Publications

2024

Finite time blow up for the energy critical Zakharov system I: approximate solutions

J. Krieger; T. J. Schmid 

2024

FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS

J. Krieger; T. J. Schmid 

2024

Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations

K. S. C. R. Marsden / J. Krieger (Dir.)  

Lausanne, EPFL, 2024. 

2023

Probabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann; G. Staffilani 

Archive For Rational Mechanics And Analysis. 2023. Vol. 247, num. 4, p. 68. DOI : 10.1007/s00205-023-01900-w.

Global controllability and stabilization of the wave Maps equation from a circle to a sphere

J-M. Coron; J. Krieger; S. Xiang 

2023

Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets

Y. Liu / J. Krieger (Dir.)  

Lausanne, EPFL, 2023. 

2022

Semi-global controllability of a geometric wave equation

J. Krieger; S. Xiang 

Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.

Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$

S. F. Burzio; J. Krieger 

Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369.

2021

Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1

G. Ohlmann / J. Krieger (Dir.)  

Lausanne, EPFL, 2021. 

Randomization improved Strichartz estimates and global well-posedness for supercritical data

N. Burq; J. Krieger 

Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.

Small data global regularity for half-wave maps in n=4 dimensions

A. Kiesenhofer; J. Krieger 

Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.

2020

Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation

J. Krieger; J. Lührmann; G. Staffilani 

ARMA Archive for Rational Mechanics and Analysis. 2020. 

A stability theory beyond the co-rotational setting for critical wave maps blow up

J. Krieger; S. Miao; W. Schlag 

2020. 

Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case

J. Krieger; S. Xiang 

2020

On the stability of blowup solutions for the critical corotational wave-map problem

J. Krieger; S. Miao 

Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.

On long time behavior of solutions to nonlinear dispersive equations

S. F. Burzio / J. Krieger (Dir.)  

Lausanne, EPFL, 2020. 

2019

Cost for a controlled linear KdV equation

J. Krieger; S. Xiang 

ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.

Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach

G. Graf / J. Krieger (Dir.)  

Lausanne, EPFL, 2019. 

2018

On stability of type II blow up for the critical NLW on $\mathbb{R}^{3+1}$

J. Krieger 

Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.

Concentration compactness for critical radial wave maps

E. Chiodaroli; J. Krieger; J. Lührmann 

Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.

Small data global regularity for half-wave maps

J. Krieger; Y. Sire 

Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.

2017

Large global solutions for energy supercritical nonlinear wave equations on $\R^{3+1}$

J. Krieger; W. Schlag 

Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.

A Class Of Large Global Solutions For The Wave-Map Equation

E. Chiodaroli; J. Krieger 

Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.

Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy

J. Krieger; D. Tataru 

Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.

2016

A vector field method on the distorted Fourier side and decay for wave equations with potentials

R. Donninger; J. Krieger 

Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.

2015

Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb{R}^{3+1}$

J. Krieger; J. E. Nahas 

Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.

Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space

R. Donninger; J. Krieger; J. Szeftel; W. W. Y. Wong 

Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.

Center-stable manifold of the ground state in the energy space for the critical wave equation

J. Krieger; K. Nakanishi; S. Wilhelm 

Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.

Optimal polynomial blow up range for critical wave maps

C. Gao / J. Krieger (Dir.)  

Lausanne, EPFL, 2015. 

Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann 

Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.

Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy

J. Krieger; J. Sterbenz; D. Tataru 

Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.

Optimal polynomial blow up range for critical wave maps

C. Gao; J. Krieger 

Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.

On global regularity for systems of nonlinear wave equations with the null-condition

C. Gao; A. Dasgupta; J. Krieger 

Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.

2014

Exotic blow up solutions for the $\Box u^5$-focussing wave equation in $\mathbb{R}^3$

J. Krieger; R. Donninger; M. Huang; W. Schlag 

MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.

On type I blow up formation for the critical NLW

J. Krieger; W. W. Y. Wong 

Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.

Threshold phenomenon for the quintic wave equation in three dimensions

J. Krieger; K. Nakanishi; W. Schlag 

Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.

2013

A codimension two stable manifold of near soliton equivariant wave maps

J. Krieger; I. Bejenaru; D. Tataru 

Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.

Global dynamics of the nonradial energy-critical wave equation above the ground state energy

J. Krieger; K. Nakanishi; W. Schlag 

Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.

Nonscattering solutions and blowup at infinity for the critical wave equation

R. Donninger; J. Krieger 

Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.

Nondispersive solutions to the $L^2$-critical half-wave equation

J. Krieger; E. Lenzmann; P. Raphael 

Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.

Global dynamics away from the ground state for the energy-critical nonlinear wave equation

J. Krieger; W. Schlag; K. Nakanishi 

AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space

J. Krieger; J. Sterbenz 

Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.

2012

A non-local inequality and global existence

J. Krieger; P. Gressman; R. Strain 

Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.

On stability of the catenoid under vanishing mean curvature flow on Minkowski space

J. Krieger; H. Lindblad 

Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.

Full range of blow up exponents for the quintic wave equation in three dimensions

J. Krieger; W. Schlag 

Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.

Blow Up Construction and Stability of Stationary Maps

S. M. Shahshahani / J. Krieger (Dir.)  

Lausanne, EPFL, 2012. 

Global Solutions to a Non-Local Diffusion Equation with Quadratic Non-Linearity

J. Krieger; R. M. Strain 

Communications in Partial Differential Equations. 2012. Vol. 37, num. 4, p. 647 – 689. DOI : 10.1080/03605302.2011.643437.

Concentration Compactness for critical wave maps

J. Krieger; W. Schlag 

European Mathematical Society, 2012.

Global dynamics above the ground state energy for the one-dimensional NLKG equation

J. Krieger; K. Nakanishi; W. Schlag 

Mathematische Zeitschrift. 2012. Vol. 272, num. 1-2, p. 297 – 316. DOI : 10.1007/s00209-011-0934-3.

2010

Slow Blow up solutions for certain critical wave equations

J. Krieger 

RIMS Kokyuroku Bessatsu. 2010. Vol. B22, p. 93 – 101.

2009

Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation

J. Krieger; Y. Martel; P. Raphael 

Communications On Pure And Applied Mathematics. 2009. Vol. 62, p. 1501 – 1550. DOI : 10.1002/cpa.20292.

On structural stability of pseudo-conformal blowup for $L^{2}$-critical Hartree NLS

J. Krieger; E. Lenzmann; P. Raphael 

Annales Henri Poincare. 2009. Vol. 10, num. 6, p. 1159 – 1205. DOI : 10.1007/s00023-009-0010-2.

Renormalization and blow up for the critical Yang-Mills problem

J. Krieger; W. Schlag; D. Tataru 

Advances In Mathematics. 2009. Vol. 221, p. 1445 – 1521. DOI : 10.1016/j.aim.2009.02.017.

Non-generic blow-up solutions for the critical focusing NLS in 1-D

J. Krieger; W. Schlag 

Journal Of The European Mathematical Society. 2009. Vol. 11, p. 1 – 125. DOI : 10.4171/JEMS/143.

Slow Blow-Up Solutions For The H-1(R-3) Critical Focusing Semilinear Wave Equation

J. Krieger; W. Schlag; D. Tataru 

Duke Mathematical Journal. 2009. Vol. 147, p. 1 – 53. DOI : 10.1215/00127094-2009-005.

2008

Large time decay and scattering for Wave Maps

J. Krieger; K. Nakanishi 

Dynamics Of Partial Differential Equations. 2008. Vol. 5, p. 1 – 37. DOI : 10.4310/DPDE.2008.v5.n1.a1.

Renormalization and blow up for charge one equivariant critical wave maps

J. Krieger; W. Schlag; D. Tataru 

Inventiones Mathematicae. 2008. Vol. 171, p. 543 – 615. DOI : 10.1007/s00222-007-0089-3.

2007

On the focusing critical semi-linear wave equation

J. Krieger; W. Schlag 

American Journal Of Mathematics. 2007. Vol. 129, p. 843 – 913. DOI : 10.1353/ajm.2007.0021.

Global Regularity and Singularity Development for Wave Maps

J. Krieger 

Surveys in differential geometry. 2007. Vol. XII, p. 167 – 201.

2006

Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension

J. Krieger; W. Schlag 

Journal Of The American Mathematical Society. 2006. Vol. 19, p. 815 – 920. DOI : 10.1090/S0894-0347-06-00524-8.

Stability of spherically symmetric wave maps

J. Krieger 

2006.

2004

Global regularity of wave maps from $R^{2+1}$ to $H^2$. Small energy

J. Krieger 

Communications In Mathematical Physics. 2004. Vol. 250, p. 507 – 580. DOI : 10.1007/s00220-004-1088-5.

2003

Global regularity of wave maps from $R^{3+1}$ to surfaces

J. Krieger 

Communications In Mathematical Physics. 2003. Vol. 238, p. 333 – 366. DOI : 10.1007/s00220-003-0836-2.

Null-Form Estimates and Nonlinear Waves

J. Krieger 

Advances in Differential Equations. 2003. Vol. 8, num. 10, p. 1193 – 1236. DOI : 10.57262/ade/1355926159.