Only the publications of Joachim Krieger
2024
Finite time blow up for the energy critical Zakharov system I: approximate solutions
2024
FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS
2024
Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations
Lausanne, EPFL, 2024.2023
Probabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell-Klein-Gordon Equation
Archive For Rational Mechanics And Analysis. 2023. Vol. 247, num. 4, p. 68. DOI : 10.1007/s00205-023-01900-w.Global controllability and stabilization of the wave Maps equation from a circle to a sphere
2023
Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets
Lausanne, EPFL, 2023.2022
Semi-global controllability of a geometric wave equation
Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$
Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369.2021
Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1
Lausanne, EPFL, 2021.Randomization improved Strichartz estimates and global well-posedness for supercritical data
Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.Small data global regularity for half-wave maps in n=4 dimensions
Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.2020
Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation
ARMA Archive for Rational Mechanics and Analysis. 2020.A stability theory beyond the co-rotational setting for critical wave maps blow up
2020.Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case
2020
On the stability of blowup solutions for the critical corotational wave-map problem
Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.On long time behavior of solutions to nonlinear dispersive equations
Lausanne, EPFL, 2020.2019
Cost for a controlled linear KdV equation
ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach
Lausanne, EPFL, 2019.2018
On stability of type II blow up for the critical NLW on $\mathbb{R}^{3+1}$
Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.Concentration compactness for critical radial wave maps
Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.Small data global regularity for half-wave maps
Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.2017
Large global solutions for energy supercritical nonlinear wave equations on $\R^{3+1}$
Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.A Class Of Large Global Solutions For The Wave-Map Equation
Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy
Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.2016
A vector field method on the distorted Fourier side and decay for wave equations with potentials
Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.2015
Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb{R}^{3+1}$
Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space
Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.Center-stable manifold of the ground state in the energy space for the critical wave equation
Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.Optimal polynomial blow up range for critical wave maps
Lausanne, EPFL, 2015.Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation
Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy
Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.Optimal polynomial blow up range for critical wave maps
Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.On global regularity for systems of nonlinear wave equations with the null-condition
Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.2014
Exotic blow up solutions for the $\Box u^5$-focussing wave equation in $\mathbb{R}^3$
MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.On type I blow up formation for the critical NLW
Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.Threshold phenomenon for the quintic wave equation in three dimensions
Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.2013
A codimension two stable manifold of near soliton equivariant wave maps
Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.Global dynamics of the nonradial energy-critical wave equation above the ground state energy
Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.Nonscattering solutions and blowup at infinity for the critical wave equation
Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.Nondispersive solutions to the $L^2$-critical half-wave equation
Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.Global dynamics away from the ground state for the energy-critical nonlinear wave equation
AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space
Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.2012
A non-local inequality and global existence
Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.On stability of the catenoid under vanishing mean curvature flow on Minkowski space
Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.Full range of blow up exponents for the quintic wave equation in three dimensions
Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.Blow Up Construction and Stability of Stationary Maps
Lausanne, EPFL, 2012.Global Solutions to a Non-Local Diffusion Equation with Quadratic Non-Linearity
Communications in Partial Differential Equations. 2012. Vol. 37, num. 4, p. 647 – 689. DOI : 10.1080/03605302.2011.643437.Concentration Compactness for critical wave maps
European Mathematical Society, 2012.Global dynamics above the ground state energy for the one-dimensional NLKG equation
Mathematische Zeitschrift. 2012. Vol. 272, num. 1-2, p. 297 – 316. DOI : 10.1007/s00209-011-0934-3.2010
Slow Blow up solutions for certain critical wave equations
RIMS Kokyuroku Bessatsu. 2010. Vol. B22, p. 93 – 101.2009
Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation
Communications On Pure And Applied Mathematics. 2009. Vol. 62, p. 1501 – 1550. DOI : 10.1002/cpa.20292.On structural stability of pseudo-conformal blowup for $L^{2}$-critical Hartree NLS
Annales Henri Poincare. 2009. Vol. 10, num. 6, p. 1159 – 1205. DOI : 10.1007/s00023-009-0010-2.Renormalization and blow up for the critical Yang-Mills problem
Advances In Mathematics. 2009. Vol. 221, p. 1445 – 1521. DOI : 10.1016/j.aim.2009.02.017.Non-generic blow-up solutions for the critical focusing NLS in 1-D
Journal Of The European Mathematical Society. 2009. Vol. 11, p. 1 – 125. DOI : 10.4171/JEMS/143.Slow Blow-Up Solutions For The H-1(R-3) Critical Focusing Semilinear Wave Equation
Duke Mathematical Journal. 2009. Vol. 147, p. 1 – 53. DOI : 10.1215/00127094-2009-005.2008
Large time decay and scattering for Wave Maps
Dynamics Of Partial Differential Equations. 2008. Vol. 5, p. 1 – 37. DOI : 10.4310/DPDE.2008.v5.n1.a1.Renormalization and blow up for charge one equivariant critical wave maps
Inventiones Mathematicae. 2008. Vol. 171, p. 543 – 615. DOI : 10.1007/s00222-007-0089-3.2007
On the focusing critical semi-linear wave equation
American Journal Of Mathematics. 2007. Vol. 129, p. 843 – 913. DOI : 10.1353/ajm.2007.0021.Global Regularity and Singularity Development for Wave Maps
Surveys in differential geometry. 2007. Vol. XII, p. 167 – 201.2006
Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension
Journal Of The American Mathematical Society. 2006. Vol. 19, p. 815 – 920. DOI : 10.1090/S0894-0347-06-00524-8.Stability of spherically symmetric wave maps
2006.2004
Global regularity of wave maps from $R^{2+1}$ to $H^2$. Small energy
Communications In Mathematical Physics. 2004. Vol. 250, p. 507 – 580. DOI : 10.1007/s00220-004-1088-5.2003
Global regularity of wave maps from $R^{3+1}$ to surfaces
Communications In Mathematical Physics. 2003. Vol. 238, p. 333 – 366. DOI : 10.1007/s00220-003-0836-2.Null-Form Estimates and Nonlinear Waves
Advances in Differential Equations. 2003. Vol. 8, num. 10, p. 1193 – 1236. DOI : 10.57262/ade/1355926159.Publications of PDE collaborators
Finite time blow up for the energy critical Zakharov system I: approximate solutions
2024
FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS
2024
Stability of the Faber-Krahn inequality for the short-time Fourier transform
Inventiones Mathematicae. 2024. DOI : 10.1007/s00222-024-01248-2.Anomalous dissipation and other non-smooth phenomena in fluids
Lausanne, EPFL, 2024.Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations
Lausanne, EPFL, 2024.ALMOST SURE SCATTERING OF THE ENERGY-CRITICAL NLS IN d > 6
Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 10, p. 3165 – 3199. DOI : 10.3934/cpaa.2023106.Probabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell-Klein-Gordon Equation
Archive For Rational Mechanics And Analysis. 2023. Vol. 247, num. 4, p. 68. DOI : 10.1007/s00205-023-01900-w.Global controllability and stabilization of the wave Maps equation from a circle to a sphere
2023
Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls
Journal Of Differential Equations. 2023. Vol. 355, p. 193 – 218. DOI : 10.1016/j.jde.2023.01.026.Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets
Lausanne, EPFL, 2023.Global Well-Posedness For Half-Wave Maps With S-2 And H-2 Targets For Small Smooth Initial Data
Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 1, p. 127 – 166. DOI : 10.3934/cpaa.2022148.Scattering Map for the Vlasov–Poisson System
Peking Mathematical Journal. 2023. Vol. 6, p. 365 – 392. DOI : 10.1007/s42543-021-00041-x.Fredholm transformation on Laplacian and rapid stabilization for the heat equation
Journal Of Functional Analysis. 2022. Vol. 283, num. 12, p. 109664. DOI : 10.1016/j.jfa.2022.109664.Energy Bounds For A Fourth-Order Equation In Low Dimensions Related To Wave Maps
Proceedings Of The American Mathematical Society. 2022. DOI : 10.1090/proc/16100.A b-symplectic slice theorem
Bulletin Of The London Mathematical Society. 2022. DOI : 10.1112/blms.12713.Semi-global controllability of a geometric wave equation
Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.b-Structures on Lie groups and Poisson reduction
Journal Of Geometry And Physics. 2022. Vol. 175, p. 104471. DOI : 10.1016/j.geomphys.2022.104471.Fully Localised Three-Dimensional Gravity-Capillary Solitary Waves on Water of Infinite Depth
Journal Of Mathematical Fluid Mechanics. 2022. Vol. 24, num. 2, p. 55. DOI : 10.1007/s00021-022-00684-5.Stabilization of the linearized water tank system
Archive For Rational Mechanics And Analysis. 2022. Vol. 244, p. 1019 – 1097. DOI : 10.1007/s00205-022-01778-0.Spectral analysis for transmission eigenvalue problems with and without the complementing conditions
Lausanne, EPFL, 2022.Blow-up, partial regularity and turbulence in incompressible fluid dynamics
Lausanne, EPFL, 2022.Localization errors of the stochastic heat equation
Lausanne, EPFL, 2022.On the asymptotic behavior of solutions to the Vlasov-Poisson system
International Mathematics Research Notices. 2022. num. 12, p. 8865 – 8889. DOI : 10.1093/imrn/rnab155.Mass-Energy threshold dynamics for dipolar Quantum Gases
Communications In Mathematical Sciences. 2022. Vol. 20, num. 1, p. 165 – 200. DOI : 10.4310/CMS.2022.v20.n1.a5.Fourier uniqueness and interpolation in Euclidean space
Lausanne, EPFL, 2022.Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$
Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369.Dynamical collapse of cylindrical symmetric Dipolar Bose-Einstein condensates
Calculus Of Variations And Partial Differential Equations. 2021. Vol. 60, num. 6, p. 229. DOI : 10.1007/s00526-021-02096-1.Small-time global stabilization of the viscous Burgers equation with three scalar controls
Journal de Mathématiques Pures et Appliquées. 2021. Vol. 151, p. 212 – 256. DOI : 10.1016/j.matpur.2021.03.001.Computation of Al-Salam Carlitz and Askey-Wilson moments using Motzkin paths
Electronic Journal Of Combinatorics. 2021. Vol. 28, num. 3, p. P3.1. DOI : 10.37236/9780.Stability of a Point Charge for the Vlasov–Poisson System: The Radial Case
Communications in Mathematical Physics. 2021. Vol. 385, p. 1741 – 1769. DOI : 10.1007/s00220-021-04117-8.Non-smooth solutions in incompressible fluid dynamics
Lausanne, EPFL, 2021.Mixing and diffusion for rough shear flows
Ars Inveniendi Analytica. 2021. num. 2. DOI : 10.15781/83fc-j334.Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1
Lausanne, EPFL, 2021.Randomization improved Strichartz estimates and global well-posedness for supercritical data
Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.Small data global regularity for half-wave maps in n=4 dimensions
Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.The Surface Quasi-geostrophic Equation With Random Diffusion
International Mathematics Research Notices. 2020. Vol. 2020, num. 23, p. 9370 – 9385. DOI : 10.1093/imrn/rny261.Small-time local stabilization of the two dimensional incompressible Navier-Stokes equations
2020
Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation
ARMA Archive for Rational Mechanics and Analysis. 2020.Quantitative rapid and finite time stabilization of the heat equation
2020
A stability theory beyond the co-rotational setting for critical wave maps blow up
2020.Enhanced Dissipation in the Navier-Stokes Equations Near the Poiseuille Flow
Communications In Mathematical Physics. 2020. Vol. 378, p. 987 – 1010. DOI : 10.1007/s00220-020-03814-0.Large data scattering for NLKG on waveguide R-d x T
Journal Of Hyperbolic Differential Equations. 2020. Vol. 17, num. 2, p. 355 – 394. DOI : 10.1142/S0219891620500095.Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case
2020
Stationary Structures near the Kolmogorov and Poiseuille Flows in the 2d Euler Equations
2020
On the stabilizing effect of rotation in the 3d Euler equations
2020.On the stability of blowup solutions for the critical corotational wave-map problem
Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.On long time behavior of solutions to nonlinear dispersive equations
Lausanne, EPFL, 2020.Stability of slow blow-up solutions for the critical focussing nonlinear wave equation on $\mathbb{R}^{3+1}$
2020. Conference on Mathematics of Wave Phenomena 2018, Karlsruhe, Germany, July 23-28, 2018. p. 69 – 88. DOI : 10.1007/978-3-030-47174-3_5.Cost for a controlled linear KdV equation
ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.Regularity results for rough solutions of the incompressible Euler equations via interpolation methods
Nonlinearity. 2019. Vol. 33, num. 9, p. 4818 – 4836. DOI : 10.1088/1361-6544/ab8fb5.On Classical Global Solutions of Nonlinear Wave Equations with Large Data
International Mathematics Research Notices. 2019. Vol. 2019, num. 19, p. 5859 – 5913. DOI : 10.1093/imrn/rnx086.Control and stabilization of the periodic fifth order Korteweg-de Vries equation
Esaim-Control Optimisation And Calculus Of Variations. 2019. Vol. 25, p. 38. DOI : 10.1051/cocv/2018033.Combinations of single-top-quark production cross-section measurements and |f$_{LV}$V$_{tb}$| determinations at $ \sqrt{s} $ = 7 and 8 TeV with the ATLAS and CMS experiments
Journal of High Energy Physics. 2019. p. 88. DOI : 10.1007/JHEP05(2019)088.Asymptotic dynamic for dipolar Quantum Gases below the ground state energy threshold
Journal of Functional Analysis. 2019. Vol. 277, num. 6, p. 1958 – 1998. DOI : 10.1016/j.jfa.2019.04.005.Travelling heteroclinic waves in a Frenkel-Kontorova chain with anharmonic on-site potential
Journal De Mathematiques Pures Et Appliquees. 2019. Vol. 123, p. 1 – 40. DOI : 10.1016/j.matpur.2019.01.002.Statistical Applications of Random Matrix Theory: Comparison of Two Populations
Lausanne, EPFL, 2019.Maximal subgroups acting with two composition factors on irreducible representations of exceptional algebraic groups
Lausanne, EPFL, 2019.Steady Three-Dimensional Rotational Flows: An Approach Via Two Stream Functions And Nash-Moser Iteration
Analysis & Pde. 2019. Vol. 12, num. 5, p. 1225 – 1258. DOI : 10.2140/apde.2019.12.1225.A Gauss-Bonnet Theorem for Asymptotically Conical Manifolds and Manifolds with Conical Singularities
Lausanne, EPFL, 2019.On large future-global-in-time solutions to energy-supercritical nonlinear wave equation
2019. AMS-MAA Joint Mathematics Meeting on Spectral Calculus and Quasilinear Partial Differential Equations, and PDE Analysis on Fluid Flows, Atlanta, GA, Jan 04-07, 2017. p. 187 – 214. DOI : 10.1090/conm/725/14559.Blow-Up or Global Existence for the Fractional Ginzburg-Landau Equation in Multi-dimensional Case
New Tools for Nonlinear PDEs and Application; Springer Nature Switzerland, 2019. p. 179 – 202.Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach
Lausanne, EPFL, 2019.Local Well-Posedness And Blow-Up For The Half Ginzburg-Landau-Kuramoto Equation With Rough Coefficients And Potential
Discrete & Continuous Dynamical Systems – A. 2019. Vol. 39, num. 5, p. 2661 – 2678. DOI : 10.3934/dcds.2019111.Combination of inclusive and differential $ \mathrm{t}\overline{\mathrm{t}} $ charge asymmetry measurements using ATLAS and CMS data at $ \sqrt{s}=7 $ and 8 TeV
Journal of High Energy Physics. 2018. Vol. 2018, num. 4, p. 33. DOI : 10.1007/JHEP04(2018)033.Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
Nonlinearity. 2018. Vol. 31, num. 4, p. 1441 – 1460. DOI : 10.1088/1361-6544/aaa10d.Numerical approximation of cardiac electro-fluid-mechanical models : coupling strategies for large-scale simulation
Lausanne, EPFL, 2018.On stability of type II blow up for the critical NLW on $\mathbb{R}^{3+1}$
Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.Convergence To Stratified Flow For An Inviscid 3D Boussinesq System
Communications In Mathematical Sciences. 2018. Vol. 16, num. 6, p. 1713 – 1728. DOI : 10.4310/CMS.2018.v16.n6.a10.Concentration compactness for critical radial wave maps
Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.Small data global regularity for half-wave maps
Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.On the well-posedness of the inviscid SQG equation
JOURNAL OF DIFFERENTIAL EQUATIONS. 2018. Vol. 264, num. 4, p. 2660 – 2683. DOI : 10.1016/j.jde.2017.10.032.ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION
ANALYSIS AND PDE. 2018. Vol. 11, num. 7, p. 1587 – 1624. DOI : 10.2140/apde.2018.11.1587.On the well-posedness of the inviscid 2D Boussinesq equation
Zeitschrift für angewandte Mathematik und Physik. 2018. Vol. 69, num. 4, p. 103. DOI : 10.1007/s00033-018-0998-6.A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. 2018. Vol. 228, num. 3, p. 773 – 820. DOI : 10.1007/s00205-017-1205-1.Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations
Communications in Mathematical Physics. 2017. Vol. 353, num. 3, p. 1201 – 1216. DOI : 10.1007/s00220-017-2846-5.$A$-free Rigidity and Applications to the Compressible Euler System
Annali Di Matematica Pura Ed Applicata. 2017. Vol. 196, num. 4, p. 1557 – 1572. DOI : 10.1007/s10231-016-0629-9.Large global solutions for energy supercritical nonlinear wave equations on $\R^{3+1}$
Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.A Class Of Large Global Solutions For The Wave-Map Equation
Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy
Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}=7 $ and 8 TeV
Journal of High Energy Physics. 2016. Vol. 2016, num. 8, p. 45. DOI : 10.1007/JHEP08(2016)045.Calculus of Variations for Differential Forms
Lausanne, EPFL, 2016.Approximation numérique des écoulements turbulents dans des cuves d’électrolyse de l’aluminium
Lausanne, EPFL, 2016.A vector field method on the distorted Fourier side and decay for wave equations with potentials
Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.Stability of stationary wave maps from a curved background to a sphere
Discrete and Continuous Dynamical Systems. 2016. Vol. 36, num. 7, p. 3857 – 3909. DOI : 10.3934/dcds.2016.36.3857.An overview of some recent results on the Euler system of isentropic gas dynamics
Bulletin Of The Brazilian Mathematical Society. 2016. Vol. 47, num. 1, p. 241 – 253. DOI : 10.1007/s00574-016-0135-0.On the well-posedness of the Holm-Staley b-family of equations
Journal Of Nonlinear Mathematical Physics. 2016. Vol. 23, num. 2, p. 213 – 233. DOI : 10.1080/14029251.2016.1161261.Renormalization and blow up for wave maps from $S^2 \times \mathbb{R}$ to $S^2$
Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 8, p. 5621 – 5654. DOI : 10.1090/tran/6524.On a Lagrangian Formulation of the Incompressible Euler Equation
Journal Of Partial Differential Equations. 2016. Vol. 29, num. 4, p. 320 – 359. DOI : 10.4208/jpde.v29.n4.5.Eigenfunction expansions of ultradifferentiable functions and ultradistributions
Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 12, p. 8481 – 8498. DOI : 10.1090/tran/6765.Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments
Physical Review Letters. 2015. Vol. 114, num. 19, p. 191803. DOI : 10.1103/PhysRevLett.114.191803.Sur quelques foncteurs de bi-ensembles
Lausanne, EPFL, 2015.Numerical homogenization methods for advection-diffusion and nonlinear monotone problems with multiple scales
Lausanne, EPFL, 2015.Global Ill-Posedness of the Isentropic System of Gas Dynamics
Communications On Pure And Applied Mathematics. 2015. Vol. 68, num. 7, p. 1157 – 1190. DOI : 10.1002/cpa.21537.Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb{R}^{3+1}$
Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space
Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.Center-stable manifold of the ground state in the energy space for the critical wave equation
Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.Optimal polynomial blow up range for critical wave maps
Lausanne, EPFL, 2015.Weyl Transforms for H-Type Groups?
Journal of Pseudo-differential Operators And Applications. 2015. Vol. 6, num. 1, p. 11 – 19. DOI : 10.1007/s11868-014-0106-4.Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation
Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy
Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.Optimal polynomial blow up range for critical wave maps
Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.On global regularity for systems of nonlinear wave equations with the null-condition
Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.Stability and instability of expanding solutions to the Lorentzian constant-positive-mean-curvature flow
2014
Exotic blow up solutions for the $\Box u^5$-focussing wave equation in $\mathbb{R}^3$
MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.Stable blow up dynamics for energy supercritical wave equations
Transactions Of The American Mathematical Society. 2014. Vol. 366, num. 4, p. 2167 – 2189. DOI : 10.1090/S0002-9947-2013-06038-2.Nondispersive Decay For The Cubic Wave Equation
Analysis & Pde. 2014. Vol. 7, num. 2, p. 461 – 495. DOI : 10.2140/apde.2014.7.461.On type I blow up formation for the critical NLW
Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.Threshold phenomenon for the quintic wave equation in three dimensions
Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.Liouville’s theorem and Laurent Series Expansions for Solutions of the Heat Equation
Journal of Pseudo-Differential Operators and Applications. 2014. Vol. 5, num. 4, p. 539 – 547. DOI : 10.1007/s11868-014-0103-7.On the energy dissipation rate of solutions to the compressible isentropic Euler system
Archive for Rational Mechanics and Analysis. 2014. Vol. 214, num. 3, p. 1019 – 1049. DOI : 10.1007/s00205-014-0771-8.Stable self-similar blowup in energy supercritical Yang-Mills theory
Mathematische Zeitschrift. 2014. Vol. 278, num. 3-4, p. 1005 – 1032. DOI : 10.1007/s00209-014-1344-0.Full blow-up range for co-rotaional wave maps to surfaces of revolution
2014
A counterexample to well-posedness of entropy solutions to the compressible Euler system
Journal Of Hyperbolic Differential Equations. 2014. Vol. 11, num. 3, p. 493 – 519. DOI : 10.1142/S0219891614500143.Supramenable groups
Lausanne, EPFL, 2014.Simulations numériques de phénomènes MHD-thermiques avec interface libre dans l’électrolyse de l’aluminium
Lausanne, EPFL, 2013.Moments, Intermittency, and Growth Indices for Nonlinear Stochastic PDE’s with Rough Initial Conditions
Lausanne, EPFL, 2013.A codimension two stable manifold of near soliton equivariant wave maps
Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.Non-existence of multiple-black-hole solutions close to Kerr-Newman
Communications In Mathematical Physics. 2013. Vol. 325, num. 3, p. 965 – 996. DOI : 10.1007/s00220-013-1837-4.A comment on the construction of the maximal globally hyperbolic Cauchy development
Journal Of Mathematical Physics. 2013. Vol. 54, num. 11, p. 113511. DOI : 10.1063/1.4833375.Global dynamics of the nonradial energy-critical wave equation above the ground state energy
Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.Nonscattering solutions and blowup at infinity for the critical wave equation
Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.Nondispersive solutions to the $L^2$-critical half-wave equation
Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.Global dynamics away from the ground state for the energy-critical nonlinear wave equation
AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space
Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.Hermitian Forms over Algebras with Involution and Hermitian Categories
Lausanne, EPFL, 2012.A non-local inequality and global existence
Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.On stability of the catenoid under vanishing mean curvature flow on Minkowski space
Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.Full range of blow up exponents for the quintic wave equation in three dimensions
Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.Semiclassical low energy scattering for one-dimensional Schrödinger operators with exponentially decaying potentials
Annales Henri Poincaré. 2012. Vol. 13, num. 6, p. 1371 – 1426. DOI : 10.1007/s00023-011-0155-7.On pointwise decay of linear waves on a Schwarzschild black hole background
Communications in Mathematical Physics. 2012. Vol. 309, num. 1, p. 51 – 86. DOI : 10.1007/s00220-011-1393-8.A positive mass theorem for two spatial dimensions
2012