
sectrix A of R™. We therefore conclude from Theorem 1 that ¢*(¢) increases as ¢
gets closer to A. In other words, as the consumer types become “closer,” the optimal
product quantity increases. When the consumer types are identical (¢ collinear to
e), the optimal production reaches its maximum. The problem can thus be reparam-
eterized in the following way: define a cylinder P around the first bisectrix A, for
example

P={teR™"':dtA) =1},

where d is the Euclidian distance from a point to a line. This cylinder is an (m — 1)-
dimensional manifold, which can be parameterized by m — 1 components. Moreover,
P is transverse to all trajectories, and is hit by all trajectories once, so that Assump-
tion 6 is satisfied.3® Therefore, we have a global reparameterization of R™ where m—1
components correspond to the position on the cylinder and determine a radius ema-
nating from A, and the remaining component is a parametric representation of the
radius. In this particular context, it is possible to construct a more efficient parame-
terization: let H denote the (m — 1)-dimensional hyperplane of R” orthogonal to the

first bisectrix and going through the origin, and (ey, €2, .. ., €m—1) be an orthogonal

28The first bisectrix is defined by the equation t; =ty = ... = t,,.

29The vector v(t) points in the direction of the orthogonal projection of ¢ on A.

30To be rigorous, P is diffeomorphic to §™~2 x R, where §”~? is the unit sphere in R™~*. This
parameterization is a generalization of cylindric coordinates in R3.
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basis of H. Then, (e, €2, ...,em) = (€1,€2, - -, €m—1,€) is an orthogonal basis of R™.
Moreover, if ¢ is represented with respect to that basis, i.e., £ = s;e1+82e3++ - -+ 8m€pm,
we obtain a new parameterization of the parameter space such that ¢*(s1,...,8m) is
nonincreasing in (sy, ..., 8,-1) (the smaller these coordinates, the closer is ¢ to the
first bisectrix).®!

It is worth observing that in order to solve the MCS problem, we relied on our
knowledge of the first-order optimality condition for z. It is our second use of the
crucial device R(t), which enables us to narrow down the domain on which As-
sumption 5 must be satisfied. On the other hand, we did not use the fact that the
optimizer (g*, 2*) satisfies the first-order optimality condition for q. Thus R(¢) could
have been larger without affecting our ability to construct the vector field v satisfying
Assumption 5. We also note that classic supermodularity is of no use in this problem,
since ¢* is not monotonic in any of the #;’s. Last, observe a remarkable fact in our
analysis of this example: we are able to obtain monotone comparative statics for ¢*
without solving explicitly for either ¢* or z*. In general, the method can be used to
derive monotone comparative statics for any single decision variable, say, x;, while
one is able to solve the optimization problem explicitly for some other variables, say,
Zk(t), iy1(t), - .., 24(t). In that case the reduced feasible set R(¢) can be narrowed

down to the set of all x € X such that z; = zx(t),. .., Zn = Zn(t).

31Moreover, it can be shown that g*(s) is independent of the last component, .
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2.5.2 Neoclassical Production

Consider a firm’s optimal choice of factor inputs, capital k¥ and labor [, so as to

maximize the objective function

flz,t) = g(k,l) —rk — wl, (25)

where z = (k,1) and t = (r,w) with r the rate of return of capital and w the average
wage rate. As pointed out by Milgrom and Shannon (1994), if ¢ is not supermodular,
comparative statics are not monotone in the original parameterization. To demon-
strate the use of our method we assume that g is twice continuously differentiable and
that there exists a unique optimizer in the interior of R2. Therefore, Assumptions 1-3

are satisfied, with the Hessian and cross-derivative matrices

-1 0
H= Gk Gkl and K — ,

gr Gu 0 -1

respectively. The pseudo-gradient is therefore

1 qu  —Gu
—9gkl  Gkk

where D(k,l) = (grrgu — 92)(k, 1) is the determinant of H(k,[). Because of the strict
concavity of g at the optimizer, we can restrict the reduced feasible set R(t) to the
subset of R2 where H is negative definite, implying that D(k,1) is positive.32 Notice

that the pseudo-gradient and the reduced feasible set are independent of  and w.3

32The determinant D is positive at any maximizer of (25) as the product of the two negative
eigenvalues of H.
33Note that H,K and D are all independent of (r,w).
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To simplify our exposition we drop the explicit dependence on ¢ and refer to R(t)
as R. If one can find a vector v making a positive scalar product with W (k,[) for
all (k,1), it will satisfy Assumption 5 for all values of r and w. The vector field
will then consist of straight, parallel trajectories of direction v. This will generate
a linear reparameterization of the problem (the basis of the new coordinate system
consisting of v and any other vector not collinear to v), under which both k and [ are
nondecreasing in the first parameter coordinate. Before addressing the problem of
monotone comparative statics for k£ and [ at the same time, let us consider the simpler
problem of finding monotone comparative statics for k alone. That is, we consider
the function (k,l) = k, which trivially satisfies Assumption 4. The pseudo-gradient
then becomes

Wi(k, 1) = ©(k, )W (k,1),

with ®(k,1) = (1,0). This yields
Wik,1) = 75 (1, ~gu)
K0 = H\gu Gk1)-
We are looking for a vector v € R? \ {0} such that (Wy(k,1),v) > 0, or equivalently

((9u; —gnt),v) = 0. (26)

Since gy is nonpositive, a solution is v = (—1,0). That is, k(r,w) is nondecreasing
in r. Notice that this result obtains without assumption on g except for smoothness.**

In general, k(r, w) is not monotonic in w: this would require gg > 0 for all (k,!l) (as

M Another way to see this is the following: the function f(k,l,r, w) = g(k,!)~rk—wl is supermod-
ular in (r, k). To apply standard supermodularity results, define F(k,r, w) = max;»o f(k,l,r,w). F
is supermodular in (k,r) and argmaxg>q F(k,r, w) = k{r,w). This implies that k(r,w) is nonde-
creasing in r. We thank Paul Milgrom for this observation.
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can be seen by substituting v = (0,—1) in equation (26)). However, there may be

other directions of v such that k is nondecreasing. Equation (26) can be rewritten as
vigu(k, 1) —vogu(k,1) >0
for all (k,l) € R%. Since gy < 0 on R, this is equivalent to
vy < min{D, d} v, (27)
where (d, D) = (inf §, sup A), with

5 = {%’ﬁ(k,z):guzo, gu <0, UM)GR}’
u

A = {%(k,n:gklso, o <0, (kJ)eR},
(1]

as well as the conventions that inf{@} = 400 and sup{@} = —oo. When A # @,
D > 0. Similarly, d < 0 if § # 0. When g is supermodular, A is empty or reduced
to the singleton {0}, so that D < 0. Moreover, § # 0 implies d < 0, so that
condition (27) is satisfied by any v € R?, by virtue of the nonpositivity of d A D.
This proves that k(r,w) is nonincreasing not only in r, but also in w, whenever g
is supermodular. In general, relation (27) defines a convex cone 'y, € R? based
at the origin which always contains the negative real line R_ x {0}. Except when
both D = 400 and d = —oo, 'y, has a nonempty interior. If gy > 0, D = —o0,
implying that I';, is a half-space that is located below the line v; = dvs.

The optimizer k(r,w) is nondecreasing in any direction of I'y. When I'y has a
nonempty interior, it is possible to change coordinates in the parameter space by

using two independent basis vectors in ['y. As pointed out earlier, this coordinate
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w

v

Figure 4: Neoclassical Production: Monotonicity of k(r,w) on I'y NT.
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change is global, since I'y is independent of the particular values chosen for r and w.
Similarly, I(r,w) is nondecreasing in any direction located in the cone I'; based at
the origin and containing the negative imaginary line {0} x R_. Having constructed
these two cones we can now address the more challenging question, és it possible to
find directions in which both k and | increase? The answer depends on V =TI, NI,
If V is empty, we cannot construct any direction that jointly increases k and [. If V
is nonempty, then it is also a convex cone, whose elements are directions of joint
increase. The intersection ¥ being empty does not prove the nonexistence of direc-
tions of joint increase. It just means that we do not have enough information on
the optimizers to produce such directions. As our information gets richer, the set R
becomes narrower, which implies that the cones I'y and I'; become wider. When one
has enough information, the cones are wide enough to intersect, yielding the desired
directions of joint increase (cf. Figure 4).3> When V is nonempty, the vector field can
be chosen constant: v(r,w) = v for some v € V. In that case, any straight line P
orthogonal to v satisfies Assumption 6: it is transverse and is hit exactly once by
all trajectories. The reparameterization is then simple: take any vector e; on that
line and let e; = v. Then, (e;,e;) is an orthogonal basis of R?, such that if one
expresses t = (r,w) on that basis (that is, (r,w) = s1€1 + s2€2), then (k(s),1(s)) is

nondecreasing in ;.

35The analysis for obtaining directions of joint decrease is naturally analogous, by considering
opposite directions. Similarly, it is possible to obtain directions of increase in one parameter and
decrease in the other.
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2.5.3 Giffen Goods

In an economy with two goods, an agent wishes to maximize her increasing and
concave utility by solving

max_ ul{zx,y),
(e, (z,y)

subject to

pT+qy S w,

where x,y are the quantities of the two goods, p and ¢ are their respective positive
prices, and w represents the agent’s wealth. Without loss of generality, we select the
second good to be the numéraire and correspondingly set ¢ = 1. In addition, since
both goods are desirable, the agent’s budget constraint is binding. As pointed out in

Section 2.3.5, the agent’s problem can then be restated as

max ulr,w —pxj.
z€{0,w/p] ( ’ P )

In this formulation the problem has one decision variable and two parameters.®¢ If u
is smooth, compactness insures the existence of an optimizer. We assume that for
our starting values of w and p, the optimizer z(w, p) is unique, located in (0, %), and
that u(-, w, p) is locally strictly concave at z(w, p) and everywhere twice continuously
differentiable. This implies that Assumptions 1-3 are satisfied. The first good is
“normal” if z(w, p) is nonincreasing in p, and Giffen or “inferior” if this monotonicity

is sometimes violated.3” Similarly, one would usually expect the consumption of

36 As mentioned earlier, we have therefore converted the initial problem with two decision variables
on a one-dimensional manifold of R? with empty interior but nonempty relative interior, into a
problem with one decision variable on a set with nonempty interior.

37 Classic examples include potatoes or bread. The gist of the argument goes as follows: when the
price for bread increases, poorer people cannot afford buying “luxury goods” such as meat, and end
up consuming more bread, which is still the cheapest good. Other goods violating this monotonicity
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any good to increase with the agent’s wealth. However, this monotonicity is also
sometimes violated. The question then becomes, under what conditions is a good
normal, and how are price and wealth effects connected? The Hessian and cross-

derivative matrices are
H = Upy — 2DUsy + PPUyy and K = [Upy — PlUyy  — DUy + PTUyy — Uy -
The pseudo-gradient W is therefore given by

1
W(w,wap) = 'b-[a(wi7p) ——:ra—uy(x,w——xp)],

where D = —H > 0 (by strict concavity of H at the optimizer) and a(z,w,p) =
Ugy — PUyY. We also note that since () = x, Assumption 4 is trivially satisfied. In

order to meet Assumption 5, we are thus looking for a vector v € R? such that
oz, w, p)vr — (xa(z, w, p) + uy)ve >0 (28)

for all z in the reduced feasible set R(w, p). First, we observe that if u is supermodular
and concave in its second variable, a is nonnegative, which implies, along with the
nonnegativity of w,, that any vector v in Ry x R_ solves (28). This means that if
the two goods are complements and if the utility function is concave in the second
good, then the first good is normal.®® In the general case, we show that there is a
hierarchical relationship between wealth and price effects. Increasing wealth amounts

to setting v; > 0 and v, = 0, so that the good is normal with respect to the wealth

are Veblen goods (Veblen, 1899) or positional goods (Hirsch, 1976, Chapter 3) which are such that
the implied status of the owner increases with their price.

38This result can also be shown by observing that the concavity of « in y implies the supermodu-
larity of v in (z,w,—p).
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effect if and only if @ > 0. On the other hand, o > 0 implies that xa + u, > 0.
Since decreasing the price amounts to setting v, > 0 and v; = 0, the good is therefore
normal with respect to the price effect if @« > 0. This shows that the following
result holds for any smooth, nondecreasing utility function: if an augmentation in
wealth increases the optimal consumption of a good, then a cut in its price also
increases its optimal consumption. The reverse is, in general, not true.®® If the
optimal consumption z(w,p) is known or‘constrained to belong to some subinterval
J = (®1,22) C (0,w/p),*? the analysis can be refined. For example, suppose that
minge s {a(z,w,p)} > 0 for all w,p. Then the good is normal with respect to both
wealth and price effects (any v € R, X R_ solves (28)). If o sometimes takes negative
values but min,c s {zra(z,w, p) + uy(x, w — px)} > 0, then the good is normal with
respect to price effects (v € {0} x R_ solves (28)). More generally, suppose that
af-,w, p) changes sign only once on (zy, x2), and that a(z;, w,p) > 0 for all w and p
in an open neighborhood of initial values of wealth and price. The second condition
means that the good is normal for low consumption, while the first condition means

that the good becomes Giffen for high consumption values. Then, if the vectors

(a(xb w9p)7 '—wla(xh wyp) + 'U:g(.'l?], w — pxl))
and
(a(z2, w, p), —T20(T2, W, P) + Uy(T2, W — PT2))

are in the same half-plane, there exists a normal vector v(w, p) of the half-space whose

scalar product with W{z,w, p) is nonnegative for all x € (x;,z2). The situation is

39The result can be read in the opposite direction: if a good is inferior with respect to price effect,
it is also inferior for wealth effect.
40For example, minimal consumption could be imposed or supply could be limited.
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Figure 5: Giffen Goods: Solving the MCS Problem for z(w, p).

represented in Figure 5. It is easy to verify that v(w,p) can always be taken in the
negative orthant R?. Therefore we have the following result: if the pseudo-gradients
of consumption boundaries 1, 22 lie in the same half-plane, and if the good behaves
as a normal good for low consumption values and as a Giffen one for high consumption
values (such as potatoes, cf. footnote 37), then there exists a way to increase optimal
consumption this good by reducing both wealth and price at the same time. It can
also be shown that in the same situation, there is no way to increase consumption by

raising both wealth and price at the same time.

2.5.4 Multiattribute Screening

A variation of our method can be used in the context of screening with multiple
instruments. A firm faces customers of different types, distributed on an interval X C

R according to a positive density function g. The firm sells products whose attributes
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are described by a vector ¢t € T C R™. The goal of the firm is to propose a product
line I' C 7 and a price schedule P : I' — R, (with 0 € T’ and P(0) = 0) that

maximizes its expected profit

ﬂamzlymm»~mwmwwm;

where C(t(z)) is the cost of producing ¢(x) € I" and ¢(x) solves the type-z consumer’s

utility maximization problem
t(x) € arg max {u(z,t) — P(t)}.

This general screening problem has only been solved in particular cases*! Whenm = 1
(only one instrument available), it is possible to directly compute the optimal price
schedule P(x) under some additional supermodularity assumptions on the primitives

of the problem. Assuming that u is smooth, we can define

(1) = (e, 0) — (1) L)

g(x)

where G is the probability distribution of the density g. Mussa and Rosen (1978)
have shown, based on a technique developed by Mirrlees (1971), that if « and u are
twice differentiable and supermodular (i.e., uz: > 0 and pze > 0 on X x T), then it
is possible to construct the optimal price schedule. Moreover, this optimal schedule
leads to “perfect” screening (without bunching): each consumer of type x will buy a

distinct product £(x). Suppose now that there are m > 2 product attributes available.

41See Roberts (1979), Mirman and Sibley (1980), and Matthews and Moore (1987) for the multi-
attribute, one-dimensional type case, and Rochet and Stole (2003) for a recent aceount of the general
multidimensional screening literature.
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Our method can be extended to build product lines that perfectly screen consumers.

Defining the pseudo-gradient W as the (2 x m)—matrix

Vi (z,t)

W(z,t) =
Vg‘)u't (ﬂ'), t)

suppose that there exists for all ¢ € T a nonzero vector v(t) such that

Wz, t)v(t) >0

for all z € X (i.e., Assumption 5 is satisfied). We can then define I' C 7 to be
the image of any smooth trajectory <y : (0,1) — T generated by the vector field v.
This leads to a reparameterization of the utility # and the function y when restricted
to X x I' (that is, when customers are offered the product line I'). Specifically, we
define & and fi on X X (0,1) by @(z, A) = u(z,v(N)) and iz, A) = p(z,v(A)). Using
Lemma 1 and Theorem 1, we can show that @ and i are supermodular on X x (0, 1).
The aforementioned result then implies that it is possible to find the optimal price
schedule on I', and that this schedule perfectly screens customers. This approach
does not solve the original problem of maximizing the profit on 7', since we artificially
restricted ourselves to the product line I'. However, the method can be repeated for
several distinct trajectories, and leads to a perfectly screening price schedule that
maximizes the expected profit not only on a particular product line, but on a large

class of product lines that spans the whole multiattribute space 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. MONOTONE COMPARATIVE STATICS 61

2.6 Discussion

In the available literature on monotone comparative statics, the parameterization of
the optimization problem is essentially taken as given.*> The presently known criteria
for the monotonicity of solutions hold, therefore, only with respect to the particular
problem formulation given at the outset. Milgrom and Shannon’s (1994) charac-
tererization of the monotonicity of solutions to (1) on lattices requires the objective
function f to be quasi-supermodular in z and to satisfy a single-crossing property
in (z,t).** The supermodularity requirement on the objective function can thereby
be interpreted in terms of “complementarity” of decision variables, a concept that
dates back at least to Edgeworth (1897) and whose origins are reviewed by Samuel-
son (1974). Milgrom and Roberts (1990) demonstrate the power of complementarities
and associated supermodularity properties in interpreting decision changes as mono-
tone responses to exogenous shifts of economic conditions. Even though equilibria
cannot be located exactly, complementarities allow one to make precise statements
about the direction in which optimal decisions change as a consequence of parameter
changes. In the absence of such complementarities, the presently available theory
unfortunately guarantees the non-monotonicity of solutions, even though this non-
monotonicity might just be a symptom of an unsuitable parameterization of the
problem. The chapter proposes a way to obtain an equivalent formulation of the op-
timization problem (1) using a new parameterization, such that — provided sufficient
knowledge about the location of the solution — monotone comparative statics may be

obtained. Finding a new parameterization of the problem amounts to creating a set of

42Note that the decision variables are also typically taken as given. Our method in principle allows
for a change of the decision variables to obtain monotone comparative statics through an appropriate
choice of the evaluation function .

43 Athey (2002) applies these results to expected-utility maximization problems under uncertainty
and finds necessary and sufficient conditions on the model primitives in that context.
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economic indicators which allow for monotonic decision making and thus easy rules of
thumb (i.e., when the relevant indicator goes up, the optimal decision goes up, too).
This seems especially useful in situations where the same optimization problem needs
to be solved repeatedly for different parameter values. Let us briefly mention at this
point that our method naturally extends to equilibrium problems (cf. also Milgrom

and Roberts (1994)) specified by a relation

F(z,t) =0,

where F' : X x 7 — R" is a continuously differentiable function, as can be seen by
associating V,f with F', so that H = V,F and K = V,F. With these substitutions
in place, all of our results hold essentially without any change. We also remind the
reader that, as pointed out in Section 2.3.5, even though we require through As-
sumption 2 the existence of a unique interior global optimum, parameter-dependent
constraints can be accommodated in a straightforward way by shifting the analysis
to a submanifold in X or by augmenting the space of decision variables by Lagrange

multipliers corresponding to the binding constraints.

Sometimes our method may also be useful for reducing the number of parameters
without any losses. To show this, let us first note that, clearly, an “ideal” parame-
terization of problem (1) for the case m > n associates exactly one parameter ¢; with
each component of the decision variable z;, and is such that z; remains unchanged
in response to a change of parameter t; (with j # 7). If the location of the optimal
solution is perfectly known, a reparameterization with these “ideal” properties can
always be obtained by setting s; = z;(t;) for ¢ € {1,...,n} and simply discarding

all other m — n parameters, t,,4,...,t,. Unfortunately, lack of knowledge about
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the location of the optimizer (up to a monotone transformation) usually makes this
trivial solution impracticable. Nevertheless, it may sometimes be possible to reduce
the number of parameters by finding directions v(t) for which (W (z,t),v(t)) = 0 for
all z in an admissible reduced feasible set R(¢). If such a direction can be found, the
solution does not depend on X in the associated global MCS reparameterization and A
may thus be discarded from the set of new parameters. By repeating this process it
may be possible to eliminate further parameters.

The tradeoff between the decision maker’s knowledge about the location of the
optimal action and her ability to find directions that guarantee monotone behavior of
the optimizer (i.e., to solve the (local) MCS problem) is related to “partially specified
problems”, as discussed by Milgrom (1994). One type of partially specified optimiza-
tion problems possesses an objective function of the form f(z,t) = g(z,t) + d(z),
where § is any affine mapping from X C R to R. Monotonicity of optimal solu-
tions x5(t) to the problem (1) for any affine § is then equivalent to the (otherwise
unknown) function g being supermodular on X x 7. The key idea in this approach
is that the class of perturbations ¢ is large enough relative to g and X to allow for
any location of the optimizer in X'. A variation of our method bypasses this definitive
result when the function g fails to be supermodular: it might be possible to transform
the parameter space so as to “supermodularize” the function g. If g(x, ) is not super-
modular in (z, t), we can build trajectories v : (0,1) — 7 in the parameter space such
that g(z,v(\)) is supermodular in (z,A). We have also used this approach in Sec-
tion 2.5.4 and Corollary 2. While supermodularization of functions is just a particular
application of our method, its repeated use in this chapter suggests its potential ben-

efits in numerous other settings, such as for supermodularizing noncooperative games.
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Further research could proceed to relax some of the differentiable structure imposed to
obtain our results. Systematic MCS reparameterizations can be expected to naturally
generalize to an analysis on lattices. The problem is to find a rule on W C T x7 such
that (¢,¢') € W implies ¢(x(t')) > ¢(x(¢)). In particular, suppose that we can build
trajectories {7;} in 7 such that (z,t) — f(=,t) has the single-crossing property**
on X xT; for all i € Z. If f is in addition (quasi-)supermodular in z, standard
results as in Milgrom and Shannon (1994) apply, showing that x(¢) is nondecreasing
along the trajectories. The problem is of course to construct such trajectories. Our
method for doing so is based on differential calculus, but there may be other ways to
build trajectories, or at least to find rules in the parameter space, in order to achieve

monotone comparative statics (e.g., through discretization of our results).

“4 Any trajectory is totally ordered, with the order implied by the parametric description of the
curve.
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Chapter 3

Games Played Through Agents

For the game of complete information with multiple principals and multiple common
agents discussed by Prat and Rustichini (2003), we construct a general set of equilib-
rium transfers that implement any efficient outcome as a weakly truthful equilibrium,
and the subset of such equilibria that are Pareto optimal for the principals. We pro-
vide conditions under which the general set completely characterizes the set of all
weakly truthful equilibria implementing a given efficient outcome. We also show that
under the sole assumption of concave payoff functions, any efficient outcome can be

implemented with principals using affine strategies.

3.1 Introduction

Recently, Prat and Rustichini (2003) [P&R] analyzed a class of games of complete in-
formation in which N common agents noncooperatively implement an outcome (i.e.,
a collection of actions) after having received offers of outcome-contingent transfers
by M principals. Based on Bernheim and Whinston’s (1986) truthful Nash equilib-

rium for games of common agency with one principal and N agents, P&R introduce

65
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weakly truthful equilibrium (WTE) as a Nash-equilibrium refinement for their class
of games played through agents. They focus on the implementation of an efficient out-
come (that maximizes the sum of all principals’ and agents’ payoffs). P&R provide a
characterization of WTEs and prove that any WTE must be efficient. Moreover, they
show that any efficient outcome can be implemented as a WTE when agents have
convex action sets and all parties have bounded, concave, and continuous payoff func-
tions (P&R, Theorem 8). Their existence proof, based on a generalization of Farkas’
Lemma (Aubin and Ekeland, 1984, p. 144), is nonconstructive. Hardly any insight is
gained about how weakly truthful equilibria can actually be implemented, i.e., which
transfers to specify in the equilibrium contracts. As Weber and Xiong (2004) [W&X]
demonstrate, it is precisely the latter question of equilibrium implementation which
is of great importance in practical applications such as the coordination of supply
chains. Indeed, as off-equilibrium payoffs supporting the implementation of an effi-
cient outcome vary, in-equilibrium payoffs to principals and agents are reallocated.
We provide several direct algorithms for implementing any efficient outcome as a
WTE in a game played through agents, under the assumption that all principals’ and
agents’ payoff functions are concave and continuous.!

Given any efficient outcome of a game played through agents, this chapter pursues
the following three main objectives, corresponding to the underlying practical contract
design problem: first, to construct a general set of (and, whenever possible, the set
of all) WTEs implementing the efficient outcome and to provide a simple represen-
tation of these WTEs; second, to characterize the subset of these WTEs that yield

Pareto-optimal in-equilibrium transfers for the principals; third, given any attainable

'While these properties require assumptions on the domains of the payoff functions, our results
are valid when the actions sets are finite, or more generally are any subsets of these domains.
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Pareto-optimal in-equilibrium transfer, to provide a WTE that implements the effi-
cient outcome and results in the prescribed in-equilibrium transfers. The chapter is
organized as follows. Section 3.2 describes several applications of the games played
through agents. Section 3.3 reviews the setting of games played through agents and
recalls a simple equilibrium characterization (Proposition 1) by P&R and W&X.
This characterization reduces the problem of finding a WTE that implements a given
efficient outcome to a problem of constructing separating “excess transfers.” In Sec-
tion 3.4 we provide an inductive algorithm (Theorem 1) to obtain separating transfers
which are affine for each principal except one. In the generic case where the payoff
functions are differentiable at the efficient outcome, we show how to implement the
outcome with excess transfers that are affine for all principals (Proposition 2). We
use the first algorithm to systematically find additional “maximal” excess transfers
through outcome-contingent convex combination (relation (27)). Using a leveling al-
gorithm, it is possible to further extend the set of equilibrium excess transfers such
that “minimal” excess transfers appear as limits of the algorithm (Proposition 3). We
are thus able to describe a general set of (and, whenever these minimal excess trans-
fers are unique, the set of all) equilibrium excess transfers (Theorem 2) in terms of
an extremal basis which can be directly computed from the minimal excess transfers.
In Section 3.5, we describe the subset of these transfers which are Pareto optimal for
the principals and the set of attainable best in-equilibrium transfers for each principal
(Theorem 3). We also show how to implement any of these in-equilibrium transfers as
a WTE. Section 3.6 provides an exact expression for the minimal excess transfers for a
class of payoff functions. The minimal excess transfers are key in the implementation

of efficient equilibria. Section 3.7 discusses and summarizes our results.
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3.2 Applications of Games Played Through Agents

To illustrate the importance of obtaining explicit transfers implementing an efficient
outcome, and the explicit subset of these transfers which are Pareto optimal for the

agents, this section provides several applications of games played through agents.

(See also Bernheim and Whinston (1986) and P&R.)

Supply Chains. By definition, supply chains are “coordinated” if the outcome
maximizes the sum of the payoffs of all firms involved. Much of the literature on
coordinated supply chains is focused on a two-echelon single-agent single-principal
context, which already involves nonlinear contracts (“quantity-dependent pricing”),
and contracts with discount across products and orders (“generalized ty'ing”). Ina
multi-supplier context, there can also be provisions relative to actions for other sup-
pliers (“exclusive dealing”). When demand is random, as studied in Bernstein and
Federgruen (2005), contracts bear on expected values. Some contracts involve multi-
ple components of actions, for example when suppliers must choose both capacities
and quantities. In this case, buyers may be induced to enter “royalty schemes,” such
as pay-back and revenue-sharing contracts.? Principals can either be at the lower or
at the higher echelon of the supply chain, depending on the allocation of the bargain-
ing power. The model addresses both situations, by a simple transformation of the

framework, as described in W&X (Section 2.5).

Labor Economics. When several firms bestow the right to make certain decisions

to common intermediaries, they behave as principals influencing agents. For example,

2See Cachon (2003) and Weber and Xiong (2004).
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insurance companies use common insurance brokers to sell their policies.?

Lobbying. In order to influence public decisions, interest groups engage in transac-
tions (e.g. by financing electoral campaigns) with decision makers (see Dixit, Gross-
man, and Helpman (1997)). As pointed out by P&R, most decisions are now made

collegially, which makes it necessary to consider a multi-agent setting.

Multi-Object Auctions. When bidders submit their offers to an auctioneer, they
behave as principals influencing an agent, whose decision is to allocate the auctioned
good (see Bernheim and Whinston (1986)). In the context of multi-object auctions
with complementary goods, bidders are sometimes allowed to condition the payment
of their bids to a given auctioneer on the result of another auction, in which case a
multi-agent setting is required for the analysis of the game. A particular instance
of such auctions (with one principal) are take-over bids, where the potential buyer
conditions his purchase of the stocks (from stockholders, who are the auctioneers and
agents of this game) on his obtaining a minimal percentage of the outstanding float
of the stock, without which he does not gain the desired control over the targeted

firm.

3These contracts have recently been the focused of an investigation by NY Attorney General Elliot
Spitzer, on the count of possible bid rigging, and several of the nation’s largest insurers admitted to
the attorney general’s office having payed kickbacks to get business from insurance brokers.
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3.3 Games Played Through Agents

Let M = {1,..., M} be the set of all principals and N' = {1,..., N} be the set
of all agents, where M, N > 1. Each agent n € N can implement an action z, €
X, where X, is a nonempty compact subset of ]Ri’”“ (for some L > 1) and z, =
(z},...,zM). The component z7* € RY of agent n’s action can be thought as a
transfer of L goods and services (“actions”) between agent n (“he”) and principal m
(“she”). Any game played through agents consists of two periods. In the first period,
each principal m € M proposes an outcome-contingent transfer £7* € C(X,,R}) to
agent n.* In the second period, the transfer schedule ¢ = [¢*] is announced publicly
and each agent n implements his most preferred action to obtain a respective net

payoff of

Un(®n;t) = Tn(zn) + Z (), (1)

meM

where T',, € C(X,,R) is agent n’s gross payoff function. Provided the outcome z =

(Z1,...,ZN) € X = Xy X --- x Ay is implemented by the agents, principal m’s net
payoff is
V(") =TM(@) = )t (@), (2
neN

where II™ € C(X,R) is principal m’s gross payoff and t™ = (t*,...,{%) is her

transfer. Principal m’s transfer t™ is weakly truthful relative to an outcome € X if

V™(Z;t )—_—rfea)?cv (z; ™). (3)

4Given two topological spaces R and S, we denote by C(R,S) the set of all continuous functions
from R to S.
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A subgame-perfect pure-strategy (Nash) equilibrium of the two-period game
G = {{MN}{V™(), Un()} {C(X, RY), X, }}

is a pair (f,&) € C(X,RMN) x X such that (i) for every n € N given any ¢ €
C(x,RMY),

Zn(t) € arg max Uy, (2, Z_n;t), (4)

T €Xn

and (ii) for every m € M, given { ™ € C(X,RY 1),

" carg max V™™, ™) ™). 5

g, VI ) Q

A pure-strategy equilibrium (£,%) is weakly truthful if each principal m’s transfer is
weakly truthful with respect to the equilibrium outcome . As P&R (Proposition 3)
note, any WTE is efficient in the sense that the associated outcome  maximizes the

joint surplus

W)=Y V™@t™)+ Y Un(z;t)= Y HO™x)+ Y Cn(aa).

memM neN meM neN

For any given efficient outcome £ € argmax,cx W(z), let F™(z) = I™(z) — II™(Z)
denote principal m’s excess payoff, and let Gp(xn) = I'n(Zn) — I'n(zn) be agent n’s
excess cost relative to their respective payoffs at £. Based on P&R’s results, W&X
characterize WTEs of the game G in the following compact form, which they term

the reduced contract design problem.
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PROPOSITION 1 (REDUCED CONTRACT DESIGN PROBLEM) . The pair (£,2) is a

WTE of the game G if and only if, for all (m,n) € M x N,

Fm_ZA;nSOSGn-ZAsz (R)
neN meM
where A™(x,) = t7(z,) ~#7(2,,) is principal m’s excess transfer to agentn contingent

on the feasible outcome x, € X,,.

In fact, any excess transfer A = [A™] that solves (R) for a given efficient out-
come & € X (which we refer to as reduced (equilibrium) transfer) can be mapped to
an admissible equilibrium transfer ¢ € C(X, RMN) by setting £(x,,) = A7 (z,) + .
The nonnegative constants o) (“in-equilibrium transfers”) correspond to the equi-

librium transfers contingent on the implemented efficient equilibrium outcome %, i.e.,

m

™ = {(#). For instance, by using for any fixed n € A the recursive construction

[

suggested by P&R (Lemma 2), one obtains

m—1 M
o =— melg} {Gn(mn) - Z A;(mn) - Z A;(.’En)} >0 (6)
meen i=1 i=m+1
and
Ar(@n) = —min {7, —A7(z,)}, (7)
for all m = 1,..., M. More generally, if A is an “admissible” equilibrium excess

transfer (e.g., obtained through (6)—(7)), then the in-equilibrium transfers o can be
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obtained through®

Q, = ___xrnnelgn {An (ﬂfn) + (G’n(xn) - Z An(xn)) } 2 0 (8)

eM
for all (m,n) € M x N. The continuous equilibrium excess transfer A = [A™] is
thereby admissible if it solves the reduced contract design problem (R) and if it is

such that
im=A" o™ >0 (9)

for all (m,n) € M x N. The latter inequality ensures that the equilibrium transfer
is nonnegative and is thus an element of C'(X,,,R,), as required at the outset.

The recursive construction (6)—(7) has two difficulties. First, the resulting in-
equilibrium transfer o = [a]}'] is potentially not Pareto optimal for the principals, in
the sense that it may be possible to strictly lower in-equilibrium transfers to agents
for some principals while making no other principal worse off. Second, the set of at-
tainable in-equilibrium transfers using the recursive construction is in general strictly
contained in the set A(Z) of all in-equilibrium transfers that can be implemented as
a WTE (i, Z). Our direct equilibrium construction bypasses these shortcomings by
providing a precise representation of all attainable WTEs of G, as follows. To find all
WTEs that implement an efficient outcome £ € &, it is by Proposition 1 necessary to
find all excess transfers A whose elements A]" satisfy the M + N inequalities (R). We
thus provide a complete set of solutions to this “reduced contract design problem”

(Section 3.4). In particular, we show that any solution to (R) can be represented as

5The reasoning behind expression (8) is that in equilibrium each principal m is minimizing her
expenditure on transfers by paying only the amount needed to compensate agent n for the payoff
difference, had he chosen his otherwise best action without principal m. The worst “punishment”
principal m can inflict on agent n is thereby limited to paying him zero, since the transfer £7* is by
assumption an element of C(X,,Ry).
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an outcome-contingent convex combination of extremal basis functions, which implies
a simple representation of all WTEs of G, including an explicit representation of the
set of attainable in-equilibrium transfers. In Section 3.5, we then provide a simple
mapping from any solution A of (R) to any admissible equilibrium transfer ¢ = A+
with a Pareto-optimal in-equilibrium transfer a. Again, one finds that any equilib-
rium transfer in the subset of Pareto-optimal equilibrium transfers can be represented

as a convex combination of extremal basis functions.

3.4 Solving the Reduced Contract Design Problem

We now construct a complete solution to the reduced contract design problem (R)
given an efficient outcome Z. Any efficient outcome is thereby a maximizer of the
joint surplus W on the compact set X of the agents’ feasible actions. Since W is
continuous, by Weierstrass Theorem (Berge 1963, p. 69) there exists at least one
efficient outcome in X. Fixing an efficient outcome &, we look for solutions to the set
of M + N inequalities (R). For this it is useful to note that, by the efficiency of Z, any

excess welfare W(x) — W(2) = > e F™(®) — X, cpr Gn(®n) is nonpositive, i.e.,
Z F™(z) < Z Gn(Zn) (10)
meM neN

for all z € X. Since our construction makes repeated use of the separating hyperplane
theorem (Berge, 1963, p. 163), we assume that all gross payoff functions are concave

(for a characterization of existence without such an assumption, see footnote 13).

AssuMPTION 1 (PAYOFF CONCAVITY) Principalm’s gross payoff II"™ and agentn’s

gross payoff T'y are concave and bounded for all (m,n) € M X N.
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Naturally, Assumption 1 implies that the excess measures F™™ and —G,, in Propo-
sition 1 are concave. A solution to (R) can now be obtained by induction on m.
Since F! < 3, cnrGn — Y pse F™, F' is concave, Y, o Gn — Y,,55 F™ is convex,
and because both functions vanish at %, the separating hyperplane theorem implies

the existence of vectors §1 € RL for n € N such that

F'@) <) (Gn,an—8n) <Y Galan) — Y F™(). (11)
neN neN m>2
We set Al(z,) = (0%, %n — &n) for n € N. In the second step of the induction, we

observe that from (11),

F2L) (Go—A) =Y ™
neN m>3
Moreover, F? is concave, whereas Y, (Gn—AL) =", F™ is convex (the functions
Al are affine for all n € N'), and both functions vanish at #. Another application

of the separating hyperplane theorem then implies the existence of vectors 62 € RE

for n € N such that

F2() <3 (0o = Ba) <3 (G — A3)(mn) = Y F™(2)- (12)

neN neN m>3

We set A2(z,,) = (02, £,—%Z,). Let us now describe a generic iteration of the induction.
Suppose that for any p € {1,...,M — 2} we have affine functions A} for m €
{1,...,u—1} and n € N such that

F“gZ(Gn~ 5 Ag)_ Al

neN m<p—1 m>u+1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. GAMES PLAYED THROUGH AGENTS 76

By assumption, F* is concave and )\ (Gn =Y <1 A?) =Y mepp F™ i8 con-
vex. Both functions vanish at #. The separating hyperplane theorem guarantees the

existence of vectors 8% € RL for n € A such that

FHz) <) (0 2n—8n) < Y (Gn— > Ag) (@) — Y F™(x).
neN neN m<u—1 m>u+1

This defines functions A¥(x,,) = (6%, x, — %,) which are affine and vanish at %, such

that

F"gZAﬁgZ(Gn—- > Ag)— S o (13)

neN neN m<u—1 m>u+1

As a result,

Pt <y (Gn~ ZA?) -

neN m<u m>p42
i.e., the induction hypothesis holds for y + 1. We continue the induction until g4 =

M — 1 and obtain functions A¥1(z,) = (M1 z,, — £,) for n € N that satisfy
FM—]. S Z(dﬁl—:&mn_‘i‘n) S Z (Gn— Z AZL) —FM’ (14)
neN neN m<M -2
The algorithm terminates by setting

AV =G, - Y A (15)

m<M-1

for all n € N. We have therefore found MN functions A" that vanish at Z. From

relations (13)—(15), one obtains that

Fr <Y Ay
neN
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for all m € M. Moreover, equation (15) implies that

Y Ar=a,

meM

for all n € M. Consequently the excess transfer A = [A”] solves (R) and implements
the efficient outcome &, as intended. We have thus provided a constructive proof of

the following result.

THEOREM 1 (EXISTENCE OF A WTE OF G) . Under Assumption 1, there exists a

weakly truthful equilibrium (£, 1) of the game G.

This construction is useful when the payoff functions are not differentiable at £.¢6 On
the other hand, when the principals’ payoffs are differentiable at the efficient outcome,

it is possible to provide an explicit representation of an affine WTE.

AssuMPTION 2 (PRINCIPAL PAYOFF REGULARITY) Principal m’s gross payoff 1I'™
g Y

is differentiable” at the efficient outcome & € X for all m € M.

Since by the Rademacher theorem (Magaril-I'yaev and Tikhomirov, 2003, p. 160)
payoff concavity (i.e., Assumption 1) already implies differentiability of II™ and T,
almost everywhere for all (m,n) € M x N, Assumption 2 is typically not a strong
additional requirement. In case it is not satisfied, the following result can still be

applied in a weaker form using subdifferentials.®

5This may for example occur if, at least for some m, the excess payoff F™ is the pointwise
minimum of concave functions, two of which intersect at z.

7If the efficient outcome under consideration is a noninterior point of the feasible set X, then
differentiability is to be interpreted with respect to any differentiable path of points in X" leading
to & € 0X. We implicitly assume that X is indeed path-connected in a neighborhood of Z.

8In that case one can assert that there exists an appropriate element of the subdifferential of ™
at & with respect to z,,, which can be used in (16) instead of the regular directional derivative.
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ProprOSITION 2 (AFFINE WTE OF G) Under Assumptions 1-2, any efficient out-
come & € X can be implemented as a weakly truthful equilibrium (t,%) of the game G,
where £ = [{™] with {7(x,) = AP(z,) + ", where A™ and o are given by the
recursion (6)-(7) as a function of A = [AT], and

AT (xn) = <8FBZ,E£) L — :cn> (16)

for all (m,n) € M x N.

Proof. By Assumption 2, the directional derivative 9F™(Z)/0x, is well defined for
all (m,n) € M x N. Moreover, the choice of §™ = 9F™(2)/dz, € RE leads to excess

transfers A™(x,) = (6, x, — &) that satisfy

() < 3 AT () (17)

neN

for all m € M and all x € X. In fact, these excess transfers A} are the only affine
excess transfers vanishing at £ that satisfy this inequality, for the lower epigraph of F'™
is clearly supported at Z by the hyperplane defined by the expression on the right-
hand side of (17). Since Y ., F™ <3 .\ G by (10), the supporting hyperplane

of 3=, cad F™, which is precisely 3, yerixp On lies below 3 -\ Gr. That is,

> (Z AZ"(wn)) <) Gulzn) (18)

neN \meM neN

for all z € X. Setting z; = #; for all j # n, (18) implies that ) . A (z,) <

Gn(zy) for all z,, € X, since all the other terms vanish. This concludes our proof.ll
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The affine solution (16) to the reduced contract design problem (R) is particularly
simple and thus seems intuitively appealing. Nevertheless, since in-equilibrium trans-
fers obtained from affine solutions of (R) are generally not Pareto-optimal, we have an
interest in finding all other solutions to the reduced contract design problem. These
additional solutions are either “below” the affine solution (“infra-affine solutions”)
or “above” the affine solution (“ultra-affine solutions”). “Mixed” solutions that are
partially above and partially below the affine solution can of course be obtained by

convex combination.?

Infra-Affine Excess Transfers. Reducing excess transfers relative to the affine solution
can be accomplished by the following iterative process which, starting from any excess
transfer that solves (R), yields a unique infra-affine lower limit A that also solves (R).
The construction provided here is somewhat related to the leveling algorithm of Dilib-
erto and Straus (1951), which in the limit provides the best approximation of any
function of two variables by a sum of two functions of one variable.!® From a given
excess transfer A = [A™], it is possible to obtain a new modified transfer A = [A7]

with admissible out-of-equilibrium transfers below A as follows.

9Given two solution excess transfers A and A, any convex combination AA+(1—M)A for A € (0,1)
also constitutes a solution excess transfer.

Kolmogorov (1957) (after some generalization by other authors) showed that it is possible to
represent any continuous function f of n variables as a linear superposition of continuous functions

of one variable and addition, ie., f(21,...,2,) = Yoot g (37, Kiyr(z1)) for some appropriate
continous functions ¢1,. .., Yant1, g, and constants xi,. .., k,. If addition is excluded (i.e., g = 1),

as in our case, then one obtains a problem of best approximation via linear superposition which is
difficult for n > 3 (Khavinson, 1997). Our problem is different from the standard formulation in
that the approximation is constrained to be from above with a specified point of contact, for which
to the best of our knowledge no prior results exist in the literature and our algorithm was obtained
independently.
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For each n, let x_,, = (%1, ..., a1, Tay1, - - -, TN), Ap = XjxnXj, and set
Apan) = max {F’%w) -3 A;"’m-)} (19)
J#En

for any single (m,n) € M x N. Then replace A™ in A by A™ and repeat (19)
with the new A and another index (m,n) € M x N. From the definition of A” the

following result is immediate.

LEMMA 1 (ExcEss-TRANSFER DECREMENT) The modified excess transfer [A7] is

such that (i) A7 < A, and (i) A7 + D i AT = F™
Proof. (i) Since A solves (R), we obtain from (19) that
Av(@n) 2 F™(x) = Y A7 () (20)
j#n
for all x € X. Moreover, since
AT (wn) = F™ (@) = Y AT(x5)
i#n
for all z, taking the maximum on the right-hand side with respect to x_,,, shows that

AP (x,) > A (x,) for all x,,. (i) This assertion follows directly from (20). |

We denote by A the matrix obtained after successive application of (19) for each (m,n) €
M x N. Tt is clear that starting from any infra-affine solution A = [A™], the new
excess transfer A = [A™] remains an infra-affine solution to (R). We also note that
the monotonicity in part (i) of Lemma 1 is pointwise. Replacing A™ by A™, we

can repeat this procedure with another index j # n, which leads to the following
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sequential algorithm:

1. Set m=n=1.
2. Compute AT,
3. Replace A® by the function found in 2.

4. If n < N, increase n by one, or else if m < M set n = 1 and increase m by 1,

otherwise terminate.

5. Go back to step 2 with the new values of m and n.

This sequential algorithm, which has M N steps, can be itself iterated, yielding a
sequence of excess transfer matrices o(A) = {Ay)(A)}2, with Ag = A, where the
starting matrix A satisfies the system of inequalities (R). The following result asserts
that the limit Ay (A) = limg_,00 A)(A) is well defined and constitutes an admissible

(i.e., continuous) equilibrium excess transfer.

ProPOSITION 3 (LOWER EXCESS-TRANSFER BOUND) For any admissible equilib-
rium excess transfer A, the limit A(A) of the sequence o(A) exists, is continuous

on X, and solves the reduced contract design problem (R).

Proof. Let A be any admissible equilibrium excess transfer. For each (n,m), the
corresponding component of the sequence g(A) is bounded from below
by

- . . . .
F (xlr"7mn—1ymn7xz+1,”',mN)‘"‘ E A(xj)
i#n
Moreover, the sequence is nonincreasing pointwise by Lemma 1. Therefore, there

exists a function Ay = limy_, A(r), defined as the pointwise limit of o(A). By (19)
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the limit function Ay, = [A]? ] satisfies

AT o(®s) = sup {Fm(:v) - Z A;?f'oo(mj)} (21)

X_pn€EX_p ];én

for all (m,n) € M x N. Since F™ is continuous on X by hypothesis, for any z € X

and any € > 0 there exists a real number p(z, &) > 0 such that

e —z|| < plz,e) = [F™(z) - F™(@)|<e (22)
forall z,z € X. Thus, as long as ||z —Z|| = || (Zn, T-n) — (Zn, Z-n)|| < p((®n, y(2n)),€),
Aroo(®n) = A7 (@) < F™ (@0, y(2n)) — F™(Zn, y(2n)) < & (23)

Similarly, ||z — Z|| = [|[(Zn, T-n) — @n, T—n)|| < 0((Zn,¥(Zr)), €) implies that
AR (@) — AF o (@n) < F™(Zn, y(Tn)) — F™ (2, ¥(Tn)) L ¢, (24)

where

y(x,) € arg  sup {Fm(:vn,x_n) - ZA;‘OO (x,)} .

T_n€X. P

Since the set X' is compact by assumption, y(x,) exists and lies in X_,, for any z,, €
AX,. Moreover, compactness of X' and (22) imply that F™ is uniformly continuous
on X, simply replacing p(z,e) by ple) = infyex p(x,€) > 0. Hence, using rela-

tions (23) and (24), we obtain that for any z,Z € X,

le -zl <ple) = |A%w(En) = Aneo(@n)| <6,
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so that the excess transfer A, = [A}',] is uniformly continuous on X. It also
solves (R), since each excess transfer Ay solves (R) by construction. In other words,
A is an admissible equilibrium excess transfer. Via the recursion (6)—(7), A, defines
a WTE implementing the efficient outcome % that was used to generate the starting
matrix A. This completes our proof. From (21), it is easy to show that any limit
obtained by the above procedure is minimal, in the sense that if some functions [¢"],

o X, — R, satisfy

> g >Fm (25)
neN
for any m € M, and if
P <A (26)
for any (m,n) € M x N, then
AN

Now consider two transfers [A™] and [A”] that are both the limit of some sequence
described in (i). Then, the transfer [A™] defined by A™ = min{A™ A7} satis-
fies (25) and (26) for any [¢77] € {|A™], [A™]}, which implies that A7} = Am = Am
for all (m,n) € M x N. ]

In general, the limit Ax(A) is not unique: it depends on the starting point A. In
order to simplify the analysis for the description of the WTE implementing an effi-
cient outcome, we restrict our attention to the limit A = A, (A,g) where A,q is the
matrix of affine excess transfers obtained by Proposition 2. Under some conditions
on the payoff functions given in Assumption 3, the lower limit A, (A) is in fact inde-
pendent of A, in which case the restriction is vacuous. For example, A, (A) is clearly

independent of A when the payoff functions {F™}mea are additive in (z4,...,zn).
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However, the following proposition shows that independence holds under more general

conditions.

AssuMPTION 3 (PAYOFF SPECIFICATION) Fach principal m’s excess payoff func-

tion F™ : X — R is of the form

Fm(xla"':xN) = fm(g;n(xl)w'wgﬁ(wlv))a

where f™ is submodular'' and vanishes at (0, ...,0), and the function g™ : X, — R,

vanishes at £, for alln e N.

PROPOSITION 4 Suppose that Assumption 3 holds. Then, Ay (A) is independent of
A.

Proof.  From Proposition 8, the “additive upper envelope” > A} of each F™ is
unique. Letting A = [A}'], A is clearly below any limit Ay (A). Since Ay (A) is

minimal, it must equal A. ]

Section 3.6 provides several examples where Assumption 3 holds. For the remainder
of the chapter, we will only consider the lower excess-transfer bound A generated
by the affine excess transfer of Proposition 2. By Proposition 3, A is infra-affine.
We thus obtain a general class of WTEs implementing the efficient outcome. When
Assumption 3 holds, this set characterizes the set of all WTEs implementing the

efficient outcome.!? Note also that, by construction, A solves the reduced contract

HA function h of k variables (1, ...2:) € R%, where q is a positive integer, is submodular if and
only if for any (x,y) € R?**, h(min(z,y)) + h(max(z,y) < h(z) + h(y), where the minimum and
maximum are taken componentwise.

121n principle, it is also possible to consider the distinct lower limits in order to describe all WTEs,
but this task is likely to involve a continuum of lower limit functions, depending on the form of the
payoff functions.
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design problem (R). When the limit obtained by the above procedure is independent
of A, that limit is the smallest additive function lying above ¢. For that reason, we
call this limit the additive upper envelope of ¢. Section 3.6 provides a way to directly
compute the additive upper envelope when ¢ satisfies!® Assumption 3.

Ultra-Affine Excess Transfers. The solution constructed in the proof of Theorem 1
was affine for all principals except possibly the last. By relabelling principals such
that the role of the last is assigned to principal 7 € M, we obtain in general M
different solutions, which all lie above the affine solution described in Proposition 2.

An outcome-contingent convex combination of these solutions is given by

oF™(3) m IFY( @) . s

ieM

Ant(mn; ) =

for all (m,n) € M x N, whereby 67" € C(X,,,[0,1]) such that 3> ., 07 =1. It is
clear that each A*(-;67*) is ultra-affine, as a convex combination of excess transfers
that are ultra-affine by construction. Replacing the affine excess transfers of the
form (16) in (27) by the infra-affine lower limit A}’, we obtain the tight upper bound

for solutions to the reduced contract design problem

AT (20;07) = AT () + 07 () (G (@) — > A (xn)> (28)

ieM

for all z,, € A,.

13 The additive upper envelope A is very much related to the existence of a WTE in the absence
of concavity (Assumption 1), provided the payoff functions are at least continuously differentiable.
Indeed, it is clear from our construction of the lower limit (which did not depend on payoff concavity)
that a WTE of G exists if A = A(A) solves (R), where the starting matrix A = [A?] can
be any excess transfer matrix that satisfies the first inequality in (R). For instance, one could
take A™(z,) = k||z, — £,] for a large enough positive constant %, since all excess payoffs are
Lipschitz on the compact set of outcomes. Moreover, if a WTE exists, then there should be a lower
limit that solves (R). In particular, under Assumption 3, the fact that A solves (R) is also a necessary
condition.
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PrOPOSITION 5 (UPPER EXCESS-TRANSFER BOUND) The excess transfer [A™(-; 6™)]

solves the reduced contract design problem (R) for any matriz of outcome-contingent

weights 07 € C(X,,[0,1]) with Y .\, 07 = 1.

Proof. We prove more generally that, given any solution A = [A"] of (R), the excess

transfer A = [A™] with

A™ = A 4 g (Gn -> Ai) (29)
ieM

solves (R) provided that the weights 6] € C(X5, [0, 1]) satisfy > .., 0n = 1. Our

assertion then follows immediately for A = A. Since G, > Y ., AN by (R),

A™ > A™. Thus,

SN AT AP >FT

neN neN

for all m € M, since A satisfies (R). Moreover, for any n € N the identity

Z AqTZGna

meM

holds for any admissible 6, so that the excess transfer A solves the reduced contract

design problem (R). n

The lower and upper bounds for solutions to the reduced contract design problem (R)

can now be used to construct an extremal basis B containing M +1 transfers, as follows.
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Let
B= {[B;n’o]a"'?[BZLM]}v (30)

where

Am ';17 if = My
ppagy = § SR m =g (31)
A™(-;0), otherwise,

for all (m,u,n) € M x M x N with the abbreviation M = {0} U M. The central
result of this section is that any convex combination of elements of B is a solution

to (R), and that the converse is true under Assumption 3. For each n, let X, = {z, €

Xy ZmeM AT (2n) < Gula)}

DEFINITION 1 (ADMISSIBLE WEIGHTS) A matriz 0 = [07*] of functions defines ad-

missible weights, denoted 8 € W, if its entries satisfy
(i) for each (m,n) in M x N, 67" : X, — [0,1];
(ii) for allm, ZméM o =1;
(ii) for each (m,n) in M x N, 07 is continuous on X,.

THEOREM 2 (REPRESENTATION OF REDUCED EQUILIBRIUM CONTRACTS) Suppose

that Assumption 1 holds, and let
coB= S [AT]: AT =) " LB [ eW 3. (32)
HEM

Then: (i) any element of co B solves the reduced contract design problem (R), and (ii)
when the lower limit Ax(A) is independent of A, the set of solutions to the reduced

contract design problem (R) is exactly coB.
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Proof.  We start by proving (ii): Let [A”"] be a solution to the reduced contract
design problem (R). We need to show that [A"] € co B. Indeed, for any fixed n € N'

and z, € X, let 8 = (AL(zn),...,AM(z,)) and B* = (BL#(z,),..., BM+(z,)) for

all 4 € M. These M +2 vectors all belong to RM. Since 8° < fand (3,(1,...,1)) =

Y An(xn) < Gr(zs), the vector 3 belongs to the M-simplex with vertices 8°, ..., M.
As aresult, there exist M+1 nonnegative numbers 9 (2n,), . . ., 9p (¥n) With 3° 4 Pi(2n) =
1, such that g = ) wein O (zn)B*. If 2, € X, then the simplex is nondegenerate

in a neighborhood of z,,, which implies uniqueness and continuity of the coefficient
functions 92, ..., 9 in the representation (32) on that neighborhood.'

We now prove (i): Consider any element A € coB. Using (30)—(32),
AT (xa) = Y Fn(@n) Byt (2a) = 97 (@) A7 (Tn; 1) + A(@n; 0)(1 - 37 (x0)
ueM
on X, and thus '
A" = gm (Gn - ZA:;) + (1= I™AT = AT 4 (Gn - Af,) (33)
i#m 1EM

for all (m,n) € M xN, where > 97 < 1. Since by Proposition 3 the transfer A

solves the reduced contract design problem, (33) implies that A7* > A7, whence

Y AR>Y Ar>FT
neN neN

UIf F = Y",,ca F™ is strictly concave in a neighborhood of the efficient outcome £, it is easily
shown that the simplex is everywhere nondegenerate.
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for all n € N. In addition,

S AP=(1-)Gn+0> AL =G, — (Gn— 24:;) <G,
meM ieM ieM

where 99 =1—3" 97 takes values in [0, 1]. Thus, A = [A7] indeed solves the
reduced contract design problem (R). The continuity of A comes from the continuity
of the weights on A?n, and the fact that all convex combination yield the same point

when the simplex is degenerate (i.e., Z, € X, \ X,). |

Theorem 2 provides, when Assumption 3 holds, a simple characterization of all solu-
tions to the reduced contract design problem (R). We denote R’ the subset of excess
transfers solving (R) which have the representation (32). Which particular equilib-
rium excess transfer A to choose depends on the desired allocation of surplus at the
implemented efficient equilibrium outcome #. The next section constructs Pareto

optimal WTEs based on the obtained reduced transfers.
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From Theorem 2, any element A = [A] of R’ can be represented as

3.5 Constructing Weakly Truthful Equilibria
AT = AT+ 07 (G, — Y AL,
ieM
where [97] defines admissible weights (over M instead of M). From (8), the in-

equilibrium transfer o] for any solution to R’ is given by

o, = — xI:IEiPI(ln {A? + (I +92) (Gn ~ Z A;) } ) (34)
i€EM

where 90 = 1-3 e %, as in the previous section. For any given agent n, principal m
prefers the smallest possible in-equilibrium transfer of*. Therefore, by reducing 99, it
is possible to simultaneously reduce in-equilibrium payments for all principals, which
thus leads to (weak) Pareto-improvements. To find Pareto-optimal WTEs of R/, we
can thus restrict our attention to the frontier F = {[A”] € coB: [#%] = 0}. In gen-
eral, however, F contains elements of R’ which are not Pareto optimal. Nevertheless,
using the following procedure it is possible to filter out all Pareto-optimal allocations.
For the rest of this section, we construct the set of WTEs in R’ which are Pareto

optimal. For this, we define

For [A7'] € F fixed, we observe from (8) that o™ = —min,, cx, A™(z,). For each

(m,n) € M x N, define D = [D*] by

Dy (wn) = max{A7'(xn), Ly (A)}- (36)
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__G,,—ZAﬁ

miEm

Figure 1: Ironing Algorithm.

By construction, D* < A™ but L7*(D) = L(A). The previous steps are illustrated
by Figure 1. A decrease in any D]* causes an increase in ¢, making principal m
strictly worse off (when changes are limited to transactions with agent n). However,
[D*] does not necessarily lie on the frontier . Therefore, it might be possible to
Pareto-improve on [D*]. For (m,n) € M x N, let X* = {x, € X, : D*(z,) =
L™(D)}, lett®

d™(D) = min {Gn(a:n) -3 D;n(xn)} >0, (37)

TpEX? v,

and denote by z7* a point that reaches this minimum. If d)*(D) = 0, then L} cannot

be increased without making another principal worse off, since at )", Y .. D =

G, and D* = L. If, however, d7*(D) > 0, then it is possible to increase L7 by

setting

D = max{L7}(D) + d;}(D), A7’}

15The dependence on m comes from the maximization domain X™.
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Figure 2: Constructing Pareto-optimal transfers.

Figure 2 illustrates the previous steps. Performing this transformation with m = 1,
we then replace D! by D! and repeat this step for m = 2,..., M. This sequential
procedure yields new transfers f):{’ for fixed n, and in-equilibrium transfers that are

Pareto optimal in R’ when attention is restricted to agent n.

LEMMA 2 (n-PARETO OPTIMALITY) If
L™D)>L™D) VmeM
for some excess transfers (ﬁ,’f)me M, then

L™D)=L"(D) VYmeM.
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Proof. We first observe that each step weakly increases the transfers, so that d,
remains at zero for i < m when the m** step occurs. By construction, d™(D) = 0 for

all m, so that L™(D) cannot be increased without making another principal worse

off. n

In order to stay in F, we conclude the procedure by letting DY = G,, — 3 Y D,
Note that this last transformation does not affect in-equilibrium transfers since D™
was already n-Pareto optimal, and increasing DM is a weak n-Pareto improvement.
We can perform the procedure for all n € A and obtain a new excess transfer ma-
trix [D™]. Denote by T : F — F the operator that maps A = [A™] to D = [D].
To state our result in its more general form, we define equivalence classes of excess

transfer matrices.

DEFINITION 2 (EXCESS-TRANSFER EQUIVALENCE) Two excess transfer matrices [Al}]
and [A7] in F are equivalent, denoted [A?] = [A7], if a(A) = oM(A) for all
(m,n) € M x N.

Note that an equivalence class is entirely characterized by the M x N-dimensional

matrix a = [a)] of in-equilibrium transfers. Let
An = {(an(), ..., 0/ (D) : A € R'}

be the set of in-equilibrium transfers to agent n that are reachable from R’, and

let A= Hiv A,, be the cartesian product of these sets.
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DEFINITION 3 An equivalence class o of excess transfers is agent-wise Pareto optimal
(in R'), denoted o € L, if for each n the vector an, = (al,...,aM) belongs to the

lower boundary 8_A, C R of A,, defined by
O_A, = {a, € A, : Bb, € As, 6 < )

Denoting T : F — A the operator that maps A = [A”] to [a/*(T(A))], we have the

following result.

THEOREM 3 (PARETO-OPTIMAL IN-EQUILIBRIUM TRANSFERS) The image T(F)

is exactly the set of agent-wise Pareto-optimal in-equilibrium transfers.

Proof.  From Lemma 2, the image of T is clearly included in £. Now take any
in-equilibrium transfer matrix « in £ and let A be an excess transfer matrix that
implements it. By construction, T(A) is a weak Pareto improvement of A. Since « is

agent-wise Pareto optimal, T(A) is less than « componentwise, and thus T(A) = . B

If each principal m only cares about the sum of* + --- + o} of her in-equilibrium
transfers, then agent-wise Pareto optimality does not imply Pareto optimality. Once
the lower boundaries 0_.A, of each A, have been constructed, the set of Pareto-
optimal excess transfer matrices corresponds to the lower boundary of the sum 9_.A4,+
o+ 0_Apn € Rf L We now determine the “absolute” lower boundaries in R’ for
each principal. This is the best scenario for a given principal, where only her profit

is taken into account to implement the efficient outcome.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. GAMES PLAYED THROUGH AGENTS 95

PROPOSITION 6 (TRANSFER LOWER BOUND) For eachn € N, the lowest in-equilibrium

transfer that can be obtained by principal m is

Proof. Gn(Tn) = ism A (z,,) is the highest excess transfer A™ that can be attained
by principal m, and thus yields the lowest /. Moreover, o/* = —min { A™} since,

in that case, the sum of the excess transfers is equal to G,,. |

We can also derive an upper bound for 0_.A,,, implying a limit on the worst case for

principal m in an n-Pareto-optimal transfer.

PROPOSITION 7 (TRANSFER UPPER BOUND) For each n € N, 3_A, is bounded

from above by &, = (&, ...,aM), where
a, = — min A (z,).
n TnEXn 7% ( n)
Proof. For any excess transfer A in F,
m — H m < _ H m — —m.
an'(A) = — min Ajz,) < — min A(2) = &y

Since T(A) > A,
o (T(4)) < oI (A).

Therefore, T(A) < &, for all A € F. By Theorem 3, the set of agent-wise Pareto-

optimal transfers is precisely the image of T, which concludes our proof. [ ]
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In the next result, we construct an excess transfer matrix A that attains a given
in-equilibrium transfer o in T'(F). Since the construction can be done agent-wise, we
fix n € N and construct (A™),,em- Thus suppose that o, = (A )mer i8 a given

vector in the boundary 9_.A,. Let

A (@) = max{A;(xn), —oi'} (38).

for all x,, € X,,. By construction, we have

_ : m > o™
in A(zn) > oy (39)
Moreover,
AT < AT, (40)

and A" is the smallest excess transfer that satisfies (39) and (40). Since by assump-
tion a, is attainable, this implies that Zme m AT < Gyp. To ensure that A7 belongs
to F, we redefine AM as

AV =G,— ) AT (41)
m#EM

Moreover, n-Pareto optimality of o, implies that in fact equality obtains in (39).
Therefore, (A7?)meam implements a,. From the construction, all the excess transfers
are clearly continuous, which together with (R) implies their admissibility. We have

thus shown the following result.

THEOREM 4 (PARETO-OPTIMAL EQUILIBRIUM IMPLEMENTATION) Suppose that ay,
belongs to the set 0_A,, of n-Pareto optimal in-equilibrium transfers. Then, the vector
of excess transfers (A™)nem defined by (38) for m < M and by (41) form = M

results in @ WTE with in-equilibrium transfer a,.
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Theorem 4 provides a practical implementation of Pareto-optimal equilibrium con-

tracts for the principals.

3.6 Exact Lower Excess-Transfer Bound

The exact representation of all WTEs in Sections 3.4 and 3.5 relies on the existence
of a unique lower excess-transfer bound A = [A}'] which gives, for each payoff func-
tion F™, the lowest additive function above F™ and touching F™ at Z. We call such
an additive function the additive upper envelope at % of the principals’ excess pay-
offs F™, m € M. We now give an explicit expression of A for a class of principal

excess payoffs.

ProPOSITION 8 (ADDITIVE UPPER ENVELOPE) Suppose that principal m’s excess

payoff function F™ : X — R is of the form

F™@y, -y zn) = ™ (0" (@1), -, g (@)

where f™ is submodular'® and vanishes at (0,...,0), and where the function g™ :
X, — R, wvanishes at &,, for alln € N. Then the unique additive upper envelope

of F™ whose elements { A7 }hen respectively vanish at {&n bnen 8

A™(z,) = (0, ..,0, g™ (), 0,...,0).

18 A function h of k variables (z1,...7z5) € R% where g is a positive integer is submodular if and
only if for any (z,y) € R%*  h(min(z,y)) + h(max(z,y) < h(x) + h(y), where the minimum and
maximum are taken componentwise.
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Proof. Submodularity of f™, nonnegativity of the functions g™, and the facts that f™
y n

vanishes at (0, ...,0) and for each n, ¢g7* vanishes at Z,, imply that

Fm(mh“'awN) =fm(g;n(xl)7"'vg%(xiv)) S me(ov‘”707977?(3711)70,""0)‘
neN

Moreover, letting z; = &; for j # n, and using the fact ¢/*(z;) = 0, yields
F™&y, ..., &8n-1,Tny Exg1s .-, ZN) = f™(0,...,0,97(xn),0,...,0),
which implies that
fm,...,0,g™(x,),0,...,0) < A™(z,) (42)

for any admissible excess transfer matrix A, n € N, and z,, € X,. Therefore, the
excess transfers

A zn) = f™(0,...,0,97(xn),0,...,0) (43)

for all n € N and z,, € X, constitute the additive upper envelope of F™. |

A useful application of Proposition 8 is given in the following corollary.
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COROLLARY 1 Suppose that principal m’s excess payoff function F™™ : X — R is of

the form

Fm(xb”wxl\’) z.fm (Cm+ Zg:zn(wn)) s

neN

where f™ : [¢™, 00) — R is concave and vanishes at c™, and where the function g :
X, — R, vanishes at £, for all n € N. Then, the unique additive upper envelope

of F™ whose elements { A} }nen respectively vanish at {&, }nen is
AT (@a) = f™(C™ + gn' (@)

Proof. Letting

fm(yl,...,yN)=fm(cm+Zyn), (44)
neN
concavity of f™ insures that f™ is submodular.l” Therefore, Proposition 8 can be
applied to

F™ = f™(g"(21), -, g (@m), (45)
which yields A™ = f™(0,...,0,¢™(x,),0,...,0) = f™(c™ 4+ g™(x,))- u

EXAMPLES. Suppose that the set of outcomes is X = [0,z] x [0,3y] for some posi-
tive constants Z,¥, that the efficient outcome is (£,9) = (0,0), and that F™(z,y) =
In(1 + k*x + kJ'y), with k; > 0. Then, the additive upper envelope of the payoff
function F™ vanishing at (0,0) is AT*(z) = In(1 + k"z), and AY(y) = In(1 + kJ'y).
If we consider instead F™(x,y) = —(z*I" + y*2")? with k&, k* positive, then the ad-
ditive upper envelope is AT*(x) = —z?" and AT (y) = —y**¥. Last, consider the

constant-elasticity-of-substitution function F™(z,y) = [k*z” + k’;‘y”]%, with k*, kT

17See Topkis (1968).
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positive and p > 1. In this case, the additive upper envelope is AT (z) = (k;")%x and

AR(y) = (k5)7y. O

The examples illustrate the class of principal excess payoff functions for which a
closed-form solution for the lower excess-transfer bound can be obtained. For this
class of excess payoff functions, all WTEs of the game played through agents G can

be obtained explicitly using the results in the preceding sections.

3.7 Discussion

We have shown that it is possible to construct weakly truthful equilibria for any
game played through agents, as long as all principals’ and agents’ payoffs are con-
cave.'® The constructions can be used in a variety of practical settings with complete
information, such as the coordination of multi-principal multi-agent supply chains.
Note that no payoff externalities between agents are permitted in the model we dis-
cussed. The reason is that — as Segal (1999) shows — efficient outcomes may not be
implementable when agents’ payoffs depend on each others’ actions. The situation
also becomes more delicate when information about the contracts is asymmetric, as
in biiateral contracting,'® or when renegotiation is allowed, as in Matthews (1995).
We have seen that any efficient outcome in games played through agents can be
implemented with all principals using affine transfers, except for one principal. Nev-
ertheless, to change the allocation of surplus within the principal-agent system for a

given efficient outcome, it may be desirable to choose particular equilibrium excess

13We also provided conditions under which contracts implementing a weakly truthful equilibrium
exist when payoffs are not concave.

1%8egal and Whinston (2003) examine a setting where a single principal writes bilateral contracts
with N different agents without announcing the contracts publicly.
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transfer matrices. Using essentially convex combinations and a leveling algorithm,
we have provided a class of admissible equilibrium excess transfers, which is complete
under some assumptions. Our analysis of the relation between desired in-equilibrium
surplus allocations a and off-equilibrium excess transfers A allows us to characterize
and implement WTEs with Pareto-optimal in-equilibrium transfers. We have thus
obtained a global solution to the following practical problem: given an efficient out-
come, the principals determine the set of WTEs of G. After agreeing on a point in
the set of attainable Pareto-optimal in-equilibrium transfers (e.g., using a bargaining
procedure) they implement the efficient outcome as a WTE. Bernheim and Whinston
(1986) prove an equivalence between their truthful Nash equilibria and the concept
of “coalition-proof Nash equilibrium” (see also Bernheim et al., 1997). This latter
concept contains the idea that even if principals were allowed to collude, the corre-
sponding Nash equilibria would still be outcomes of the games. Strengthening the
concept of Nash equilibrium to coalition-proof equilibrium is therefore important for
the predictive power of this theory whenever collusion among principals is possible or
imperfectly monitored. While coalition-proofness is lost when using the more flexible
concept of weakly truthful equilibrium, our charact‘erizatipn of Pareto optimal WTE
may allow one to retrieve coalition-proof Nash equilibria. Indeed, coalition-proofness
is equivalent to the property that in-equilibrium transfers are Pareto optimal, pro-
vided that the game is limited to any subset of principals, and that the remaining

principals and all agents take their equilibrium actions.
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Chapter 4

Performance-Sensitive Debt

This chapter studies performance-sensitive debt (PSD), the class of debt obligations
whose interest payments depend on some measure of the borrower’s performance. For
example, step-up bonds compensate credit rating downgrades with higher interest

1 Performance

rates, and reward credit rating upgrades with lower interest rates.
pricing loans, a large fraction of commercial loans, also tie their interest rates to
some measure of the borrower’s credit quality.? In an endogenous default setting, we
develop an algorithm to value PSD obligations allowing for general payment profiles,
and obtain closed-form pricing formulas in important special cases, including step-
up bonds. Moreover, we provide a criterion to compare different PSD obligations
in terms of their efficiency. In particular, we find that step-up bonds lead to earlier
default and lower market value of the issuing firm, compared to fixed-coupon bonds

of the same market value. Lastly, we analyze the implications of our results for the

policy of credit-rating agencies.

‘ 1Step-up bonds exceed $100bn for both US- and European-based issuers (see Lando and
Mortensen (2003) and “Step lightly,” CFO Magazine (January 2001)).
2These loans represent over 70% of commercial loans (see Asquith, Beatty, and Weber (2002)).
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4.1 Introduction

PSD obligations, including step-up bonds and performance pricing loans, compen-
sate debtholders for changes in the borrower’s credit risk. Practitioners have not yet
reached any consensus on the likely effects of these risk-compensating PSD schemes.
While proponents laud their high-yield, low-volatility characteristics (some even find-
ing them “too generous”?), critics argue that risk-compensating PSD schemes gener-
ate a vicious circle by increasing the burden of debt service during financial strains,
harming the issuer even more and, eventually, harming investors.* Underlying this
disagreement is the lack of a theoretical model to value PSD and to assess the effect
of issuing PSD rather than standard debt. This latter difficulty can be formalized as
follows: for a given amount of debt raised, risk-compensating PSD results in paying
higher interest than standard debt in times of low performance, and lower interest
in times of high performance. It is unclear, then, between the perspective of lighter
debt burden in times of high performance and the increased payment strains in times

of low performance, which type of debt is more desirable.

Our goal is to build a valuation model for PSD, and to investigate how different types
of PSD affect the timing of default and the equity value of the issuing firm. We develop
a pricing algorithm allowing, tractably, for general payment profiles. We show that
the equity value associated with PSD satisfies an ordinary differential equation with
a boundary condition corresponding to zero value at default, and a “smooth-pasting”
condition. We obtain closed-form pricing of PSD in important special cases, includ-

ing step-up bonds. Building on our valuation model, we find that risk-compensating

34The price of protection,” Credit Magazine (September 1st, 2002)
4%Credit ratings can harm your wealth,” Investment Adviser (December 9th, 2002).
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PSD schemes have an overall negative effect on the issuing firm. In particular, is-
suing risk-compensating PSD leads to earlier default and, consequently, lowers the
market value of the issuing firm’s equity, holding constant the amount of cash raised
by the obligation. Our results also bear implications on the behavior of credit-rating
agencies. In trying to avoid the “credit-cliff dynamic”, rating agencies are sometimes
reluctant to downgrade distressed firms with PSD obligations in their capital struc-
ture.® Reluctant agencies generate distortions between actual and theoretical ratings,

affecting the reliability of credit rating agencies.

Models of the valuation of risky debt can be divided into two classes. The first class
treats firm’s liabilities as contingent claims on its underlying assets, and bankruptcy
as an endogenous decision of the firm. This set includes Black and Cox (1976), Fis-
cher, Heinkel, and Zechner (1989), Leland (1994), Leland and Toft (1996) and Duffie
and Lando (2001). In the second class of models, bankruptcy is not a decision of
the firm. There is either an exogenous default boundary for the firm’s assets (see
Merton (1974) and Longstaff and Schwartz (1995)), or an exogenous process for the
timing of bankruptcy, as in Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull
(1997), and Duffie and Singleton (1999). Das and Tufano (1996), Acharya, Das, and
Sundaram (2002), Houweling, Mentink, and Vorst (2003) and Lando and Mortensen
(2003) obtain pricing formulas for credit-sensitive notes using the second class of mod-
els of the valuation of risky debt. Since they consider an exogenous default process,
the costs associated with performance-sensitive debt do not become apparent in their

models.

5See Standard and Poor’s (2001).
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In order to assess these costs, we work in the setting of Leland (1994), in which default
is an endogenous decision of the firm. Instead of a fixed-coupon consol bond (paying a
fixed interest rate), we consider debt obligations in which the interest rate is linked to
some performance measure of the borrower. Performance-sensitive debt is thus fully
characterized in this setting by some C' : Il — R, that maps a performance measure
7 lying in an ordered set II to the interest rate C(w) charged on the debt. Typical
performance measures are credit ratings and financial ratios such as debt-to-earnings,
leverage, or interest coverage. For PSD obligations C and D that are based on the
same performance measure, we say that C is more risk-compensating than D if C—D
is nonincreasing and nonconstant. We prove that if C and D raise the same amount
of cash, and if C' is more risk-compensating than D, then C is less efficient than D,
in the sense that it induces an earlier default time, therefore a higher present value
of bankruptcy costs, and thus reduces the initial market value of the issuing equity.
Therefore, it turns out that the trade-off between the opposite effects of the more
risk-compensating scheme — relatively higher coupons in times of low performance
and lower coupons in times of high performance — is systematically resolved in favor
of the less risk-compensating debt.® We propose the following interpretation for this
result. At the time of default, the more risk-compensating PSD requires higher in-
terest payments, increasing the firm’s losses. Although it is possible that this PSD
imposes a lighter debt burden in the future, the current situation has a higher weight

on equityholders’ decision, and makes it less attractive for them to continue running

the firm.

6This result is somewhat related to the finding by Hillion and Vermaelen (2004) that the issuance
of floating-priced convertibles is followed by significant negative abnormal returns. Hillion and
Vermaelen point out that the design of floating-priced convertibles encourages speculative short-
selling activities by the convertible holders that can hurt the shareholders. This chapter does not
consider convertibles or market speculation.
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The remainder of the chapter is organized as follows. In Section 4.2, we illustrate
several applications. In Section 4.3, we present the general model and formalize the
notion of PSD. Section 4.4 analyzes the case of asset-based PSD obligations, demon-
strating their relative efficiency. In Section 4.5, we explicitly derive the valuation
of step-up and linear PSD obligations. Section 4.6 discusses different performance
measures used in practice, and solves for the case of ratings-based PSD. Section 4.7
discusses the implications of our results for rating agencies policy. Section 4.8 provides

additional discussion. Section 4.9 concludes.

4.2 Applications of PSD

This section describes PSD obligations that arise in practice. Some types of PSD
obligations, such as credit-sensitive notes, performance-pricing loans and catastrophe
bonds, have explicit performance-pricing provisions. Other types of PSD obligations
are implicitly performance dependent because the terms of the debt are subject to

renegotiation or are the result of an optimal dynamic capital strategy.

Credit-sensitive notes. A credit-sensitive note, sometimes called a step-up bond,
pays an interest rate that is contractually linked with the credit rating of the borrower.
First issued in the late 1980s, credit-sensitive notes have recently experienced an

upsurge, specially among European telecommunications companies.”

Performance-pricing loans. Performance-pricing loans explicitly tie their inter-

est to some pre-specified performance measure of the borrower. Typical performance

"Houweling, Mentink, and Vorst (2003) and Lando and Mortensen (2003) study the pricing of
recent European telecommunications step-up bonds.
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measures used for this purpose are credit ratings and such financial ratios as debt-
to-earnings, leverage, or interest coverage. In an analysis of the Loan Pricing Cor-
poration Database, Asquith, Beatty, and Weber (2002) found that the proportion of
lending agreements including performance pricing provisions covered by this database

increased from 40% in 1994 to over 70% in 1998.

Put-call provisions. Suppose a debt issue has provisions allowing the lending bank
to put the debt back to the issuer when some performance measure drops below a
contractual threshold. When such a provision is triggered, the lending bank often
renegotiates the initial terms of the loan in effect, increasing the interest rate. The
borrower may be given an option to call the loan when its credit quality improves.
This permits the borrower to refinance the debt at lower interest rates after good

performance. The outcome of these forms of optionality is effectively PSD.

Reset bonds. A reset bond, sometimes called a payment-in-kind (PIK) bond, has
an interest rate that is adjusted periodically so that the market value of the bond
is the same as its principal. In some cases the new interest rate is determined by
an auction. The associate coupon rate C is thus decreasing in the credit quality of
the borrower and a reset bond is, in effect, a form of PSD. Default in the junk-bond

market may be induced by the rise in coupon payments of reset bonds.?

Short-term debt. The simplest case of PSD is short-term debt, such as commercial
paper, since the coupon rate rises and falls continuously with the credit quality of the
borrower. Myers (1977) argues that short-term debt may be used to mitigate agency

costs. In Diamond (1991), risky firms do not issue short-term debt in order to avoid

8 “The Junk-Bond Time Bombs Could Go Off,” Business Week (April 9th, 1990).
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early liquidation. Guedes and Opler (1996) provide empirical evidence supporting

both claims.

Catastrophe bonds. Catastrophe (CAT) bonds, usually issued by insurance com-
panies, promise coupons that are reduced in case total losses in the insurance industry

exceed a pre-specified threshold.®

Dynamic capital structure. In a setting with taxes and bankruptcy costs, the
optimal amount of debt outstanding varies with asset level. When the asset level
increases, for example, issuers are better off by issuing more debt, since this gives
them higher tax benefits. On the other hand, when the asset level decreases, debt
reductions are optimal, ignoring transaction costs, as they reduce the present value
of bankruptcy costs. The net effect, under some conditions, is PSD. This sefting is

studied in Goldstein, Ju, and Leland (1998).

4.3 The General Model

We begin by specifying a general model. Further assumptions will be added in later
sections. We consider a generalization of the optimal liquidation models of Fischer,
Heinkel, and Zechner (1989) and Leland (1994).1° A firm generates cash flows at the

rate J;, at each time ¢. We assume that § is a diffusion defined by

d(St = [,Ld((st)dt + 0‘5((5t)dBt, (1)

9 See Fitch TBCA (2001) for a survey of the market for CAT bonds.
0While previous model specifications are limited to geometric Brownian motion, we consider here
a general diffusion model.
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where 15 and oy satisfy the classic assumptions for the existence of a unique strong
solution™ to (1) on a fixed probability space (Q, F, P) with the information filtration
(F:) generated by the standard Brownian motion B. For simplicity, we assume that
all agents are risk-neutral. There is a constant risk-free interest rate r, with us < r.

The market value A; at time ¢ of the future cash flows of the firm is then

A; = E; [ / e et g, d,s} <00 (2)
t

where F; denotes the Fi-conditional expectation. By the Markov property, A; only
depends on {d},<; through ¢;. Specifically, there exists a smooth function A : R — R
such that A, = A(d;), which implies that {A;}¢>¢ is a diffusion:

dA; = (As)dt + o(A)dB:. (3)

For the sake of ulterior computations, we impose the following condition.

CONDITION 1 p and o are smooth and bounded and o is coercive.'?

Since E[ds] is increasing in &, A(-) is increasing, which implies the existence of a

smooth cash-flow rate function § : R — R such that 6; = 6(A;).

We consider a performance measure represented by an F-adapted stochastic process
(Tt)o<t<oo taking values in a totally ordered, topological space II. In general, 7 can
be any statistic that measures the firm’s ability and willingness to serve its debt obli-

gations in the future. Financial ratios and credit ratings are among commonly used

118ee for example Karatzas and Shreve (1991)
2In the one-dimensional case, coerciveness means that there exists a real number ¢ such that
0<o<o.
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performance measures. A performance-sensitive debt (PSD) obligation is a claim on
the firm that promises a nonnegative payment rate that may vary with the perfor-
mance measure of the firm. Formally, a PSD obligation C(-) is a (time-invariant)
measurable function C : II — R, such that the firm pays C (7;) to the debthold-
ers at time ¢.!3 For example, the consol bond of Leland (1994) is a degenerate case
of PSD. The reader should note that, while our earlier sections dealt mostly with
“risk-compensating” PSD (that pay higher coupons when performance worsens), our
definition of PSD encompasses more general kinds of PSD.

Given a PSD obligation C, the firm’s optimal liquidation problem'* is to choose a
default time 7 to maximize its initial equity value W, given the debt structure C.

That is,

WE =supE [/: e "o — (1 —0)C (m¢)] dt] ) (4)

7eT
where T is the set of F; stopping times and 6 is the corporate tax rate on earnings.

If 7* is the optimal liquidation time, then the value of equity at time ¢ < 7* is

4

We = B, [ /t " erDls, — (1= 0)C ()] ds} . 5)

13We are considering perpetual debt, which is a standard simplifying assumption for the endoge-
nous default framework. See, for example, Leland (1994). However, our model can be extended to
the case of finite average debt maturity, if we assume that debt is continuously retired at par at a
constant fractional rate. See Leland (1998) for more on this approach. Leland and Toft (1996) use
more general finite-maturity debt framework. However, due to the complexity of their model, most
of their results are obtained using simulations.

Firms usually have standard fixed-coupon bonds together with different types of PSD obligations
in their capital structure. In this case, the total outstanding debt of the firm is still PSD, but one
has to sum the payment rates of all debt obligations issued by the firm when determining the total
payment rate of the firm, which is the relevant payment rate for liquidation purposes.
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Analogously, the market value US of the PSD obligation C at time ¢ is

*

Uf = B, U e7CIC (m,) ds| + B [e7 0 (A — p(47))] , (6)
t

where the function p defines the portion of the asset value lost at bankruptcy. The
value of debt, as expressed by (6), has two components: the expected discounted
coupon payments and the expected lump repayment at time default. We assume that
p is an increasing function such that 0 < p(z) < z for all z > 0. If 4; is lower than
(1 — 0)C(m;), equity holders have a net negative dividend rate.'> Equity holders will
continue to operate a firm with negative dividend rate if the firm’s prospects are good

enough to compensate for the temporary losses.

4.4 Asset-Based PSD

In all the applications of PSD listed in the Section 4.2, the interest rate charged to
the borrower depends on the borrower’s credit quality. Since the market value A of
assets is a time-homogeneous Markov process, the current asset level A; is the only
state variable in our model, and any measure of the borrower’s earnings prospect at
time ¢ is solely determined by A;. Therefore, it is natural to consider the asset level
A as a performance measure. An asset-based PSD is a PSD whose coupon rate only
depends on the current asset level. Specifically, an asset-based PSD is a measurable
function C : Ry — R, under which the firm pays coupons at rate C (A;) at time ¢.

Using this definition, we derive valuation and efficiency results for asset-based PSD.

BLimited liability is satisfied if the negative dividend rate is funded by dilution, for example
through share purchase rights issued to current shareholders at the current valuation.
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4.4.1 Valuation

Given an asset-based PSD, the initial value of the equity is:'®

,’r‘

W(Ao)sgg,ﬁ:[ /0 et [6(A;) — (1 — 0)C (A,)] dt| .

The Markov property and time homogeneity imply that there exist asset levels Ag and
Apg with Ap < Ay < Ag, such that an optimal default time of the firm is of the form
7 = min{7(Ag), 7(An)}, where 7(z) = inf {¢ : A; = z}. Even though the existence
of an upper asset boundary Ay above which the firm would default is mathematically

possible, we exclude this unnatural possibility with the following condition.

CONDITION 2 There exist levels ¥ < T and a positive constant ¢ such that
1. (1 -0)C(z) = (z) if and only if x < Z.
2. 1-6)C(z) > d(z) + ¢ forz < z.

The first part of Condition 2 states that for asset levels higher than %, the cash flow
rate is higher than the coupon rate. It can be easily verified that, under this condition,
Ap = 400, so that the optimal default time simplifies to 7 = 7(Ap). Therefore,
equity holders’ optimal stopping problem can be expressed without loss of generality

as:

W(x) = sup W(z,y), (7)

where

- 7(y)
W(z,y) = E, /0 e " [6(A) — (1 — 6)C(Ay)] dt| .

S Throughout this section, we omit the superscript C' and the subscript 0 whenever there is no
ambiguity.
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In order to derive an ordinary differential equation (ODE) for W, we impose the

following condition on C':
CONDITION 3 The PSD obligation C is such that:

1. There exist nonnegative constants ky and ko that satisfy

0<(1-0)Cy) <kt k.

2. C is right-continuous on [0,00) and has left limits on (0, 00).

Using the strong Markov property of {A:}e>o,

wherel”
§($7 y) = Eﬂv[eh’r(y)]?

and

@) = B, [ /0 e [5(4r) — (1 — 0)C(A)] dt} .

The next lemma shows that, under Condition 2, the default triggering level Ap is

strictly positive.

LEMMA 1 Under Condition 2, there erists a level % such that any optimal default

time 7 satisfies T < 7(Z) almost surely.

An important consequence of Lemma, 1 is that default occurs with positive probability.

Our next theorem characterizes the solution of the optimal stopping problem (7).

17Previous assumptions on u and o imply that ¢ is well-defined (see Karatzas and Shreve (1991))
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THEOREM 1 If @ PSD C satisfies Conditions 1-3, the following statements are equiv-

alent:

1. Ag is an optimal default triggering level:
T(AB)
Wi(z) = E, / e [5(A,) — (1— 6)C (A,)|ds| .
0

2. W(x) and Ap satisfy:

(Z) Ap €(0,%).

(i) W is continuously differentiable and W’ is bounded and left and right dif-

ferentiable.

(#i) W wvanishes on [0, Ap] and satisfies the following ODE at any point of
continuity of C':

%az(x)W”(:v) + @)W (z) — rW(2) + 6(x) — (1 —0)C() =0.  (9)

A proof is given'® in Section 4.10.

The continuous differentiability of W and the fact that W is 0 on [0, Ap] imply that
W'(Ag) = 0, which is known as the smooth-pasting condition. Theorem 1 provides a

method for solving the firm’s optimal liquidation problem. The proposed algorithm

is the following

8The Appendix also gives two separate equations involving the right and left derivatives of W’
at discontimiity points of C (cf. equations (25) and (26)).
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1. Determine the set of continuously differentiable functions that solve ODE (9)
at every continuity point of C. It can be shown that any element of this set can

be represented with two parameters,'® say L, and L,.

2. Determine Apg, Ly, and L, using the following conditions:

a. W(Ap) =0.
b. W’ is bounded.
c. W/(Ag) =0.
d. Ap € (0,%).

We interpret (a) as the boundary condition on the solution at the point Ap of the
ODE. Condition (b) says that W’(z) remains bounded as £ — 400 and constitutes
the second boundary condition on the solution of the ODE. The smooth-pasting
condition (c) is interpreted as the first-order optimization condition that defines the
optimal bankruptcy boundary. Condition (d) verifies that condition 2.(i) of Theorem
1 is satisfied.

Now that we know how to price the equity associated with PSD, we can also price
the PSD itself. Using the fact that the sum of the equity value, the PSD value, and
the expected losses resulting from the bankruptcy is the sum of the asset level and

the present value of the tax benefits, we obtain the PSD pricing formula:

U (A) = 1 [Ae— W (A)) ~ [p(As) +0(As ~ p(An))] E(A0, As)].

9Tn fact, we really consider here solutions of coupled equations {25} and (26), which boil down
to the ODE (9) at any continuity point of C. One can easily check that the set of solutions of the
coupled equations still is a two-dimensional vector space.
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Coupon rate

Performance measure A

Figure 1: (' is more risk compensating than D.

4.4.2 'The Relative Efficiency of Asset-Based PSD

In this subsection, we study the relative efficiency of alternative asset-based PSD.
Specifically, we derive a partial order, by “efficiency,” among alternative PSD issues
that raise the same amount of cash. We need the following definitions and condition,
that we state in terms of a general performance measure 7. These will also be used

in Section 4.6.2, for the case of credit ratings.

DEeFINITION 1 (Relative Efficiency). Let C' and D be PSD that raise the same funds,
US = UP. We say that C is less efficient than D if it determines a lower equity price,

that is, if W§ < WP.

DEFINITION 2 (Risk Compensating). Let C and D be PSD obligations based on the
same performance measure. We say that C is more risk-compensating than D if

C — D is a nonincreasing, nonconstant function.

Figure 1 illustrates the “risk compensating” concept.
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ConpITION 4 (Efficiency Domain). A PSD issue C is said to be in its efficiency
domain if, for any constant o > 0, we have U§ ~* < US, where C — a denotes a PSD

issue that pays C (A) — a at time t.

Condition 4 means that it is not possible to raise the same amount of cash as C by
a constant downward shift in its coupon rate. For example, a bond paying a fixed
coupon rate c raises an increasing amount of cash as c increases, until ¢ reaches a
point at which the loss due to precipitated default dominates the gain due to the
increase of coupon payment (as in Figure 2). The forms of PSD that we consider are
in their efficiency domain, for otherwise efficiency in the sense of Definition 1 can be

trivially improved upon by uniformly reducing the interest rate paid.

THEOREM 2 Suppose C and D both are asset-based PSD, satisfying U = UP and
Conditions 1-4. If C is more risk-compensating than D, then C is less efficient than

D.

A proof of the theorem is given in Section 4.10.

The above result is supported by the following intuition. Equityholders decide to
declare bankruptcy when coupon payments become too high compared to dividends.
At this time, the firm pays higher interest rates with C than with D and, while there
is a possibility that the situation be reversed in the future, the urgency of the current
situation increases the firm’s incentive to declare bankruptcy. This intuition can be
further illustrated by the opposite, extreme example of a bond paying a coupon rate
equal to the dividend rate C(A;) = §(A:). This coupon rate decreases to zero as the
asset level goes to zero. The coupon payments never exceed the dividends, so the firm

never goes bankrupt. Such a bond transfers all the value of the firm to debtholders,
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Funds raised by fixed-coupon debt L/(4,)

Fixed couponc¢

Figure 2: A fixed-coupon bond is in its efficiency domain if ¢ € [0, .

and, if it could qualify as “debt” for tax purposes, would reduce tax payments to
zero since the tax benefit resulting from coupon payments is equal to the tax on the
dividends. Equityholders could decide to buy all of the debt, in which case this bond

allows them to receive all of their dividends in form of coupon payments.

COROLLARY 1 Let C be a PSD issue satisfying Conditions 1-4. If C is non-increasing
and not constant, it is less efficient than the fized-interest PSD issue raising the same
amount of cash and verifying Condition 4. If C is non-decreasing and not constant, it

is more efficient than any fixed-interest PSD issue raising the same amount of cash.

The result suggests that, in many settings, the issuer would choose the least risk-

compensating form of debt that qualifies as “debt” for tax treatment.
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Present value of bankruptcy losses

Size of the step

Figure 3: Present value of bankruptcy costs as a function of the step size.

The following numerical example compares “one-step” PSD issues C that raise the

same amount M, in the class Cys of PSD defined by

such that Cy > C; and U (A4y) = M.

We assume that the asset is a geometric Brownian motion with parameters p = 0.01,
o = 0.1, and that p(z) = 0.25z, 6 = 0, r = 0.03, Ay = 100, G, = 80, and M = 50.
M can be raised by issuing a bond that promises to pay a fixed coupon rate of 2. To

see the inefliciency of step-up bonds, we compute for one-step PSD issues in Cj the
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present value of bankruptcy losses, which is by definition

c A N
Q(C) = 0.25E U9 AG] = 0.2543 (A_g) ,
B

m+ vm? + 2ro?
o2
is more risk-compensating than (C}, C3) if Co — C; > Cy — Cj. Figure 3 shows the

where? v, = and m = p — "2—2 According to Definition 2, (Cy,C2)
relationship between the present value of bankruptcy losses and the degree of risk-
compensation (Cy — Cy) associated with the PSD. Expected bankruptcy costs equal

2.8 for the fixed-coupon PSD, and increase rapidly as step size takes off4.

4.5 Examples of Asset-Based PSD

In this section, we solve our model explicitly for two important cases: step-up and
linear PSD issues. Step-up PSD is more likely to be seen in practice, while linear PSD
has a convenient pricing formula. Throughout this section, we assume that the asset
process is a geometric Brownian motion with drift x and volatility ¢2. This implies

m+ vVm?2 + 2ro?
= and

that §(z) = (r — p)z, and that {(z, y) = (x/y) ™™, where v, =

2
P, a

4.5.1 Step-Up PSD

Step-up performance-sensitive debt is defined to be a PSD obligation whose coupon

payment is a non-increasing step function of the asset level.

For a decreasing sequence {G;}!1} of asset levels such that G; = 400 and Gy, = Ay,

208ee Section 4.5
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the coupon rate of a step-up PSD obligation can be represented as
C (A;) = C; whenever A; € [Gi41,Gi) , (10)

where {C;}L_, is an increasing sequence of constant coupon rates.

With this coupon structure, the general solution of the ODE (9) is

W(m) _ 0, < AB ’ (11)
L§1)$_71 + L§2)$—72 4+ — gl;fg, Gi+1 Sz < G'L ’

m+ vm? + 2ro? y
2 b

i =
a

m ~ vVm? 4 2ro?
2 ?

a

for t=2,...,1+1, where y =
2

“w— %—, and where Lgl) and ng) are constants to be determined shortly. According

to Theorem 1,

W (Ag) =0 (12)

and

W' (Ag) =0, (13)

and W (-) is continuously differentiable. In particular, for i = 2,...,1,
W (Gi—) =W (Gi+), W (Gi—) = W (Gi+) . (14)

Because the market value of equity is non-negative and cannot exceed the asset
value?!,

L®=o0. (15)

?1Since v, > 0 and 72 < 0, the term L%(:L'_"’2 would necessarily dominate the other terms in the
equation (11) violating the inequality 0 < W(z) < z, unless L? = 0
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The system (12)-(15) consists of 21 +1 equations with 27 + 1 unknowns (LY with j €
{1,2} and i € {1,..., I}, and Ap). Substituting (11) into (12)-(15) and solving gives

+1)Ap — 12
LEU — (72 ) Ap ,72’, (16)
('71‘"'72)14371

~(m+1)Ap+n%?

L@ Ty (17)
! (m — ) Ag"
I-1
W — L(l)-l— Y2 CHI_Ci,z':Q,...,I, 18
’ T a—v)r ; G e
I-1
L@ = - N GH "G 9. .. T, 19
G G "
I-1 —~
A Y2
0 = —(m+1)Ap+ % (CI — Z(Ci+1 —¢) (G'i) ) ) (20)
i=1 ¢

where, for convenience, we let ¢; = (1 — 6)C;. Although we do not have an explicit
solution for these parameters, equations (16)-(19) express Lg.i) as a function of Ap,
which, in turn, solves (20). One can verify that (20) has a unique solution on the
interval (0, A\B),” where Ay = y1¢;/(r (1 +1)) is the default-triggering level of

assets for a consol bond with the fixed-coupon rate c;.

*28ince y; € (0,00) and y2 € (—00,0), the left-hand-side of (20) converges to %cl >0 as Ap goes
Ap
Giy

—Y2
to 0, and equals —Zrl Ef;f((}i.}.]_ - ) ( ) < 0 for Agp = Ap, where
-~ Y1C
Ap= ———— .
BT rm+1)

One can verify that the left-hand-side is a strictly decreasing function of Ag. Here, }1\3 is the
default-triggering level of assets for a consol bond with fixed-coupon ¢;. Our step-up PSD pays
several different coupon rates, and all of them are greater or equal than ¢;. Therefore, Ag should

be no greater than A B, and (20) has a unique solution for Ag on the interval (0, 21\3) .
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4.5.2 Linear PSD

Consider the coupon scheme given by

C(x)=po— bz,

with By > 0. Applying Theorem 1, the corresponding equity value is

W (z) = A (:c . (—A%)_%) - % (1 - (A%)ﬂl) , (21)

and the optimal bankruptcy boundary is

b= Y150
A(l+m)r’
where \ = f—",#_ff—l When 3, = 0, A = 1, formula (21) corresponds to the fixed coupon
case with C = ;. As expected, W is increasing in #; due to the reduction in the

coupon rate.

4.6 Performance Measures

Earlier, we derived valuation formulas and an inefficiency theorem for PSD obligations
whose coupon payments are determined by the asset level of the firm. Since, in our
model, A; incorporates all information about future earnings of the firm, the asset
level is the natural choice for a performance measure. In practice, however, PSD
contracts are usually written in terms of performance measures such as credit ratings
and financial ratios. In this section, we explicitly consider the valuation and relative

efficiency of PSD obligations based on these other performance measures.
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4.6.1 General performance measures

We assume that performance measures reflect the borrower’s capacity and willing-
ness to repay the debt. Throughout this section, we assume that {A;}:>o follows a
geometric Brownian motion with drift u and volatility o* (see Section 4.5 for the im-
plications of this assumption). With u and o given, the borrower’s asset level A; and
chosen default triggering boundary Apg fully determine its default characteristics at
any time t. Since Ap is not directly observed by outsiders, the performance measure
¢ is a function T(A,, A B), where Ap is the perceived default triggering level of assets.
Although we do not impose this condition, it is natural to think of 7(-,-) as being
nondecreasing in A; and nonincreasing in Az. A PSD obligation C' therefore pays
the coupon C(my) = C(7 (A, ZB)). The Markov structure and the time homogeneity
of the setting imply that any optimal default time of the firm can be simplified to
a default triggering boundary hitting time 7(Ap) (still imposing Condition 2). In
this setting, a consistency problem arises, as the default triggering level chosen by
the firm may depend on the perceived default triggering level. With y denoting the
actual default triggering level of the firm, the value of the equity is

WC”? v, AVB) = EZ

7(y) -
/0 e [(r— ) A — (1 - O)C(F(Ar, Ap))] dt} .

Knowing that the firm seeks to maximize the value of the equity, the ratings agency

therefore chooses an Ap that solves the fixed point equation:

Ap € argmax W (z,y, Ap). (22)

y<z

This equation may have one or several solutions, or no solution at all. To avoid

ambiguity, we impose the following condition.
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CONDITION 5 There exists a unique positive solution of (22).

Given Condition 5, the coupon rate paid by the PSD obligation at time ¢ is C(F(A¢, Ap)).
Since Ap does not change over time, this PSD, which is defined under performance
measure 7, is equivalent to an asset-based PSD C, defined by C (A;) = C(7(As, Ap))-
Equation (22) implies that C' and C have the same optimal default boundary Ag.
Hence, provided that C satisfies Conditions 2,3, and 4, we can compare C in terms
of efficiency with asset-based PSD obligations that satisfy the same Conditions by
applying Theorem 2. In particular, if C (A;) is a nonincreasing nonnegative function,
then a fixed-coupon bond with the same market value is more efficient than C. If =
can only take finitely many values, then C (A;) satisfies Conditions 2 and 3. Thus,

we have proved the following theorem.

THEOREM 3 Suppose that a performance measure © can only take a finite number of
values, and that a PSD C is nonincreasing and nonnegative. Suppose Conditions 4
and 5 are satisfied. Then, a fixed-coupon PSD D that satisfies Condition 4, and has

the same market value as C (U§ = UL ), is more efficient than C.

4.6.2 Ratings-based PSD

We consider I different credit ratings, 1, ..., I, with 1 the highest (“Aaa” in Moody’s
ranking) and I the lowest (“C” in Moody’s ranking). We let R, denote the issuer’s
credit rating at time £. We say that C' € R is a ratings-based PSD obligation if it pays
interest at the rate C; whenever R; = ¢, with Cj3; > C; > 0, foriin {1,...,I —1}.
Thus, a ratings-based PSD is more risk-compensating than a fixred coupon PSD. We

say that an accurate rating agency is one whose credit ratings are a function of the
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probability of default over a given time horizon T. Naturally, higher ratings corre-

spond to lower default probabilities. -

The default time for a ratings-based PSD is a stopping time of the form 7(Ap) =
inf{s : A; < Ap}, for some Ap. Therefore, the current asset level A; is a sufficient
statistic for P(r(Ap) < T | F;), for any T > ¢. A rating policy is thus given by some
vector-valued function G : R — R that maps a default boundary Ap into rating
transition thresholds, such that R; = ¢ whenever A, € [Gi;1(Ap),Gi(4AB)). In our

setting, this policy has the form??

G(A) = Ay, (23)

where g € R is such that g, = +00, gry1 = 1, and g; > giy1-
The results developed for step-up PSD can be applied to ratings-based PSD. In par-
ticular, the maximum-equity-valuation problem (4) is solved by 7(Ag) = inf{s : A, <

Apg}, where Ap solves equation (20). Plugging (23) into (20), we obtain

! -~
Ap=—"—"_20C, 24
B ta+1yr (24)
where ;
~ 1 Y2 1 —Y2
;[ 9it+1 9

BGince A, is a geometric Brownian motion, its first passage time distribution is an inverse Gaus-

sian:
4 m(T —t) —x 2ma <x+m(T——t)>

where, z = In (‘Z—’f), m=p— %02, A, is the current level of assets and ® is the normal cumulative

distribution function. Since P(7(Ag) < T'| F;) depends on A, only through ‘Z—’f , we have the linearity
of G(-).
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and ¢; = (1—0)C;. We note that the ratings-based PSD issue C has the same default
boundary Ap as that of a fixed-coupon bond paying coupons at the rate C. Plugging
(24) into (16)-(19), (11), and (6), one obtains closed-form expressions for the market
value W of equity and the market value U of debt for any ratings-based PSD obliga-

tion.

We now derive the inefficiency theorem for the case of ratings-based PSD. We keep
the same definitions as in Section 4.4, except that the performance measure now

corresponds to credit ratings, and not asset levels.

THEOREM 4 Suppose C and D are ratings-based PSD, satisfying US = UL and

Condition 4. If C is more risk-compensating than D, then C is less efficient than D.

The proof of the theorem is given in Section 4.10.

COROLLARY 2 Let C be a ratings-based PSD issue satisfying Conditions 2,3, and 4.
If C is not constant, it is less efficient than any fixed-interest PSD issue raising the

same amount of cash and verifying Condition 3.

4.7 Rating Agency Policy

Credit ratings differ from other measures because of the circularity issues that are
imposed. In a ratings-based PSD obligation, the rating determines the coupon rate,
which affects the optimal default decision of the issuer. This, in turn, influences the
rating. We have so far assumed that rating agencies are accurate, in the sense that
they assign credit ratings according to the probability of default over a time horizon

T. In this section, we discuss what can happen when credit-rating agencies fail to
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account for the effect of credit-rating changes on the firm’s financial standing. Only
after recent deteriorations in credit qualities of several major companies did rating
agencies begin to worry about the unintended adverse effects of rating triggers.?* Even
after several incidences of default and cascading downgrades related to ratings-based
PSD, it is not difficult to find examples of reluctance by rating agencies to incorporate
the negative consequences of ratings-based PSD into credit ratings.2® The following

passage is from Standard and Poor’s (2001):

(...) How is the vulnerability of rating triggers reflected all along in
a company’s ratings? Ironically, it typically is not a rating determinant,
given the circularity issues that would be posed. To lower a rating because
we might lower it makes little sense — specially if that action would trip

the trigger!

Another reason that rating triggers may not be incorporated into credit ratings is
that often, due to confidentiality constraints, they are not publicly disclosed by the
issuer. Some steps have already been taken to punish issuers who refuse to provide
information about their rating triggers, although there is still no legal procedure to
enforce disclosure.?8 We say that an agency is unresponsive if it ignores, when assign-

ing credit ratings, the adverse effects of rating triggers on the liquidation of the firm.

We suppose, for example, that a firm having a fixed-coupon note C refinances its
outstanding debt by issuing a ratings-based PSD obligation D. Figure 4 plots the

accurate agency policy G( - ), which is obtained from (23), and equityholders’ optimal

248ee Moody’s (2001) and Standard and Poor’s (2001).

PMoody’s adopted a more critical view of ratings trigger after recent default events. See Moody’s
(2001).

26See Moody’s (2002).
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Figure 4: Present value of bankruptcy costs as a function of the step size.

default strategies AG(-) and AZ(-), which are obtained from (20). Points 1 and 5 in
the figure yield the solution to (22) before and after the refinancing of the debt takes
place. With an accurate rating agency, issuance of ratings-based PSD obligations
thus triggers a chain reaction that ceases only when it reaches point 5. This chain
reaction, which we call credit-cliff dynamic, might induce a drastic downgrade or
even immediate default if A > Ay. By ignoring the effects of ratings triggers,
an unresponsive rating agency may avoid the perverse effects associated with the
credit-cliff dynamic. In the context of figure 4, an unresponsive rating agency would
interrupt the chain reaction at point 2, leading to a lower optimal default boundary
than in the case of an accurate rating agency. One would then be tempted to say that
the outcome of a ratings-based PSD with an unresponsive rating agency is superior
to the one with an accurate one. We claim that this is not necessarily true. With

unresponsive rating agencies, credit ratings do not reflect true probabilities of default
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and are thus less informative. Moreover, firms may be tempted to issue more risk-
compensating ratings-based PSD, compensating for the unresponsiveness of rating

agencies.

4.8 Additional Discussion

Even though our main result is that more risk-compensating PSD obligations lead
to higher inefficiency, companies do issue these obligations in practice. In order to
understand why this is the case, one could introduce market frictions such as adverse
selection, moral hazard, contracting costs, or incomplete markets. Since these would

complicate the model, we confine ourselves to an intuitive discussion of these issues.

Performance-sensitive debt may be used to solve the adverse selection problem, which
arises because of information asymmetries at the time of debt issuance. In order to
see this, we assume there are two firms that are identical except for their initial asset
levels. That is, both firms’ future cash flows are given by (1), but the “high” type has
a higher initial level of assets than the “low” type. Assuming that their initial levels
of assets are not observable by the market, the firm with the high assets may issue
risk-compensating PSD that pays a lower initial coupon but has a higher associated
bankruptcy boundary than that of the low-type firm that issued the fixed coupon
debt. A lower asset level means that the firm is closer to bankruptcy. A further
increase in the bankruptcy boundary would be costlier for the low-type firm. As a
result, “low” type would not be willing to pool with the “high” type. On the other
hand, despite the inefficiencies related to the risk-compensating PSD, the “high” type

firm benefits overall from revealing its type by reducing its interest payments. Thus,
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the inefficiency cost associated with the risk-compensating PSD could be viewed as

a signaling cost paid by the “high” type firm.?’

Moral hazard could also justify the use of performance-sensitive debt. By punishing
shareholders with higher interest rates after a bad performance, PSD obligations may
reduce a manager’s ability to shift wealth in favor of shareholders. We have solved a
simple numerical example in which a firm that has access to high-risk and low-risk
technologies issues step-up bonds in order to avoid losses from the asset-substitution

effect.

Contracting costs may be another reason for some types of PSD. When the credit
quality of the borrower changes, the issuer and the investors in its debt often get
involved in costly negotiation over the terms of the debt. An increase in credit qual-
ity may prompt the borrower to seek refinancing of its debt on better terms. On
the contrary, the lender may demand higher interest payments in compensation for
the deterioration in credit quality. Some types of PSD may resolve the renegotiation

problem by automatically adjusting the interest rates.

Asquith, Beatty, and Weber (2002) and Beatty, Dichev, and Weber (2002) indeed
found empirical evidence that private debt contracts are more likely to include perfor-
mance pricing schemes when asymmetric information, moral hazard or recontracting
costs are significant. The chapter, however, establishes that solving these problems

with PSD comes with a cost.

%My coauthors found numerical examples supporting this intuition.
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We have so far assumed that all the agents in the economy are risk-neutral. It is
straightforward, however, to extend our results to the case of risk-averse agents, in
the absence of arbitrage (specifically, assuming the existence of an equivalent martin-

gale measure).

If markets are incomplete, performance-sensitive debt might be issued to meet the
demands of risk-averse investors, providing them with hedge against credit deteriora-
tion of the firm. Our results suggest, however that financial guarantors, rather than

the debt issuing firms, should be providing this kind of hedge.

Our inefficiency results hold for different definitions of financial distress. If we assume,
for example, that default happens when assets do not generate enough cash flow to
meet current obligations®®, then it is easy to see that a more risk-compensating PSD
will lead to more inefficiency. In this flow-based insolvency definition, however, share-
holders declare bankruptcy even though it may be still possible to issue additional

equity to cover the shortage.

Z8This setting is studied in Kim, Ramaswamy, and Sundaresan (1993).
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4.9 Conclusion

This chapter analyzes the properties of performance sensitive debt using an endoge-
nous default model. Although many types of debt contracts are performance-sensitive,
they have received little attention in the literature. Endogeneity of the firm’s default
decision allows us to analyze the efficiency of different types of PSD. Our main finding
is that, given the same initial funds raised by sale of debt, more risk-compensating
PSD leads to earlier default and, consequently, lowers the market value of the issuing
firm’s equity. An intuitive explanation of this result is that higher interest payments
from financially distressed companies lead to higher losses, thus precipitating the de-
fault decision. Catastrophe bonds, whose coupon rate is reduced automatically when
the issuing insurance company experiences hardship due to a high volume of insur-
ance claims, are an example of “more” efficient debt. The majority of PSD issues,
however, have an inefficient step-up feature. This leads us to believe that inefficient
PSD is used to solve agency problems arising from existing market imperfections, such
as adverse selection, moral hazard and contracting costs. In addition, we develop a
convenient method of valuing PSD. We obtain closed-form expressions for the equity
prices associated with step-up, linear and rating-based PSD. We also discuss the pol-
icy of credit-rating agencies. Inconsistent rating of PSD can generate a credit-cliff
dynamic, as well as hurt market participants by providing misleading information

about default risks.
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4.10 Appendix

Proof of Lemma 1. The proof is based on the following claim:

Claim: There exists a level Z such that Vz < Z], W(z) =sup W(z,7) = 0.

Proof. From Condition 2, there exist positive constantsT z and ¢ such that (1 —
0)C(x) > 6(x) + cfor all x < z. Let = =supW(z,7) < oo. For any stopping time 7

and z < g,

W(z,7) = E. [17«@ /0 Tt (5(At)—(1—9)C'(At))dt}+

E, [me /O "t (5(A) — (1 — 0)C(AY)) dt]
—sz[(l — ) Lecr)] +

E, { [—% (1-e @) + §(x,:§)5] 17>T(_3_;)} .

IA

Let z* > 0 be the unique solution (in z) of —% (1—e @) +¢(z,2)= = 0. Since £ is
nondecreasing in z, we have for all z < & = zAz*, W(z,7) < —$E[(1 — €7"") 1,<r(s)] <
0, the optimum W (z,7) = 0 being reached for 7 = 0. This claim proves that, starting
from any level z and for any stopping time 7, the stopping time 7= = 7 A 7(%) is
at least as good as 7. In other words, we can restrict ourselves, in our search for

optimality, to the set of stopping times 7 = {rst. 7 <7(@)}. n

Proof of Theorem 1. First, we prove the necessary conditions, then the sufficient

conditions. The proof of the necessary conditions is based a series of lemmas:

LEMMA 2 Under Conditions 1-3, f is continuously differentiable and f' is bounded
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and left and right differentiable. Moreover, f satisfies the following equations:

%02(37) [ (@) + p@)f'() —rf(z) +6(x) — (1-0)Ci(z) = 0

L@ @) + @) (@) ~ (@) + 6(z) — (1= 6)0() = 0,

where f]'(x) (resp. [!(x)) is the left (resp. right) derivative of f' at x, and Ci(x) is
the left limit of C at x.

Proof. First consider the case where C is continuous. Let ¢(x) = §(z) — (1—-80)C(z).

From Condition 1, there exists a fundamental solution® ¢(x,v) such that

f(z) = / ¢, 0)d(v)dv

and

20 (@) g (,0) + () 92 (@) = 7€ (2 0) = 0.

A straightforward differentiation then shows the result. When C is discontinuous,
the second part of Condition 3 implies that there is a countably finite number of
discontinuities. A limit argument by approximating, continuous functions then show
the result. The boundedness of f’ comes from the boundedness of %(w, v), proved in

Friedman (1974). |

COROLLARY 3 W satisfies the following equations on [Ap,c0):

%02(-?7)“/:"(-77) +u(@)W'(z) —rW(z) +6(x) - (1-0)C(z) = 0 (25)

%02(37)1/[/,”(3:) + u(x)W'(z) —rW(z) + é6(z) — (1 — 0)C(z) = 0O, (26)

*9See Friedman (1974).
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where W/'(zx) (resp. W/ (z)) is the left (resp. right) derivative of W' at z, and Ci(z)
18 the left imit of C at x. In particular, W solves ODE (9) at any continuity point
of C.

Proof. Straightforward, from Lemma 2 and (8). |

COROLLARY 4 W’ is bounded on [0, 00)

Proof. Straightforward, from (8) and the fact that f’ is bounded on [0, c0). |

COROLLARY 5 If a PSD obligation C satisfies Conditions 1-3, then W(w, y) is con-
tinuously differentiable in both components, and % is left and right differentiable in

x.

Proof. This comes directly from the above lemma and (8). |

LEMMA 3 If a PSD obligation C satisfies Conditions 1-3, then the optimal default

boundary Ap verifies %;W(AB, Ap)=0.

Proof. From (7) and Lemma 1, Ap satisfies %‘g’—(x,A B) = 0. Moreover, we have for
any y, W(y,y) = 0 (since the firm defaults immediately). Differentiating this last
equation and using the fact that %%(x, Ap) = 0 yields %."}(AB,AB) =0. [
Combining (8), the above lemmas, and the fact that W(z) = W (z, Ag) concludes the

proof of all necessary conditions but one. It remains to show that Ag < Z.
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This is trivial since, for A; > z, the cash flow rate exceeds the coupon rate, whence

it is never optimal to default.

The verification of the sufficient conditions is similar to the proof of Proposition 2.1

in Duffie and Lando (2001). Define a stochastic process x; as

t
xie=e "W (Ar) +/ e psds
0

where for x > Ap, W(z) is the solution of the ODE that satisfies all the conditions
listed in the theorem, and W (z) = 0 for x < Ag. Since W is C, an application of

1t6’s formula leads to
dx: = e "d(4;) dt + e "W’ (A¢) o (A)dBy, (27)

where

d(z) = %W” (&) 2(z) + W' (&) u(z) — W (2) + ().

Since by assumption W’ is bounded, the second term is a martingale, and since
E, [ 2 Eemw (Ao (Ar)) dt] < o0, fot e "W’ (A;) 0AsdBs is a uniformly inte-
grable martingale, which implies that E, [ [ e W’ (A,) 0 A, dB,] = 0 for any stop-
ping time 7. By assumption

¢(Ap) <0. (28)

This inequality means that when the firm declares bankruptcy, its cash flow § =
(r — x) Ap is less than the coupon payment. It is easy to verify that the drift of x; is
never positive: d(x) vanishes for z > Ap since W solves the ODE, and negative for

x < Ap, because of the inequality (28) and W (x) = 0 for x < Ap. Because of the
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non-positive drift, for any stopping time T € 7, ¢y > F (xs), meaning

T
W (Ao) > E / ey ds + e TW (Ay)
0

For the stopping time 7, we have

T T
W (Ag) =FE / e P ds| > F / e "psds| ,
0 0
where the inequality follows from non-negativity of W. Therefore, the stopping time

7 maximizes the value of the equity. |

Proof of Theorem 2. The proof is based on the following lemma:

LEMMA 4 Let C and D be asset-based PSD satisfying Conditions 1-8, and AG < AL.
If h = C—D is not constant on [AS, 00) and changes sign at most once from positive to

negative on [AL, 00), then, WS (x) > WL (x) for any starting asset level x € (A$, 00).

Proof. Without loss of generality, we assume that the tax rate 6 is zero. First,
assume that A§ = AR = Ap. Since h changes sign at most once from positive to
negative on [Ag, 00), there exist constants A;, Ay verifying Ag < A; < A, and such
that h > 0 for A € [Ay, A;), h =0 for A € (A}, Az), and h <0 for A € (A2, 00).3°

We first consider the case where A; = Ap. Necessarily, A; < 0o, otherwise h would be
constant on [Ap, 00). Thus, h vanishes on [Ap, A3) and is negative on (A, 00). It is

easy to verify that for any PSD C with initial asset level z and default boundary Apg,

3By convention [a,s) and (a,a) equal the empty set. The precise values at A; and Ay are unim-
portant.
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we have
7(Ap)
Uy () = E, [/0 e "C(A,) ds} + (Ap — p(AB))¢(Ao, AB). (29)

Since (Ajg, 00) has a positive Lebesgue measure, (29) implies that U (z) > U§ (z) for
all z € (Ap, 0). Equation (6) then allows us to conclude that W (z) > W (z) for
all z € (Ap, ).

We now consider the case in which A; > Ap or, equivalently, h(Ag) > 0. We first
show that W{ (x) > W¥ (z) for all z € (A, A1). From (25)) and (26), we have for
H(z) =W (z) - WP(=):

SH @) (@) + H'(@le) = rH(@) ~ u(z) =0 (30)
%H:,’(x)az(m) + H'(@)u(z) — rH(z) — h(z) = 0, (31)

where H/'(x) (resp. H!(x)) is the left (resp. right) derivative of H' at x, and hy(x)
is the left limit of h at x, which exists according to Condition 3 and Theorem 1.
Also from Theorem 1, W¥(Ag) = 0 and (W*)'(Ag) = 0 for i = C, D. Therefore,
H(Ag) = H'(Ag) = 0. Since h(Ap) > 0, it follows from (31) that H}(Ag) > 0.
This implies that H'(z) > 0 and H(x) > 0 in a right neighborhood of Ap. Precisely,
there exists 7 > 0 such that H'(z) > 0 and H(z) > 0 for z € (Ap, Ap +17). We now
prove by contradiction that H'(x) > 0 for all x < A;. Let y denote the first time at
which H'(y) = 0. Necessarily, H(y) > 0. From (30) and the fact that h(y) > 0 for
y < A, it follows that H}'(y) > 0, contradicting the fact that y is the first time at
which H’(y) = 0. Therefore, H'(z) > 0 and H(x) > 0 on (A, A;]. Last, we prove
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that H(z) > 0 on (A;,00). By definition of W€, WP, and Ap,

Wl(z) = B2 { /OT*qt(cSt—C’(At))dt] and

*

i@ = 82| [ ati-Danal,

where ¢ = e, 7* = 7(Ap). Therefore,

*

H(z) = —E% [ /0 ' qth(At)dt] .

This, combined with the fact that 7(A;) < 7(Ap) = 7* and [ = [y + [T

implies that
7(A1)
@) =-E2 | [ ah(a)| + B ™) (A
0

for all z > A;. Since h(-) is non-positive on (A;,00) and H(A;) > 0, it follows
that H(z) > 0 for all z € (Ap,o0), which concludes the proof of the lemma when
AG = AR = Ap. Now we consider the case where A% < AZ. Then, W¢(z) > 0 and
W¥(z) = 0 for z € (A%, AZ], whence the claim holds trivially on this interval. The

rest of the proof is identical to the first part for z > AL. |

From this lemma, we first conclude the proof of the theorem for asset-based PSD.
We proceed by contradiction. We assume first that AS = A2 = Ap. Then, the
pair (C, D) satisfies the conditions of the lemma, which allows us to conclude that
WE(zx) > WP(x) for all z > Ap. From (6), we conclude in particular that, for
z = Ap, we have UY < UP, which contradicts the hypothesis of Theorem 2. We

now assume that A% < AL. Then, we can lower the value of the interests paid by D
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uniformly, proceeding by translation: we consider the PSD D, that pays the interest
function D, = D — €. Then, with the assumption that D is in the efficiency domain
of its translation class (Condition 4), we have Uy < UP = U§. On the other hand,
since interest payments decrease as € increases, there exists a constant €5 > 0 such
that Ags"“’ < AG < AIB)E"“. Moreover, since h = C' — D is non-increasing and not
constant, so is hy = C — D, = C— D+¢. In particular, h, is not constant and changes
sign at most once. Since D satisfies Conditions 2 and 3, it is easy to verify that so
does D, for all € > 0. Therefore, the pairs (C, D,) with ¢ in a left neighborhood of
go satisfy the hypothesis of the lemma, which implies that W (z) > W(f) 0 (z)3! for
any starting asset level x € (A$, 0o). From (6), we conclude that US < UP* for any
£ in a right neighborhood of &g, which contradicts the fact that Uy < UP = U§ for

all e > 0. n

Proof of Theorem 4. The proof is based on the proof of Theorem 2. In the case
of ratings-based PSD obligations it is easy to see that Conditions 1-3 are automati-
cally satisfied. We suppose first that AG = AD. This implies that G(A%) = G(45).
From Lemma 4, U{ > UP. This contradicts the fact that U = UY. Now suppose
that A < AD. Take ¢ > 0 such that AG = Abe. Then, G(A§) = G(A4%), and
Lemma 4 implies that U < Ug. Condition 2, on the other hand, implies that
U < UP = U, which leads to a contradiction. Therefore, A > AZ. Since

U§ = UL, the result then follows from (6). |

31Here, we use the fact that WP¢(z) is continuous in €, which is an easy consequence of Corollary 5
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