Publications

Only the publications of Joachim Krieger

2024

Finite time blow up for the energy critical Zakharov system I: approximate solutions

J. Krieger; T. J. Schmid 

2024

FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS

J. Krieger; T. J. Schmid 

2024

Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations

K. S. C. R. Marsden / J. Krieger (Dir.)  

Lausanne, EPFL, 2024. 

2023

Probabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann; G. Staffilani 

Archive For Rational Mechanics And Analysis. 2023. Vol. 247, num. 4, p. 68. DOI : 10.1007/s00205-023-01900-w.

Global controllability and stabilization of the wave Maps equation from a circle to a sphere

J-M. Coron; J. Krieger; S. Xiang 

2023

Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets

Y. Liu / J. Krieger (Dir.)  

Lausanne, EPFL, 2023. 

2022

Semi-global controllability of a geometric wave equation

J. Krieger; S. Xiang 

Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.

Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$

S. F. Burzio; J. Krieger 

Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369.

2021

Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1

G. Ohlmann / J. Krieger (Dir.)  

Lausanne, EPFL, 2021. 

Randomization improved Strichartz estimates and global well-posedness for supercritical data

N. Burq; J. Krieger 

Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.

Small data global regularity for half-wave maps in n=4 dimensions

A. Kiesenhofer; J. Krieger 

Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.

2020

Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation

J. Krieger; J. Lührmann; G. Staffilani 

ARMA Archive for Rational Mechanics and Analysis. 2020. 

A stability theory beyond the co-rotational setting for critical wave maps blow up

J. Krieger; S. Miao; W. Schlag 

2020. 

Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case

J. Krieger; S. Xiang 

2020

On the stability of blowup solutions for the critical corotational wave-map problem

J. Krieger; S. Miao 

Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.

On long time behavior of solutions to nonlinear dispersive equations

S. F. Burzio / J. Krieger (Dir.)  

Lausanne, EPFL, 2020. 

2019

Cost for a controlled linear KdV equation

J. Krieger; S. Xiang 

ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.

Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach

G. Graf / J. Krieger (Dir.)  

Lausanne, EPFL, 2019. 

2018

On stability of type II blow up for the critical NLW on $\mathbb{R}^{3+1}$

J. Krieger 

Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.

Concentration compactness for critical radial wave maps

E. Chiodaroli; J. Krieger; J. Lührmann 

Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.

Small data global regularity for half-wave maps

J. Krieger; Y. Sire 

Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.

2017

Large global solutions for energy supercritical nonlinear wave equations on $\R^{3+1}$

J. Krieger; W. Schlag 

Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.

A Class Of Large Global Solutions For The Wave-Map Equation

E. Chiodaroli; J. Krieger 

Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.

Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy

J. Krieger; D. Tataru 

Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.

2016

A vector field method on the distorted Fourier side and decay for wave equations with potentials

R. Donninger; J. Krieger 

Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.

2015

Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb{R}^{3+1}$

J. Krieger; J. E. Nahas 

Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.

Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space

R. Donninger; J. Krieger; J. Szeftel; W. W. Y. Wong 

Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.

Center-stable manifold of the ground state in the energy space for the critical wave equation

J. Krieger; K. Nakanishi; S. Wilhelm 

Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.

Optimal polynomial blow up range for critical wave maps

C. Gao / J. Krieger (Dir.)  

Lausanne, EPFL, 2015. 

Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann 

Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.

Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy

J. Krieger; J. Sterbenz; D. Tataru 

Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.

Optimal polynomial blow up range for critical wave maps

C. Gao; J. Krieger 

Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.

On global regularity for systems of nonlinear wave equations with the null-condition

C. Gao; A. Dasgupta; J. Krieger 

Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.

2014

Exotic blow up solutions for the $\Box u^5$-focussing wave equation in $\mathbb{R}^3$

J. Krieger; R. Donninger; M. Huang; W. Schlag 

MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.

On type I blow up formation for the critical NLW

J. Krieger; W. W. Y. Wong 

Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.

Threshold phenomenon for the quintic wave equation in three dimensions

J. Krieger; K. Nakanishi; W. Schlag 

Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.

2013

A codimension two stable manifold of near soliton equivariant wave maps

J. Krieger; I. Bejenaru; D. Tataru 

Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.

Global dynamics of the nonradial energy-critical wave equation above the ground state energy

J. Krieger; K. Nakanishi; W. Schlag 

Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.

Nonscattering solutions and blowup at infinity for the critical wave equation

R. Donninger; J. Krieger 

Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.

Nondispersive solutions to the $L^2$-critical half-wave equation

J. Krieger; E. Lenzmann; P. Raphael 

Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.

Global dynamics away from the ground state for the energy-critical nonlinear wave equation

J. Krieger; W. Schlag; K. Nakanishi 

AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space

J. Krieger; J. Sterbenz 

Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.

2012

A non-local inequality and global existence

J. Krieger; P. Gressman; R. Strain 

Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.

On stability of the catenoid under vanishing mean curvature flow on Minkowski space

J. Krieger; H. Lindblad 

Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.

Full range of blow up exponents for the quintic wave equation in three dimensions

J. Krieger; W. Schlag 

Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.

Blow Up Construction and Stability of Stationary Maps

S. M. Shahshahani / J. Krieger (Dir.)  

Lausanne, EPFL, 2012. 

Global Solutions to a Non-Local Diffusion Equation with Quadratic Non-Linearity

J. Krieger; R. M. Strain 

Communications in Partial Differential Equations. 2012. Vol. 37, num. 4, p. 647 – 689. DOI : 10.1080/03605302.2011.643437.

Concentration Compactness for critical wave maps

J. Krieger; W. Schlag 

European Mathematical Society, 2012.

Global dynamics above the ground state energy for the one-dimensional NLKG equation

J. Krieger; K. Nakanishi; W. Schlag 

Mathematische Zeitschrift. 2012. Vol. 272, num. 1-2, p. 297 – 316. DOI : 10.1007/s00209-011-0934-3.

2010

Slow Blow up solutions for certain critical wave equations

J. Krieger 

RIMS Kokyuroku Bessatsu. 2010. Vol. B22, p. 93 – 101.

2009

Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation

J. Krieger; Y. Martel; P. Raphael 

Communications On Pure And Applied Mathematics. 2009. Vol. 62, p. 1501 – 1550. DOI : 10.1002/cpa.20292.

On structural stability of pseudo-conformal blowup for $L^{2}$-critical Hartree NLS

J. Krieger; E. Lenzmann; P. Raphael 

Annales Henri Poincare. 2009. Vol. 10, num. 6, p. 1159 – 1205. DOI : 10.1007/s00023-009-0010-2.

Renormalization and blow up for the critical Yang-Mills problem

J. Krieger; W. Schlag; D. Tataru 

Advances In Mathematics. 2009. Vol. 221, p. 1445 – 1521. DOI : 10.1016/j.aim.2009.02.017.

Non-generic blow-up solutions for the critical focusing NLS in 1-D

J. Krieger; W. Schlag 

Journal Of The European Mathematical Society. 2009. Vol. 11, p. 1 – 125. DOI : 10.4171/JEMS/143.

Slow Blow-Up Solutions For The H-1(R-3) Critical Focusing Semilinear Wave Equation

J. Krieger; W. Schlag; D. Tataru 

Duke Mathematical Journal. 2009. Vol. 147, p. 1 – 53. DOI : 10.1215/00127094-2009-005.

2008

Large time decay and scattering for Wave Maps

J. Krieger; K. Nakanishi 

Dynamics Of Partial Differential Equations. 2008. Vol. 5, p. 1 – 37. DOI : 10.4310/DPDE.2008.v5.n1.a1.

Renormalization and blow up for charge one equivariant critical wave maps

J. Krieger; W. Schlag; D. Tataru 

Inventiones Mathematicae. 2008. Vol. 171, p. 543 – 615. DOI : 10.1007/s00222-007-0089-3.

2007

On the focusing critical semi-linear wave equation

J. Krieger; W. Schlag 

American Journal Of Mathematics. 2007. Vol. 129, p. 843 – 913. DOI : 10.1353/ajm.2007.0021.

Global Regularity and Singularity Development for Wave Maps

J. Krieger 

Surveys in differential geometry. 2007. Vol. XII, p. 167 – 201.

2006

Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension

J. Krieger; W. Schlag 

Journal Of The American Mathematical Society. 2006. Vol. 19, p. 815 – 920. DOI : 10.1090/S0894-0347-06-00524-8.

Stability of spherically symmetric wave maps

J. Krieger 

2006.

2004

Global regularity of wave maps from $R^{2+1}$ to $H^2$. Small energy

J. Krieger 

Communications In Mathematical Physics. 2004. Vol. 250, p. 507 – 580. DOI : 10.1007/s00220-004-1088-5.

2003

Global regularity of wave maps from $R^{3+1}$ to surfaces

J. Krieger 

Communications In Mathematical Physics. 2003. Vol. 238, p. 333 – 366. DOI : 10.1007/s00220-003-0836-2.

Null-Form Estimates and Nonlinear Waves

J. Krieger 

Advances in Differential Equations. 2003. Vol. 8, num. 10, p. 1193 – 1236. DOI : 10.57262/ade/1355926159.

Publications of PDE collaborators

Finite time blow up for the energy critical Zakharov system I: approximate solutions

J. Krieger; T. J. Schmid 

2024

FINITE TIME BLOW UP FOR THE ENERGY CRITICAL ZAKHAROV SYSTEM II: EXACT SOLUTIONS

J. Krieger; T. J. Schmid 

2024

Stability of the Faber-Krahn inequality for the short-time Fourier transform

J. Gomez; A. Guerra; J. P. G. Ramos; P. Tilli 

Inventiones Mathematicae. 2024. DOI : 10.1007/s00222-024-01248-2.

Anomalous dissipation and other non-smooth phenomena in fluids

M. Sorella / M. Colombo (Dir.)  

Lausanne, EPFL, 2024. 

Probabilistic and Deterministic Wellposedness for Low Regularity Dispersive Equations

K. S. C. R. Marsden / J. Krieger (Dir.)  

Lausanne, EPFL, 2024. 

ALMOST SURE SCATTERING OF THE ENERGY-CRITICAL NLS IN d > 6

K. Marsden 

Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 10, p. 3165 – 3199. DOI : 10.3934/cpaa.2023106.

Probabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann; G. Staffilani 

Archive For Rational Mechanics And Analysis. 2023. Vol. 247, num. 4, p. 68. DOI : 10.1007/s00205-023-01900-w.

Global controllability and stabilization of the wave Maps equation from a circle to a sphere

J-M. Coron; J. Krieger; S. Xiang 

2023

Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls

B. Buffoni; M. Haragus; G. Iooss 

Journal Of Differential Equations. 2023. Vol. 355, p. 193 – 218. DOI : 10.1016/j.jde.2023.01.026.

Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets

Y. Liu / J. Krieger (Dir.)  

Lausanne, EPFL, 2023. 

Global Well-Posedness For Half-Wave Maps With S-2 And H-2 Targets For Small Smooth Initial Data

Y. Liu 

Communications On Pure And Applied Analysis. 2023. Vol. 22, num. 1, p. 127 – 166. DOI : 10.3934/cpaa.2022148.

Scattering Map for the Vlasov–Poisson System

P. Flynn; Z. Ouyang; B. Pausader; K. M. Widmayer 

Peking Mathematical Journal. 2023. Vol. 6, p. 365 – 392. DOI : 10.1007/s42543-021-00041-x.

Fredholm transformation on Laplacian and rapid stabilization for the heat equation

L. Gagnon; A. Hayat; S. Xiang; C. Zhang 

Journal Of Functional Analysis. 2022. Vol. 283, num. 12, p. 109664. DOI : 10.1016/j.jfa.2022.109664.

Energy Bounds For A Fourth-Order Equation In Low Dimensions Related To Wave Maps

T. Schmid 

Proceedings Of The American Mathematical Society. 2022. DOI : 10.1090/proc/16100.

A b-symplectic slice theorem

R. Braddell; A. Kiesenhofer; E. Miranda 

Bulletin Of The London Mathematical Society. 2022. DOI : 10.1112/blms.12713.

Semi-global controllability of a geometric wave equation

J. Krieger; S. Xiang 

Pure and Applied Mathematics Quarterly. 2022. DOI : 10.48550/arXiv.2205.00915.

b-Structures on Lie groups and Poisson reduction

R. Braddell; A. Kiesenhofer; E. Miranda 

Journal Of Geometry And Physics. 2022. Vol. 175, p. 104471. DOI : 10.1016/j.geomphys.2022.104471.

Fully Localised Three-Dimensional Gravity-Capillary Solitary Waves on Water of Infinite Depth

B. Buffoni; M. D. Groves; E. Wahlen 

Journal Of Mathematical Fluid Mechanics. 2022. Vol. 24, num. 2, p. 55. DOI : 10.1007/s00021-022-00684-5.

Stabilization of the linearized water tank system

J-M. Coron; A. Hayat; S. Xiang; C. Zhang 

Archive For Rational Mechanics And Analysis. 2022. Vol. 244, p. 1019 – 1097. DOI : 10.1007/s00205-022-01778-0.

Spectral analysis for transmission eigenvalue problems with and without the complementing conditions

J. L-A. Fornerod / H-M. Nguyên; M. Picasso (Dir.)  

Lausanne, EPFL, 2022. 

Blow-up, partial regularity and turbulence in incompressible fluid dynamics

S. N. A. Haffter / M. Colombo (Dir.)  

Lausanne, EPFL, 2022. 

Localization errors of the stochastic heat equation

D. J-M. Candil / R. Dalang (Dir.)  

Lausanne, EPFL, 2022. 

On the asymptotic behavior of solutions to the Vlasov-Poisson system

A. D. Ionescu; B. Pausader; X. Wang; K. M. Widmayer 

International Mathematics Research Notices. 2022. num. 12, p. 8865 – 8889. DOI : 10.1093/imrn/rnab155.

Mass-Energy threshold dynamics for dipolar Quantum Gases

V. D. Dinh; L. Forcella; H. Hajaiej 

Communications In Mathematical Sciences. 2022. Vol. 20, num. 1, p. 165 – 200. DOI : 10.4310/CMS.2022.v20.n1.a5.

Fourier uniqueness and interpolation in Euclidean space

M. P. Stoller / M. Viazovska (Dir.)  

Lausanne, EPFL, 2022. 

Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $\R^{3+1}$

S. F. Burzio; J. Krieger 

Memoirs of the AMS. 2022. Vol. 278. DOI : 10.1090/memo/1369.

Dynamical collapse of cylindrical symmetric Dipolar Bose-Einstein condensates

J. Bellazzini; L. Forcella 

Calculus Of Variations And Partial Differential Equations. 2021. Vol. 60, num. 6, p. 229. DOI : 10.1007/s00526-021-02096-1.

Small-time global stabilization of the viscous Burgers equation with three scalar controls

J-M. Coron; S. Xiang 

Journal de Mathématiques Pures et Appliquées. 2021. Vol. 151, p. 212 – 256. DOI : 10.1016/j.matpur.2021.03.001.

Computation of Al-Salam Carlitz and Askey-Wilson moments using Motzkin paths

G. Ohlmann 

Electronic Journal Of Combinatorics. 2021. Vol. 28, num. 3, p. P3.1. DOI : 10.37236/9780.

Stability of a Point Charge for the Vlasov–Poisson System: The Radial Case

B. Pausader; K. M. Widmayer 

Communications in Mathematical Physics. 2021. Vol. 385, p. 1741 – 1769. DOI : 10.1007/s00220-021-04117-8.

Non-smooth solutions in incompressible fluid dynamics

L. De Rosa / M. Colombo; C. De Lellis (Dir.)  

Lausanne, EPFL, 2021. 

Mixing and diffusion for rough shear flows

M. Colombo; M. Coti Zelati; K. Widmayer 

Ars Inveniendi Analytica. 2021. num. 2. DOI : 10.15781/83fc-j334.

Ill-posedness of the quasilinear wave equation in the space 𝐻7/4(ln𝐻)−𝛽in ℝ2+1

G. Ohlmann / J. Krieger (Dir.)  

Lausanne, EPFL, 2021. 

Randomization improved Strichartz estimates and global well-posedness for supercritical data

N. Burq; J. Krieger 

Annales de l’Institut Fourier. 2021. Vol. 71, num. 5, p. 1929 – 1961. DOI : 10.5802/aif.3448.

Small data global regularity for half-wave maps in n=4 dimensions

A. Kiesenhofer; J. Krieger 

Communications in Partial Differential Equations. 2021. Vol. 46, num. 12, p. 2305 – 2324. DOI : 10.1080/03605302.2021.1936021.

The Surface Quasi-geostrophic Equation With Random Diffusion

T. Buckmaster; A. Nahmod; G. Staffilani; K. Widmayer 

International Mathematics Research Notices. 2020. Vol. 2020, num. 23, p. 9370 – 9385. DOI : 10.1093/imrn/rny261.

Small-time local stabilization of the two dimensional incompressible Navier-Stokes equations

S. Xiang 

2020

Probabilistic small data global Well-Posedness of the energy-critical Maxwell-Klein-Gordon equation

J. Krieger; J. Lührmann; G. Staffilani 

ARMA Archive for Rational Mechanics and Analysis. 2020. 

Quantitative rapid and finite time stabilization of the heat equation

S. Xiang 

2020

A stability theory beyond the co-rotational setting for critical wave maps blow up

J. Krieger; S. Miao; W. Schlag 

2020. 

Enhanced Dissipation in the Navier-Stokes Equations Near the Poiseuille Flow

M. C. Zelati; T. M. Elgindi; K. Widmayer 

Communications In Mathematical Physics. 2020. Vol. 378, p. 987 – 1010. DOI : 10.1007/s00220-020-03814-0.

Large data scattering for NLKG on waveguide R-d x T

L. Forcella; L. Hari 

Journal Of Hyperbolic Differential Equations. 2020. Vol. 17, num. 2, p. 355 – 394. DOI : 10.1142/S0219891620500095.

Boundary Stabilization of Focusing NLKG near Unstable Equilibria: Radial Case

J. Krieger; S. Xiang 

2020

Stationary Structures near the Kolmogorov and Poiseuille Flows in the 2d Euler Equations

M. Coti Zelati; T. M. Elgindi; K. M. Widmayer 

2020

On the stabilizing effect of rotation in the 3d Euler equations

Y. Guo; C. Huang; B. Pausader; K. M. Widmayer 

2020. 

On the stability of blowup solutions for the critical corotational wave-map problem

J. Krieger; S. Miao 

Duke Mathematical Journal. 2020. Vol. 169, num. 3, p. 435 – 532. DOI : 10.1215/00127094-2019-0053.

On long time behavior of solutions to nonlinear dispersive equations

S. F. Burzio / J. Krieger (Dir.)  

Lausanne, EPFL, 2020. 

Stability of slow blow-up solutions for the critical focussing nonlinear wave equation on  $\mathbb{R}^{3+1}$

S. F. Burzio 

2020. Conference on Mathematics of Wave Phenomena 2018, Karlsruhe, Germany, July 23-28, 2018. p. 69 – 88. DOI : 10.1007/978-3-030-47174-3_5.

Cost for a controlled linear KdV equation

J. Krieger; S. Xiang 

ESAIM: Control, Optimisation and Calculus of Variations. 2019. Vol. 27, p. S21. DOI : 10.1051/cocv/2020066.

Regularity results for rough solutions of the incompressible Euler equations via interpolation methods

L. Forcella; M. Colombo; L. De Rosa 

Nonlinearity. 2019. Vol. 33, num. 9, p. 4818 – 4836. DOI : 10.1088/1361-6544/ab8fb5.

On Classical Global Solutions of Nonlinear Wave Equations with Large Data

S. Miao; L. Pei; P. Yu 

International Mathematics Research Notices. 2019. Vol. 2019, num. 19, p. 5859 – 5913. DOI : 10.1093/imrn/rnx086.

Control and stabilization of the periodic fifth order Korteweg-de Vries equation

C. Flores; D. L. Smith 

Esaim-Control Optimisation And Calculus Of Variations. 2019. Vol. 25, p. 38. DOI : 10.1051/cocv/2018033.

Combinations of single-top-quark production cross-section measurements and |f$_{LV}$V$_{tb}$| determinations at $ \sqrt{s} $ = 7 and 8 TeV with the ATLAS and CMS experiments

M. Aaboud; G. Aad; B. Abbott; D. C. Abbott; O. Abdinov et al. 

Journal of High Energy Physics. 2019.  p. 88. DOI : 10.1007/JHEP05(2019)088.

Asymptotic dynamic for dipolar Quantum Gases below the ground state energy threshold

J. Bellazzini; L. Forcella 

Journal of Functional Analysis. 2019. Vol. 277, num. 6, p. 1958 – 1998. DOI : 10.1016/j.jfa.2019.04.005.

Travelling heteroclinic waves in a Frenkel-Kontorova chain with anharmonic on-site potential

B. Buffoni; H. Schwetlick; J. Zimmer 

Journal De Mathematiques Pures Et Appliquees. 2019. Vol. 123, p. 1 – 40. DOI : 10.1016/j.matpur.2019.01.002.

Statistical Applications of Random Matrix Theory: Comparison of Two Populations

R. Mariétan / S. Morgenthaler (Dir.)  

Lausanne, EPFL, 2019. 

Maximal subgroups acting with two composition factors on irreducible representations of exceptional algebraic groups

N. Scheinmann / D. Testerman (Dir.)  

Lausanne, EPFL, 2019. 

Steady Three-Dimensional Rotational Flows: An Approach Via Two Stream Functions And Nash-Moser Iteration

B. Buffoni; E. Wahlen 

Analysis & Pde. 2019. Vol. 12, num. 5, p. 1225 – 1258. DOI : 10.2140/apde.2019.12.1225.

A Gauss-Bonnet Theorem for Asymptotically Conical Manifolds and Manifolds with Conical Singularities

A. G. Marcone / M. Troyanov (Dir.)  

Lausanne, EPFL, 2019. 

On large future-global-in-time solutions to energy-supercritical nonlinear wave equation

S. Miao 

2019. AMS-MAA Joint Mathematics Meeting on Spectral Calculus and Quasilinear Partial Differential Equations, and PDE Analysis on Fluid Flows, Atlanta, GA, Jan 04-07, 2017. p. 187 – 214. DOI : 10.1090/conm/725/14559.

Blow-Up or Global Existence for the Fractional Ginzburg-Landau Equation in Multi-dimensional Case

L. Forcella; K. Fujiwara; V. Georgiev; T. Ozawa 

New Tools for Nonlinear PDEs and Application; Springer Nature Switzerland, 2019. p. 179 – 202.

Stable Manifold for the Critical Non-Linear Wave Equation: A Fourier Theory Approach

G. Graf / J. Krieger (Dir.)  

Lausanne, EPFL, 2019. 

Local Well-Posedness And Blow-Up For The Half Ginzburg-Landau-Kuramoto Equation With Rough Coefficients And Potential

L. Forcella; K. Fujiwara; V. Georgiev; T. Ozawa 

Discrete & Continuous Dynamical Systems – A. 2019. Vol. 39, num. 5, p. 2661 – 2678. DOI : 10.3934/dcds.2019111.

Combination of inclusive and differential $ \mathrm{t}\overline{\mathrm{t}} $ charge asymmetry measurements using ATLAS and CMS data at $ \sqrt{s}=7 $ and 8 TeV

M. Aaboud; G. Aad; B. Abbott; O. Abdinov; B. Abeloos et al. 

Journal of High Energy Physics. 2018. Vol. 2018, num. 4, p. 33. DOI : 10.1007/JHEP04(2018)033.

Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations

E. Chiodaroli; O. Kreml 

Nonlinearity. 2018. Vol. 31, num. 4, p. 1441 – 1460. DOI : 10.1088/1361-6544/aaa10d.

Numerical approximation of cardiac electro-fluid-mechanical models : coupling strategies for large-scale simulation

A. Gerbi / A. Quarteroni; L. Dede’ (Dir.)  

Lausanne, EPFL, 2018. 

On stability of type II blow up for the critical NLW on $\mathbb{R}^{3+1}$

J. Krieger 

Memoirs of the American Mathematical Society. 2018. Vol. 267, num. 1301. DOI : 10.1090/memo/1301.

Convergence To Stratified Flow For An Inviscid 3D Boussinesq System

K. Widmayer 

Communications In Mathematical Sciences. 2018. Vol. 16, num. 6, p. 1713 – 1728. DOI : 10.4310/CMS.2018.v16.n6.a10.

Concentration compactness for critical radial wave maps

E. Chiodaroli; J. Krieger; J. Lührmann 

Annals of PDE. 2018. Vol. 4, p. 8. DOI : 10.1007/s40818-018-0045-0.

Small data global regularity for half-wave maps

J. Krieger; Y. Sire 

Analysis & PDE. 2018. Vol. 11, num. 3, p. 661 – 682. DOI : 10.2140/apde.2018.11.661.

On the well-posedness of the inviscid SQG equation

H. Inci 

JOURNAL OF DIFFERENTIAL EQUATIONS. 2018. Vol. 264, num. 4, p. 2660 – 2683. DOI : 10.1016/j.jde.2017.10.032.

ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION

F. Pusateri; K. Widmayer 

ANALYSIS AND PDE. 2018. Vol. 11, num. 7, p. 1587 – 1624. DOI : 10.2140/apde.2018.11.1587.

On the well-posedness of the inviscid 2D Boussinesq equation

H. Inci 

Zeitschrift für angewandte Mathematik und Physik. 2018. Vol. 69, num. 4, p. 103. DOI : 10.1007/s00033-018-0998-6.

A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

B. Buffoni; M. Groves; E. Wahlen 

ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. 2018. Vol. 228, num. 3, p. 773 – 820. DOI : 10.1007/s00205-017-1205-1.

Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations

E. Chiodaroli; M. Michálek 

Communications in Mathematical Physics. 2017. Vol. 353, num. 3, p. 1201 – 1216. DOI : 10.1007/s00220-017-2846-5.

$A$-free Rigidity and Applications to the Compressible Euler System

E. Chiodaroli; E. Feireisl; O. Kreml; E. Wiedemann 

Annali Di Matematica Pura Ed Applicata. 2017. Vol. 196, num. 4, p. 1557 – 1572. DOI : 10.1007/s10231-016-0629-9.

Large global solutions for energy supercritical nonlinear wave equations on $\R^{3+1}$

J. Krieger; W. Schlag 

Journal d’Analyse Mathematique. 2017. Vol. 133, p. 91 – 131. DOI : 10.1007/s11854-017-0029-0.

A Class Of Large Global Solutions For The Wave-Map Equation

E. Chiodaroli; J. Krieger 

Transactions Of The American Mathematical Society. 2017. Vol. 369, num. 4, p. 2747 – 2773. DOI : 10.1090/tran/6805.

Global well-posedness for the Yang-Mills equation in 4+1 dimensions: Small energy

J. Krieger; D. Tataru 

Annals Of Mathematics. 2017. Vol. 185, num. 3, p. 831 – 893. DOI : 10.4007/annals.2017.185.3.3.

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}=7 $ and 8 TeV

G. Aad; B. Abbott; J. Abdallah; O. Abdinov; B. Abeloos et al. 

Journal of High Energy Physics. 2016. Vol. 2016, num. 8, p. 45. DOI : 10.1007/JHEP08(2016)045.

Calculus of Variations for Differential Forms

S. Sil / B. Dacorogna (Dir.)  

Lausanne, EPFL, 2016. 

Approximation numérique des écoulements turbulents dans des cuves d’électrolyse de l’aluminium

J. Rochat / M. Picasso; J. Rappaz (Dir.)  

Lausanne, EPFL, 2016. 

A vector field method on the distorted Fourier side and decay for wave equations with potentials

R. Donninger; J. Krieger 

Memoirs of the American Mathematical Society. 2016. Vol. 241, num. 1142-3/4, p. 1 – 80. DOI : 10.1090/memo/1142.

Stability of stationary wave maps from a curved background to a sphere

S. M. Shahshahani 

Discrete and Continuous Dynamical Systems. 2016. Vol. 36, num. 7, p. 3857 – 3909. DOI : 10.3934/dcds.2016.36.3857.

An overview of some recent results on the Euler system of isentropic gas dynamics

E. Chiodaroli; O. Kreml 

Bulletin Of The Brazilian Mathematical Society. 2016. Vol. 47, num. 1, p. 241 – 253. DOI : 10.1007/s00574-016-0135-0.

On the well-posedness of the Holm-Staley b-family of equations

H. Inci 

Journal Of Nonlinear Mathematical Physics. 2016. Vol. 23, num. 2, p. 213 – 233. DOI : 10.1080/14029251.2016.1161261.

Renormalization and blow up for wave maps from $S^2 \times \mathbb{R}$ to $S^2$

S. M. Shahshahani 

Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 8, p. 5621 – 5654. DOI : 10.1090/tran/6524.

On a Lagrangian Formulation of the Incompressible Euler Equation

H. Inci 

Journal Of Partial Differential Equations. 2016. Vol. 29, num. 4, p. 320 – 359. DOI : 10.4208/jpde.v29.n4.5.

Eigenfunction expansions of ultradifferentiable functions and ultradistributions

A. Dasgupta; M. Ruzhansky 

Transactions Of The American Mathematical Society. 2016. Vol. 368, num. 12, p. 8481 – 8498. DOI : 10.1090/tran/6765.

Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments

G. Aad; B. Abbott; J. Abdallah; O. Abdinov; R. Aben et al. 

Physical Review Letters. 2015. Vol. 114, num. 19, p. 191803. DOI : 10.1103/PhysRevLett.114.191803.

Sur quelques foncteurs de bi-ensembles

R. F. Chevalley / J. Thévenaz (Dir.)  

Lausanne, EPFL, 2015. 

Numerical homogenization methods for advection-diffusion and nonlinear monotone problems with multiple scales

M. E. Huber / A. Abdulle (Dir.)  

Lausanne, EPFL, 2015. 

Global Ill-Posedness of the Isentropic System of Gas Dynamics

E. Chiodaroli; C. De Lellis; O. Kreml 

Communications On Pure And Applied Mathematics. 2015. Vol. 68, num. 7, p. 1157 – 1190. DOI : 10.1002/cpa.21537.

Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb{R}^{3+1}$

J. Krieger; J. E. Nahas 

Bulletin de la Société Mathématique de France. 2015. Vol. 143, num. 2, p. 339 – 355. DOI : 10.24033/bsmf.2690.

Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space

R. Donninger; J. Krieger; J. Szeftel; W. W. Y. Wong 

Duke Mathematical Journal. 2015. Vol. 165, num. 4, p. 723 – 791. DOI : 10.1215/00127094-3167383.

Center-stable manifold of the ground state in the energy space for the critical wave equation

J. Krieger; K. Nakanishi; S. Wilhelm 

Mathematische Annalen. 2015. Vol. 361, num. 1-2, p. 1 – 50. DOI : 10.1007/s00208-014-1059-x.

Optimal polynomial blow up range for critical wave maps

C. Gao / J. Krieger (Dir.)  

Lausanne, EPFL, 2015. 

Weyl Transforms for H-Type Groups?

A. Dasgupta; M. W. Wong 

Journal of Pseudo-differential Operators And Applications. 2015. Vol. 6, num. 1, p. 11 – 19. DOI : 10.1007/s11868-014-0106-4.

Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation

J. Krieger; J. Luhrmann 

Annals of PDE. 2015. Vol. 1, num. 5, p. 5/1 – 208. DOI : 10.1007/s40818-015-0004-y.

Global Well-Posedness For The Maxwell-Klein-Gordon Equation In 4+1 Dimensions: Small Energy

J. Krieger; J. Sterbenz; D. Tataru 

Duke Mathematical Journal. 2015. Vol. 164, num. 6, p. 973 – 1040. DOI : 10.1215/00127094-2885982.

Optimal polynomial blow up range for critical wave maps

C. Gao; J. Krieger 

Communications on Pure and Applied Analysis. 2015. Vol. 14, num. 5, p. 1705 – 1741. DOI : 10.3934/cpaa.2015.14.1705.

On global regularity for systems of nonlinear wave equations with the null-condition

C. Gao; A. Dasgupta; J. Krieger 

Dynamics of Partial Differential Equations. 2015. Vol. 12, num. 2, p. 115 – 125. DOI : 10.4310/DPDE.2015.v12.n2.a2.

Stability and instability of expanding solutions to the Lorentzian constant-positive-mean-curvature flow

W. W. Y. Wong 

2014

Exotic blow up solutions for the $\Box u^5$-focussing wave equation in $\mathbb{R}^3$

J. Krieger; R. Donninger; M. Huang; W. Schlag 

MICHIGAN MATHEMATICAL JOURNAL. 2014. Vol. 63, num. 3, p. 451 – 501. DOI : 10.1307/mmj/1409932630.

Stable blow up dynamics for energy supercritical wave equations

R. Donninger; B. Schörkhuber 

Transactions Of The American Mathematical Society. 2014. Vol. 366, num. 4, p. 2167 – 2189. DOI : 10.1090/S0002-9947-2013-06038-2.

Nondispersive Decay For The Cubic Wave Equation

R. Donninger; A. Zenginoglu 

Analysis & Pde. 2014. Vol. 7, num. 2, p. 461 – 495. DOI : 10.2140/apde.2014.7.461.

On type I blow up formation for the critical NLW

J. Krieger; W. W. Y. Wong 

Communications in Partial Differential Equations. 2014. Vol. 39, num. 9, p. 1718 – 1728. DOI : 10.1080/03605302.2013.861847.

Threshold phenomenon for the quintic wave equation in three dimensions

J. Krieger; K. Nakanishi; W. Schlag 

Communications in Mathematical Physics. 2014. Vol. 327, num. 1, p. 309 – 332. DOI : 10.1007/s00220-014-1900-9.

Liouville’s theorem and Laurent Series Expansions for Solutions of the Heat Equation

A. Dasgupta 

Journal of Pseudo-Differential Operators and Applications. 2014. Vol. 5, num. 4, p. 539 – 547. DOI : 10.1007/s11868-014-0103-7.

On the energy dissipation rate of solutions to the compressible isentropic Euler system

E. Chiodaroli; O. Kreml 

Archive for Rational Mechanics and Analysis. 2014. Vol. 214, num. 3, p. 1019 – 1049. DOI : 10.1007/s00205-014-0771-8.

Stable self-similar blowup in energy supercritical Yang-Mills theory

R. Donninger 

Mathematische Zeitschrift. 2014. Vol. 278, num. 3-4, p. 1005 – 1032. DOI : 10.1007/s00209-014-1344-0.

Full blow-up range for co-rotaional wave maps to surfaces of revolution

C. Gao 

2014

A counterexample to well-posedness of entropy solutions to the compressible Euler system

E. Chiodaroli 

Journal Of Hyperbolic Differential Equations. 2014. Vol. 11, num. 3, p. 493 – 519. DOI : 10.1142/S0219891614500143.

Supramenable groups

J. Kellerhals / N. Monod (Dir.)  

Lausanne, EPFL, 2014. 

Simulations numériques de phénomènes MHD-thermiques avec interface libre dans l’électrolyse de l’aluminium

S. Flotron / J. Rappaz; M. Picasso (Dir.)  

Lausanne, EPFL, 2013. 

Moments, Intermittency, and Growth Indices for Nonlinear Stochastic PDE’s with Rough Initial Conditions

L. Chen / R. Dalang (Dir.)  

Lausanne, EPFL, 2013. 

A codimension two stable manifold of near soliton equivariant wave maps

J. Krieger; I. Bejenaru; D. Tataru 

Analysis & PDE. 2013. Vol. 6, num. 4, p. 829 – 857. DOI : 10.2140/apde.2013.6.829.

Non-existence of multiple-black-hole solutions close to Kerr-Newman

W. W-Y. Wong; P. Yu 

Communications In Mathematical Physics. 2013. Vol. 325, num. 3, p. 965 – 996. DOI : 10.1007/s00220-013-1837-4.

A comment on the construction of the maximal globally hyperbolic Cauchy development

W. W. Y. Wong 

Journal Of Mathematical Physics. 2013. Vol. 54, num. 11, p. 113511. DOI : 10.1063/1.4833375.

Global dynamics of the nonradial energy-critical wave equation above the ground state energy

J. Krieger; K. Nakanishi; W. Schlag 

Discrete and Continuous Dynamical Systems. 2013. Vol. 33, num. 6, p. 2423 – 2450. DOI : 10.3934/dcds.2013.33.2423.

Nonscattering solutions and blowup at infinity for the critical wave equation

R. Donninger; J. Krieger 

Mathematische Annalen. 2013. Vol. 357, num. 1, p. 89 – 163. DOI : 10.1007/s00208-013-0898-1.

Nondispersive solutions to the $L^2$-critical half-wave equation

J. Krieger; E. Lenzmann; P. Raphael 

Archive for Rational Mechanics and Analysis. 2013. Vol. 209, num. 1, p. 61 – 129. DOI : 10.1007/s00205-013-0620-1.

Global dynamics away from the ground state for the energy-critical nonlinear wave equation

J. Krieger; W. Schlag; K. Nakanishi 

AMERICAN JOURNAL OF MATHEMATICS. 2013. Vol. 134, num. 4, p. 935 – 965. DOI : 10.1353/ajm.2013.0034.

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space

J. Krieger; J. Sterbenz 

Memoirs Of The American Mathematical Society. 2013. Vol. 223, num. 1047, p. 1 – 99. DOI : 10.1090/S0065-9266-2012-00566-1.

Hermitian Forms over Algebras with Involution and Hermitian Categories

D. A. Moldovan / E. Bayer Fluckiger (Dir.)  

Lausanne, EPFL, 2012. 

A non-local inequality and global existence

J. Krieger; P. Gressman; R. Strain 

Advances in Mathematics. 2012. Vol. 230, num. 2-1, p. 642 – 648. DOI : 10.1016/j.aim.2012.02.017.

On stability of the catenoid under vanishing mean curvature flow on Minkowski space

J. Krieger; H. Lindblad 

Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 2, p. 89 – 119. DOI : 10.4310/DPDE.2012.v9.n2.a1.

Full range of blow up exponents for the quintic wave equation in three dimensions

J. Krieger; W. Schlag 

Journal De Mathematiques Pures Et Appliquees. 2012. Vol. 101, num. 6, p. 873 – 900. DOI : 10.1016/j.matpur.2013.10.008.

Semiclassical low energy scattering for one-dimensional Schrödinger operators with exponentially decaying potentials

O. Costin; R. Donninger; W. Schlag; S. Tanveer 

Annales Henri Poincaré. 2012. Vol. 13, num. 6, p. 1371 – 1426. DOI : 10.1007/s00023-011-0155-7.

On pointwise decay of linear waves on a Schwarzschild black hole background

R. Donninger; W. Schlag; A. Soffer 

Communications in Mathematical Physics. 2012. Vol. 309, num. 1, p. 51 – 86. DOI : 10.1007/s00220-011-1393-8.

A positive mass theorem for two spatial dimensions

W. W-Y. Wong 

2012

Scattering of wave maps from $\mathbb{R}^{2+1}$ to general targets

J. Nahas 

Calculus of Variations and Partial Differential Equations. 2012. Vol. 46, num. 1-2, p. 427 – 437. DOI : 10.1007/s00526-011-0489-5.

A Decay Property Of Solutions To The K-Generalized Kdv Equation

J. Nahas 

Advances In Differential Equations. 2012. Vol. 17, num. 9-10, p. 833 – 858. DOI : 10.57262/ade/1355702924.

Blow Up Construction and Stability of Stationary Maps

S. M. Shahshahani / J. Krieger (Dir.)  

Lausanne, EPFL, 2012. 

Global Solutions to a Non-Local Diffusion Equation with Quadratic Non-Linearity

J. Krieger; R. M. Strain 

Communications in Partial Differential Equations. 2012. Vol. 37, num. 4, p. 647 – 689. DOI : 10.1080/03605302.2011.643437.

Stable self-similar blow up for energy subcritical wave equations

R. Donninger; B. Schoerkhuber 

Dynamics Of Partial Differential Equations. 2012. Vol. 9, num. 1, p. 63 – 87. DOI : 10.4310/DPDE.2012.v9.n1.a3.

On stable self-similar blow up for equivariant wave maps: The linearized problem

R. Donninger; B. Schoerkhuber; P. C. Aichelburg 

Annales Henri Poincaré. 2012. Vol. 13, num. 1, p. 103 – 144. DOI : 10.1007/s00023-011-0125-0.

Concentration Compactness for critical wave maps

J. Krieger; W. Schlag 

European Mathematical Society, 2012.

Global dynamics above the ground state energy for the one-dimensional NLKG equation

J. Krieger; K. Nakanishi; W. Schlag 

Mathematische Zeitschrift. 2012. Vol. 272, num. 1-2, p. 297 – 316. DOI : 10.1007/s00209-011-0934-3.

Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein-Gordon equation

R. Donninger; W. Schlag 

Nonlinearity. 2011. Vol. 24, num. 9, p. 2547 – 2562. DOI : 10.1088/0951-7715/24/9/009.

A proof of Price’s Law on Schwarzschild black hole manifolds for all angular momenta

R. Donninger; W. Schlag; A. Soffer 

Advances in Mathematics. 2011. Vol. 226, num. 1, p. 484 – 540. DOI : 10.1016/j.aim.2010.06.026.

On stable self-similar blowup for equivariant wave maps

R. Donninger 

Communications on Pure and Applied Mathematics. 2011. Vol. 64, num. 8, p. 1095 – 1147. DOI : 10.1002/cpa.20366.

The radial wave operator in similarity coordinates

R. Donninger 

Journal Of Mathematical Physics. 2010. Vol. 51, num. 2, p. 023527. DOI : 10.1063/1.3299302.

Nonlinear Stability of Self-Similar Solutions for Semilinear Wave Equations

R. Donninger 

Communications In Partial Differential Equations. 2010. Vol. 35, p. 669 – 684. DOI : 10.1080/03605300903575857.

Decay Estimates for the One-dimensional Wave Equation with an Inverse Power Potential

R. Donninger; W. Schlag 

International Mathematics Research Notices. 2010.  p. 4276 – 4300. DOI : 10.1093/imrn/rnq038.

A note on the eigenvalues for equivariant maps of the SU(2) sigma-model

R. Donninger; P. C. Aichelburg 

Applied Mathematical and Computational Sciences. 2010. Vol. 1, p. 73 – 82.

Slow Blow up solutions for certain critical wave equations

J. Krieger 

RIMS Kokyuroku Bessatsu. 2010. Vol. B22, p. 93 – 101.

Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation

J. Krieger; Y. Martel; P. Raphael 

Communications On Pure And Applied Mathematics. 2009. Vol. 62, p. 1501 – 1550. DOI : 10.1002/cpa.20292.

On the Persistent Properties of Solutions to Semi-Linear Schrodinger Equation

J. Nahas; G. Ponce 

Communications in Partial Differential Equations. 2009. Vol. 34, num. 10, p. 1208 – 1227. DOI : 10.1080/03605300903129044.

On structural stability of pseudo-conformal blowup for $L^{2}$-critical Hartree NLS

J. Krieger; E. Lenzmann; P. Raphael 

Annales Henri Poincare. 2009. Vol. 10, num. 6, p. 1159 – 1205. DOI : 10.1007/s00023-009-0010-2.

Asymptotics and analytic modes for the wave equation in similarity coordinates

R. Donninger 

Journal Of Evolution Equations. 2009. Vol. 9, p. 511 – 523. DOI : 10.1007/s00028-009-0022-x.

Spectral Properties And Linear Stability Of Self-Similar Wave Maps

R. Donninger; P. C. Aichelburg 

Journal Of Hyperbolic Differential Equations. 2009. Vol. 6, p. 359 – 370. DOI : 10.1142/S0219891609001812.

Renormalization and blow up for the critical Yang-Mills problem

J. Krieger; W. Schlag; D. Tataru 

Advances In Mathematics. 2009. Vol. 221, p. 1445 – 1521. DOI : 10.1016/j.aim.2009.02.017.

Non-generic blow-up solutions for the critical focusing NLS in 1-D

J. Krieger; W. Schlag 

Journal Of The European Mathematical Society. 2009. Vol. 11, p. 1 – 125. DOI : 10.4171/JEMS/143.

Slow Blow-Up Solutions For The H-1(R-3) Critical Focusing Semilinear Wave Equation

J. Krieger; W. Schlag; D. Tataru 

Duke Mathematical Journal. 2009. Vol. 147, p. 1 – 53. DOI : 10.1215/00127094-2009-005.

On the mode stability of a self-similar wave map

R. Donninger; P. C. Aichelburg 

Journal of Mathematical Physics. 2008. Vol. 49, p. 043515. DOI : 10.1063/1.2908159.

Large time decay and scattering for Wave Maps

J. Krieger; K. Nakanishi 

Dynamics Of Partial Differential Equations. 2008. Vol. 5, p. 1 – 37. DOI : 10.4310/DPDE.2008.v5.n1.a1.

Renormalization and blow up for charge one equivariant critical wave maps

J. Krieger; W. Schlag; D. Tataru 

Inventiones Mathematicae. 2008. Vol. 171, p. 543 – 615. DOI : 10.1007/s00222-007-0089-3.

Spectral Properties and Stability of Self-Similar Wave Maps

R. Donninger / P. C. Aichelburg (Dir.)  

University of Vienna, 2007. 

On the focusing critical semi-linear wave equation

J. Krieger; W. Schlag 

American Journal Of Mathematics. 2007. Vol. 129, p. 843 – 913. DOI : 10.1353/ajm.2007.0021.

Global Regularity and Singularity Development for Wave Maps

J. Krieger 

Surveys in differential geometry. 2007. Vol. XII, p. 167 – 201.

Localized Thickening of a Compressed Elastic Band

B. Buffoni; S. Rey 

Journal of Elasticity. 2006. Vol. 82, num. 1, p. 49 – 71. DOI : 10.1007/s10659-005-9026-0.

Stable manifolds for all monic supercritical focusing nonlinear Schrodinger equations in one dimension

J. Krieger; W. Schlag 

Journal Of The American Mathematical Society. 2006. Vol. 19, p. 815 – 920. DOI : 10.1090/S0894-0347-06-00524-8.

Stability of spherically symmetric wave maps

J. Krieger 

2006.

Global regularity of wave maps from $R^{2+1}$ to $H^2$. Small energy

J. Krieger 

Communications In Mathematical Physics. 2004. Vol. 250, p. 507 – 580. DOI : 10.1007/s00220-004-1088-5.

Global regularity of wave maps from $R^{3+1}$ to surfaces

J. Krieger 

Communications In Mathematical Physics. 2003. Vol. 238, p. 333 – 366. DOI : 10.1007/s00220-003-0836-2.

Null-Form Estimates and Nonlinear Waves

J. Krieger 

Advances in Differential Equations. 2003. Vol. 8, num. 10, p. 1193 – 1236. DOI : 10.57262/ade/1355926159.

Shooting methods and topological transversality

B. Buffoni 

1999.  p. 1137 – 1155. DOI : 10.1017/S0308210500019314.

Discrete spectrum of perturbed Dirac systems with real and periodic coefficients

B. Buffoni 

1990.  p. 337 – 347. DOI : 10.1017/S0308210500020680.