2025
Concentric bubbles concentrating in finite time for the energy critical Wave Maps equation
2025
2024
Finite time blow up for the energy critical Zakharov system I: approximate solutions
2024
FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS
2024
Stability of the Faber-Krahn inequality for the short-time Fourier transform
Inventiones Mathematicae. 2024. DOI : 10.1007/s00222-024-01248-2.Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations
Lausanne, EPFL, 2024.GLOBAL RESULTS FOR A CAUCHY PROBLEM RELATED TO BIHARMONIC WAVE MAPS
Pure and Applied Analysis. 2024. Vol. 6, num. 3, p. 657 – 691. DOI : 10.2140/paa.2024.6.657.2023
ALMOST SURE SCATTERING OF THE ENERGY-CRITICAL NLS IN d > 6
Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 10, p. 3165 – 3199. DOI : 10.3934/cpaa.2023106.Global controllability and stabilization of the wave Maps equation from a circle to a sphere
2023
Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls
Journal Of Differential Equations. 2023. Vol. 355, p. 193 – 218. DOI : 10.1016/j.jde.2023.01.026.Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets
Lausanne, EPFL, 2023.Scattering Map for the Vlasov–Poisson System
Peking Mathematical Journal. 2023. Vol. 6, p. 365 – 392. DOI : 10.1007/s42543-021-00041-x.BOUNDARY STABILIZATION OF THE FOCUSING NLKG EQUATION NEAR UNSTABLE EQUILIBRIA: RADIAL CASE
Pure and Applied Analysis. 2023. Vol. 5, num. 4, p. 833 – 894. DOI : 10.2140/paa.2023.5.833.Global Well-Posedness For Half-Wave Maps With S-2 And H-2 Targets For Small Smooth Initial Data
Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 1, p. 127 – 166. DOI : 10.3934/cpaa.2022148.2022
Fredholm transformation on Laplacian and rapid stabilization for the heat equation
Journal Of Functional Analysis. 2022. Vol. 283, num. 12, p. 109664. DOI : 10.1016/j.jfa.2022.109664.Energy Bounds For A Fourth-Order Equation In Low Dimensions Related To Wave Maps
Proceedings Of The American Mathematical Society. 2022. DOI : 10.1090/proc/16100.A b-symplectic slice theorem
Bulletin Of The London Mathematical Society. 2022. DOI : 10.1112/blms.12713.Semi-global controllability of a geometric wave equation
Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.b-Structures on Lie groups and Poisson reduction
Journal Of Geometry And Physics. 2022. Vol. 175, p. 104471. DOI : 10.1016/j.geomphys.2022.104471.Fully Localised Three-Dimensional Gravity-Capillary Solitary Waves on Water of Infinite Depth
Journal Of Mathematical Fluid Mechanics. 2022. Vol. 24, num. 2, p. 55. DOI : 10.1007/s00021-022-00684-5.Stabilization of the linearized water tank system
Archive For Rational Mechanics And Analysis. 2022. Vol. 244, p. 1019 – 1097. DOI : 10.1007/s00205-022-01778-0.Mass-Energy threshold dynamics for dipolar Quantum Gases
Communications In Mathematical Sciences. 2022. Vol. 20, num. 1, p. 165 – 200. DOI : 10.4310/CMS.2022.v20.n1.a5.Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on \R^{3+1}Undefined control sequence \R
Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369. On the asymptotic behavior of solutions to the Vlasov-Poisson system
International Mathematics Research Notices. 2022. num. 12, p. 8865 – 8889. DOI : 10.1093/imrn/rnab155.2021
Dynamical collapse of cylindrical symmetric Dipolar Bose-Einstein condensates
Calculus Of Variations And Partial Differential Equations. 2021. Vol. 60, num. 6, p. 229. DOI : 10.1007/s00526-021-02096-1.Small-time global stabilization of the viscous Burgers equation with three scalar controls
Journal de Mathématiques Pures et Appliquées. 2021. Vol. 151, p. 212 – 256. DOI : 10.1016/j.matpur.2021.03.001.Computation of Al-Salam Carlitz and Askey-Wilson moments using Motzkin paths
Electronic Journal Of Combinatorics. 2021. Vol. 28, num. 3, p. P3.1. DOI : 10.37236/9780.Stability of a Point Charge for the Vlasov–Poisson System: The Radial Case
Communications in Mathematical Physics. 2021. Vol. 385, p. 1741 – 1769. DOI : 10.1007/s00220-021-04117-8.Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1
Lausanne, EPFL, 2021.Mixing and diffusion for rough shear flows
Ars Inveniendi Analytica. 2021. num. 2. DOI : 10.15781/83fc-j334.Randomization improved Strichartz estimates and global well-posedness for supercritical data
Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.Small data global regularity for half-wave maps in n=4 dimensions
Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.2020
The Surface Quasi-geostrophic Equation With Random Diffusion
International Mathematics Research Notices. 2020. Vol. 2020, num. 23, p. 9370 – 9385. DOI : 10.1093/imrn/rny261.Small-time local stabilization of the two dimensional incompressible Navier-Stokes equations
2020
Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation
ARMA Archive for Rational Mechanics and Analysis. 2020.Quantitative rapid and finite time stabilization of the heat equation
2020
A stability theory beyond the co-rotational setting for critical wave maps blow up
2020.Enhanced Dissipation in the Navier-Stokes Equations Near the Poiseuille Flow
Communications In Mathematical Physics. 2020. Vol. 378, p. 987 – 1010. DOI : 10.1007/s00220-020-03814-0.Large data scattering for NLKG on waveguide R-d x T
Journal Of Hyperbolic Differential Equations. 2020. Vol. 17, num. 2, p. 355 – 394. DOI : 10.1142/S0219891620500095.Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case
2020
Stationary Structures near the Kolmogorov and Poiseuille Flows in the 2d Euler Equations
2020
On long time behavior of solutions to nonlinear dispersive equations
Lausanne, EPFL, 2020.On the stability of blowup solutions for the critical corotational wave-map problem
Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.Stability of slow blow-up solutions for the critical focussing nonlinear wave equation on \mathbb{R}^{3+1}
2020. Conference on Mathematics of Wave Phenomena 2018, Karlsruhe, Germany, July 23-28, 2018. p. 69 – 88. DOI : 10.1007/978-3-030-47174-3_5.On the stabilizing effect of rotation in the 3d Euler equations
2020.2019
Cost for a controlled linear KdV equation
ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.Regularity results for rough solutions of the incompressible Euler equations via interpolation methods
Nonlinearity. 2019. Vol. 33, num. 9, p. 4818 – 4836. DOI : 10.1088/1361-6544/ab8fb5.On Classical Global Solutions of Nonlinear Wave Equations with Large Data
International Mathematics Research Notices. 2019. Vol. 2019, num. 19, p. 5859 – 5913. DOI : 10.1093/imrn/rnx086.Control and stabilization of the periodic fifth order Korteweg-de Vries equation
Esaim-Control Optimisation And Calculus Of Variations. 2019. Vol. 25, p. 38. DOI : 10.1051/cocv/2018033.Asymptotic dynamic for dipolar Quantum Gases below the ground state energy threshold
Journal of Functional Analysis. 2019. Vol. 277, num. 6, p. 1958 – 1998. DOI : 10.1016/j.jfa.2019.04.005.Travelling heteroclinic waves in a Frenkel-Kontorova chain with anharmonic on-site potential
Journal De Mathematiques Pures Et Appliquees. 2019. Vol. 123, p. 1 – 40. DOI : 10.1016/j.matpur.2019.01.002.Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach
Lausanne, EPFL, 2019.Steady Three-Dimensional Rotational Flows: An Approach Via Two Stream Functions And Nash-Moser Iteration
Analysis & Pde. 2019. Vol. 12, num. 5, p. 1225 – 1258. DOI : 10.2140/apde.2019.12.1225.On large future-global-in-time solutions to energy-supercritical nonlinear wave equation
2019. AMS-MAA Joint Mathematics Meeting on Spectral Calculus and Quasilinear Partial Differential Equations, and PDE Analysis on Fluid Flows, Atlanta, GA, Jan 04-07, 2017. p. 187 – 214. DOI : 10.1090/conm/725/14559.Local Well-Posedness And Blow-Up For The Half Ginzburg-Landau-Kuramoto Equation With Rough Coefficients And Potential
Discrete & Continuous Dynamical Systems – A. 2019. Vol. 39, num. 5, p. 2661 – 2678. DOI : 10.3934/dcds.2019111.Blow-Up or Global Existence for the Fractional Ginzburg-Landau Equation in Multi-dimensional Case
New Tools for Nonlinear PDEs and Application; Springer Nature Switzerland, 2019. p. 179 – 202.2018
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
Nonlinearity. 2018. Vol. 31, num. 4, p. 1441 – 1460. DOI : 10.1088/1361-6544/aaa10d.On the well-posedness of the inviscid 2D Boussinesq equation
Zeitschrift für angewandte Mathematik und Physik. 2018. Vol. 69, num. 4, p. 103. DOI : 10.1007/s00033-018-0998-6.On the well-posedness of the inviscid SQG equation
JOURNAL OF DIFFERENTIAL EQUATIONS. 2018. Vol. 264, num. 4, p. 2660 – 2683. DOI : 10.1016/j.jde.2017.10.032.ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION
ANALYSIS AND PDE. 2018. Vol. 11, num. 7, p. 1587 – 1624. DOI : 10.2140/apde.2018.11.1587.On stability of type II blow up for the critical NLW on \mathbb{R}^{3+1}
Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.Convergence To Stratified Flow For An Inviscid 3D Boussinesq System
Communications In Mathematical Sciences. 2018. Vol. 16, num. 6, p. 1713 – 1728. DOI : 10.4310/CMS.2018.v16.n6.a10.Small data global regularity for half-wave maps
Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.Concentration compactness for critical radial wave maps
Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. 2018. Vol. 228, num. 3, p. 773 – 820. DOI : 10.1007/s00205-017-1205-1.2017
A Class Of Large Global Solutions For The Wave-Map Equation
Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.A-free Rigidity and Applications to the Compressible Euler System
Annali Di Matematica Pura Ed Applicata. 2017. Vol. 196, num. 4, p. 1557 – 1572. DOI : 10.1007/s10231-016-0629-9.Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations
Communications in Mathematical Physics. 2017. Vol. 353, num. 3, p. 1201 – 1216. DOI : 10.1007/s00220-017-2846-5.Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy
Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.Large global solutions for energy supercritical nonlinear wave equations on \R^{3+1}
Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.2016
Renormalization and blow up for wave maps from S^2 \times \mathbb{R} to S^2
Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 8, p. 5621 – 5654. DOI : 10.1090/tran/6524.Eigenfunction expansions of ultradifferentiable functions and ultradistributions
Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 12, p. 8481 – 8498. DOI : 10.1090/tran/6765.An overview of some recent results on the Euler system of isentropic gas dynamics
Bulletin Of The Brazilian Mathematical Society. 2016. Vol. 47, num. 1, p. 241 – 253. DOI : 10.1007/s00574-016-0135-0.On the well-posedness of the Holm-Staley b-family of equations
Journal Of Nonlinear Mathematical Physics. 2016. Vol. 23, num. 2, p. 213 – 233. DOI : 10.1080/14029251.2016.1161261.On a Lagrangian Formulation of the Incompressible Euler Equation
Journal Of Partial Differential Equations. 2016. Vol. 29, num. 4, p. 320 – 359. DOI : 10.4208/jpde.v29.n4.5.A vector field method on the distorted Fourier side and decay for wave equations with potentials
Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.Stability of stationary wave maps from a curved background to a sphere
Discrete and Continuous Dynamical Systems. 2016. Vol. 36, num. 7, p. 3857 – 3909. DOI : 10.3934/dcds.2016.36.3857.2015
Center-stable manifold of the ground state in the energy space for the critical wave equation
Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.Optimal polynomial blow up range for critical wave maps
Lausanne, EPFL, 2015.Global Ill-Posedness of the Isentropic System of Gas Dynamics
Communications On Pure And Applied Mathematics. 2015. Vol. 68, num. 7, p. 1157 – 1190. DOI : 10.1002/cpa.21537.Weyl Transforms for H-Type Groups?
Journal of Pseudo-differential Operators And Applications. 2015. Vol. 6, num. 1, p. 11 – 19. DOI : 10.1007/s11868-014-0106-4.Optimal polynomial blow up range for critical wave maps
Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.Instability of type II blow up for the quintic nonlinear wave equation on \mathbb{R}^{3+1}
Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space
Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy
Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.On global regularity for systems of nonlinear wave equations with the null-condition
Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation
Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.2014
Stability and instability of expanding solutions to the Lorentzian constant-positive-mean-curvature flow
2014
Exotic blow up solutions for the \Box u^5-focussing wave equation in \mathbb{R}^3
MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.Nondispersive Decay For The Cubic Wave Equation
Analysis & Pde. 2014. Vol. 7, num. 2, p. 461 – 495. DOI : 10.2140/apde.2014.7.461.Full blow-up range for co-rotaional wave maps to surfaces of revolution
2014
Stable blow up dynamics for energy supercritical wave equations
Transactions Of The American Mathematical Society. 2014. Vol. 366, num. 4, p. 2167 – 2189. DOI : 10.1090/S0002-9947-2013-06038-2.Stable self-similar blowup in energy supercritical Yang-Mills theory
Mathematische Zeitschrift. 2014. Vol. 278, num. 3-4, p. 1005 – 1032. DOI : 10.1007/s00209-014-1344-0.On the energy dissipation rate of solutions to the compressible isentropic Euler system
Archive for Rational Mechanics and Analysis. 2014. Vol. 214, num. 3, p. 1019 – 1049. DOI : 10.1007/s00205-014-0771-8.On type I blow up formation for the critical NLW
Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.A counterexample to well-posedness of entropy solutions to the compressible Euler system
Journal Of Hyperbolic Differential Equations. 2014. Vol. 11, num. 3, p. 493 – 519. DOI : 10.1142/S0219891614500143.Threshold phenomenon for the quintic wave equation in three dimensions
Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.Liouville’s theorem and Laurent Series Expansions for Solutions of the Heat Equation
Journal of Pseudo-Differential Operators and Applications. 2014. Vol. 5, num. 4, p. 539 – 547. DOI : 10.1007/s11868-014-0103-7.2013
Global dynamics away from the ground state for the energy-critical nonlinear wave equation
AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.Nondispersive solutions to the L^2-critical half-wave equation
Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.Nonscattering solutions and blowup at infinity for the critical wave equation
Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.A codimension two stable manifold of near soliton equivariant wave maps
Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space
Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.A comment on the construction of the maximal globally hyperbolic Cauchy development
Journal Of Mathematical Physics. 2013. Vol. 54, num. 11, p. 113511. DOI : 10.1063/1.4833375.Global dynamics of the nonradial energy-critical wave equation above the ground state energy
Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.Non-existence of multiple-black-hole solutions close to Kerr-Newman
Communications In Mathematical Physics. 2013. Vol. 325, num. 3, p. 965 – 996. DOI : 10.1007/s00220-013-1837-4.2012
A non-local inequality and global existence
Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.Global Solutions to a Non-Local Diffusion Equation with Quadratic Non-Linearity
Communications in Partial Differential Equations. 2012. Vol. 37, num. 4, p. 647 – 689. DOI : 10.1080/03605302.2011.643437.Stable self-similar blow up for energy subcritical wave equations
Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 1, p. 63 – 87. DOI : 10.4310/DPDE.2012.v9.n1.a3.On stable self-similar blow up for equivariant wave maps: The linearized problem
Annales Henri Poincaré. 2012. Vol. 13, num. 1, p. 103 – 144. DOI : 10.1007/s00023-011-0125-0.Blow Up Construction and Stability of Stationary Maps
Lausanne, EPFL, 2012.Global dynamics above the ground state energy for the one-dimensional NLKG equation
Mathematische Zeitschrift. 2012. Vol. 272, num. 1-2, p. 297 – 316. DOI : 10.1007/s00209-011-0934-3.Full range of blow up exponents for the quintic wave equation in three dimensions
Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.A Decay Property Of Solutions To The K-Generalized Kdv Equation
Advances In Differential Equations. 2012. Vol. 17, num. 9-10, p. 833 – 858. DOI : 10.57262/ade/1355702924.Scattering of wave maps from \mathbb{R}^{2+1} to general targets
Calculus of Variations and Partial Differential Equations. 2012. Vol. 46, num. 1-2, p. 427 – 437. DOI : 10.1007/s00526-011-0489-5.On stability of the catenoid under vanishing mean curvature flow on Minkowski space
Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.A positive mass theorem for two spatial dimensions
2012