
UNIQUENESS OF FOURIER REPRESENTATIONS. CANTOR’S THEOREM

The material in the lecture is roughly based on a paper by J. Marshall Ash in the American Math. Monthly.

1. Uniqueness of Fourier representations

Up to this point we have discussed the question whether the formal Fourier series
∑
n∈Z f̂(n)e2πins repro-

duces f , where

f̂(n) =

∫ 1

0

f(x)e−2πinx dx.

Note that if the Fourier series ∑
n∈Z

cne
2πinx

converges uniformly to f(x), then indeed the value of cn is forced and given by the above formula. It is,
however, perfectly natural to ask whether the above formula is forced even if we only assume the convergence
of the Fourier series to f in the point wise sense. Thus could there be a different sequence of coefficients dn,
n ∈ Z, such that f(x) =

∑
n∈Z dne

2πinx? Or alternatively, does the relation

(1.1) lim
N→∞

∑
|n|≤N

cne
2πinx = 0

for each x ∈ S1, without any assumption of uniformity of convergence in x, force cn = 0 for all n? This is a
highly non-trivial question, as evidenced by the fact that if we weaken the hypothesis a bit and assume (1.1)
only on the complement S1\E of some zero measure set E, then in fact there may be such non-vanishing
coefficients, depending on deep structural properties of the set E.
Nonetheless, if E = ∅, then we indeed have the desired result:

Theorem 1.1. (G. Cantor, 1870) The relation (1.1) implies cn = 0 for all n.

In the following section, we provide the proof, which is completely elementary.

2. The proof of Theorem 1.1

To simplify notation, we shall work on [0, 2π] instead of [0, 1], and replace the exponentials e2πins by eins.
The proof can be neatly divided into four parts:

(i): establish asymptotic vanishing of the cn; in particular, the cn are bounded.

(ii): introduce the auxiliary function c0
x2

2 +
∑
n 6=0 cn

einx

(in)2 . This series converges absolutely and hence

represents a continuous function F (x). Then show that the function F (x) has vanishing Schwarz derivative,
i. e.

lim
h→0

F (x+ h) + F (x− h)− 2F (x)

h2
= 0 ∀x ∈ [0, 2π].

(iii): Show that a continuous function with vanishing Schwarz derivative is linear.

(iv): Show that the preceding steps imply that cn = 0 for all n.
1
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2.1. Asymptotic vanishing of cn. .
Here we show

Lemma 2.1. If we have

(2.1) lim
N→∞

∑
|n|≤N

cne
inx = 0 ∀x ∈ [0, 2π],

then lim|n|→∞ cn = 0.

Proof. By passing to differences between sN :=
∑
|n|≤N cne

inx, we immediately get

lim
n→+∞

[cne
inx + c−ne

−inx] = 0

for all x ∈ [0, 2π]. Write c±n = Re c±n + i Im c±n. Then

cne
inx + c−ne

−inx = an cosnx+ bn sinnx+ i(a′n cosnx+ b′n sinnx),

where we have

an =
∑
±

Re c±n, a
′
n =

∑
±

Im c±n, bn =
∑
±

(−1)
±1+1

2 Im c±n, b
′
n =

∑
±

(−1)
±1−1

2 Re c±n

In particular we have

a2n + b2n + (a′n)2 + (b′n)2 = 2(|cn|2 + |c−n|2),

and it suffices to show that a2n + b2n → 0 provided

an cosnx+ bn sinnx→ 0 ∀x ∈ [0, 2π]

provided n→ +∞. Writing

an√
a2n + b2n

= cos θn,
bn√
a2n + b2n

= sin θn

for adequate θn ∈ [0, 2π], write

an cosnx+ bn sinnx =
√
a2n + b2n cos(nx− θn).

Arguing by contradiction, assume that there is a sequence {nk}k≥1 ⊂ {1, 2, . . .} with

lim inf
k→∞

√
a2nk

+ b2nk
= δ > 0.

By passing to a subsequence, we may assume that nk+1 > 100nk, say. We now construct a x∗ ∈ [0, 2π] such
that

cos(nkx∗ − θnk
) 6→ 0,

which then implies ank
cosnkx∗ + bnk

sinnkx∗ 6→ 0, a contradiction. In fact, set x∗ =
∑
k≥1

αk

nk
, where we

inductively pick αk ∈ [0, 2π] in such a way that

nk
∑
k>l≥1

(
αl
nl

)− θnk
+ αk ∈ [−π

4
,
π

4
] mod(2π)

Then since 0 ≤ nk
∑
l>k(αl

nl
) < 1

10 , we also have

nkx∗ − θnk
∈ [−π

3
,
π

3
],

whence cos(nkx∗ − θnk
) ∈ [ 12 , 1]. �
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2.2. Properties of a remarkable auxiliary function. The preceding lemma implies in particular that the
sequence {cn} ⊂ C is bounded. Introduce now the function

F (x) := c0
x2

2
+
∑
n 6=0

cn
einx

(in)2
;

Formally, the second derivative of it reproduces the original series
∑
n cne

ins, but of course we are not allowed
to differentiate this expression term by term. However, by absolute convergence, F is a continuous function.
Introduce now the Schwarz derivative

DF (x) := lim
h→0

F (x+ h) + F (x− h)− 2F (x)

h2
=: lim

h→0
DhF (x)

A priori, this might not even exist. However, we have

Lemma 2.2. We have DF (x) = 0 for all x ∈ [0, 2π]. In fact, this is valid for all x ∈ R.

Proof. The key is to observe the relations (for any h 6= 0)

Dhe
inx = einx

einh + e−inh − 2

h2
= einx

( sin(h2n)

(−i)h2

)2
, Dh(

x2

2
) = 1.

Thus we get

DhF = c0 +
∑
n 6=0

cne
inx
( sin(h2n)

nh
2

)2
=
∑
n 6=0

cne
inx
[( sin(h2n)

nh
2

)2 − 1
]

Of course here we may interchange summation and the ’operator’ D, since no taking of limits is involved.
Then the idea is to let h→ 0 and show that the limit equals

∑
n cne

inx = 0. Thus if we set

an = cne
inx + c−ne

−inx, n ≥ 1, a0 = c0,

we need to show that

lim
h→0

∑
n≥1

an
[( sin(h2n)

nh
2

)2 − 1
]

= 0.

To do this, we use the trick of ’summation by parts’. Thus let sn :=
∑

0≤k≤n ak. Then∑
n≥1

an
[( sin(h2n)

nh
2

)2 − 1
]

=
∑
n≥1

(sn − sn−1)
[( sin(h2n)

nh
2

)2 − 1
]

=
∑

N>n≥1

(sn − sn−1)
[( sin(h2n)

nh
2

)2 − 1
]

− sN−1
[( sin(h2N)

Nh
2

)2 − 1
]

+
∑
n≥N

sn∆n,

where we have set ∆n :=
( sin(h

2 n)
nh
2

)2 − ( sin(h
2 (n+1))

(n+1)h
2

)2
. Observe that if we set f(x) := sin2 x

x2 , then

∆n =

∫ (n+1)h
2

nh
2

f ′(x) dx,

and further ∑
n≥N

∣∣∆n

∣∣ ≤ ∑
n≥N

∫ (n+1)h
2

nh
2

∣∣f ′(x)
∣∣ dx ≤ ∥∥f ′∥∥

L1(R+)
<∞.
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Given ε > 0, first pick N large enough such that
∣∣sn∣∣ < ε

2
∥∥f ′∥∥

L1(R+)

for all n ≥ N , and bound

∣∣ ∑
n≥N

sn∆n

∣∣ ≤ ( sup
n≥N
|sn|)

∑
n≥N

∆n ≤
ε

2
∥∥f ′∥∥

L1(R+)

∥∥f ′∥∥
L1(R+)

<
ε

2
.

Importantly, this bound is independent of h. Then pick h small enough such that∣∣ ∑
N>n≥1

(sn − sn−1)
[( sin(h2n)

nh
2

)2 − 1
]∣∣+

∣∣sN−1[( sin(h2 [N − 1])
[N−1]h

2

)2 − 1
]∣∣ < ε

2
.

It follows that for h small enough, we have∣∣∑
n≥1

an
[( sin(h2n)

nh
2

)2 − 1
]∣∣ < ε,

as desired. �

—

2.3. Functions with vanishing Schwarz derivative. Here we use the preceding lemmas to draw a very
strong structural conclusion about the auxiliary function F :

Lemma 2.3. Let G be a continuous function on some interval I ⊂ R which satisfies DG(x) = 0 for all
x ∈ I◦. Then G is a linear function.

Proof. We first show that if DG > 0 everywhere, then the function is convex. This means that for every two
of the points of its graph, the straight line segment joining them is above the graph. If not, there are two
points (a,G(a)), (b,G(b) of the graph of G such that there is a point (x,G(x)), x ∈ (a, b), above the straight
line segment joining the points. By adding a linear function to G, we may assume G(a) = G(b) = 0, and
thence G(x) > 0. In fact, we may then pick x ∈ (a, b) to be such that G attains the maximum at x on [a, b].
But then if h > 0 is small enough such that x± h ∈ (a, b), we have

G(x+ h) +G(x− h)− 2G(x) = G(x+ h)−G(x)− [G(x)−G(x− h)] ≤ 0,

contradicting the assumption that DG(x) > 0.
Similarly, we see that DG < 0 everywhere implies that G is concave. But then if DG = 0 everywhere, we
have D(G ± εx2) >< 0, respectively, for any ε > 0, so G ± εx2 is convex/concave, and passing to the limit
ε→ 0, we get that G is both convex and concave, hence linear. �

2.4. End of proof of Theorem 1.1. The preceding lemmas imply that F (x) is linear, which we now think
of as a function on all of R (as we obviously may). Thus we may write

F (x) = α+ βx

for suitable α, β ∈ R. But then letting x→ +∞, say, we get c0 = 0, β = 0, whence∑
n 6=0

cn
einx

(in)2
= α.

The convergence of the sum being uniform, we infer

cn =

∫ 2π

0

αe−inx dx = 0, n 6= 0,

and we are done.


