Corrigé Série 7

- 1. The proof is basically the same, we only need to pay attention that, $-L^{1} \subset (L^{\infty})^{*}, L^{\infty} \subset (L^{1})^{*}$; — The set of simple functions is dense in L^p space, $p \in [1, +\infty]$.
- 2. As the exercise 2 from the preceding problem, we introduce a smooth function $\chi(\xi)$ such that

$$
\chi(\xi) = 1, \forall 1 \le |\xi| < 2, \\
\chi(\xi) = 0, \forall |\xi| < 1/2, |\xi| > 4,
$$

and define the function $K_{\lambda} \in \mathcal{S}(\mathbb{R}^n)$,

$$
K_{\lambda}(x) = \int_{\mathbb{R}^n} e^{2\pi ix\xi} \chi(\lambda \xi) d\xi.
$$
 (1)

Since $||K_1||_{L^1}, ||K_1||_{L^2}, ||K_1||_{L^{\infty}}$ are uniformly bounded, we know the existence of C such that

$$
||K_1||_{L^k} \le C, \ \forall k \in [1, +\infty]. \tag{2}
$$

Now for any function $f \in \mathcal{S}(\mathbb{R}^n)$ such that $\hat{f}(\xi)$ supp $2^j \leq |\xi| < 2^{j+1}$, we know that

$$
\hat{f}(\xi)\chi(2^{-j}\xi) = \hat{f}(\xi),\tag{3}
$$

thus

$$
K_{2^{-j}} * f = \mathcal{F}^{-1}(\hat{f}(\xi)\chi(2^{-j}\xi)) = \mathcal{F}^{-1}(\hat{f}(\xi)) = f.
$$
 (4)

Therefore, by Young's inequality we get

$$
||f||_{L^{q}} = ||K_{2^{-j}} * f||_{L^{q}} \le ||K_{2^{-j}}||_{L^{k}} ||f||_{L^{p}}
$$
\n(5)

where $\frac{1}{k} = 1 + \frac{1}{q} - \frac{1}{p}$ $\frac{1}{p}$. By the same scaling argument of the exercise 2 from the preceding problem we know that

$$
||K_{\lambda}||_{L^{k}} = \lambda^{\frac{n(1-k)}{k}} ||K_{1}||_{L^{k}}.
$$
\n(6)

$$
||f||_{L^{q}} \leq ||K_{2^{-j}}||_{L^{k}}||f||_{L^{p}} = ||K_{1}||_{L^{k}} 2^{jn(\frac{1}{p} - \frac{1}{q})}||f||_{L^{p}}.
$$
\n⁽⁷⁾

The goal is to give an idea of the Sobolev embedding, for $1 \le p < q < +\infty$ such that $\frac{1}{p} - \frac{k}{n} = \frac{1}{q} - \frac{k}{r}$ The goal is to give an idea of the Sobolev embedding, for $1 \le p < q < +\infty$ such that $\frac{p}{p} - \frac{1}{n} - \frac{1}{q} - \frac{1}{n}$
we have that $W^{k,p}(\mathbb{R}^n) \subset W^{l,q}(\mathbb{R}^n)$. Here we only treat the case that $n(\frac{1}{p} - \frac{1}{q}) = 1$, *i* $(\frac{1}{q}) = 1$, *i.e.* $W^{1,p} \subset L^q$. Let us define the function $S_{\lambda} \in \mathcal{S}(\mathbb{R}^n)$,

$$
S_{\lambda}^{i}(x) = \int_{\mathbb{R}^{n}} e^{2\pi ix\xi} \frac{\xi_{i}\chi(\lambda\xi)}{2\pi i|\xi|^{2}} d\xi,
$$
\n(8)

where ξ_i is the *i*-th component of ξ . Thus, thanks to the fact that $2\pi i \xi_1 \hat{f}(\xi) = \widehat{\partial_{x_1} f}(\xi)$, by the same argument we know that

$$
\sum_{i=1}^{n} S_{2^{-j}}^{i} * (\partial_{x_{i}} f) = \mathcal{F}^{-1} \Big(\sum_{i=1}^{n} (2\pi i \xi_{i} \hat{f}(\xi)) \frac{\xi_{i} \chi(2^{-j} \xi)}{2\pi i |\xi|^{2}} \Big) = \mathcal{F}^{-1} \Big(\hat{f}(\xi) \chi(2^{-j} \xi) \Big) = \mathcal{F}^{-1} \Big(\hat{f}(\xi) \Big) = f. \tag{9}
$$

Next by Young's inequality

$$
||f||_{L^{q}} = ||\sum_{i=1}^{n} S_{2^{-j}}^{i} * (\partial_{x_{i}} f)||_{L^{q}} \le \sum_{i=1}^{n} ||S_{2^{-j}}^{i}||_{L^{k}} ||\partial_{x_{i}} f||_{L^{p}},
$$
\n(10)

and direct calculation yields, for example

$$
||S_{2^{-j}}^1||_{L^k} = ||S_1^1||_{L^k} 2^{j(n(\frac{1}{p} - \frac{1}{q}) - 1)} = ||S_1^1||_{L^k} \le C. \tag{11}
$$

Since the constant is **independent of** j, for any $f \in W^{1,p}$ we can decompose is by $f = \sum_j f_j$ with \hat{f}_j supp $2^j \leq |\xi| < 2^{j+1}$ to conclude the embedding inequality.

3. (i) For any $\varepsilon > 0$ there exists $f_n, g_n \in C_c^{\infty}(\mathbb{R}^n)$ such that

$$
||f - f_n||_{L^p} + ||g - g_n||_{L^p} < \varepsilon. \tag{12}
$$

We know that

$$
\lim_{|h| \to +\infty} ||\tau_h(f_n) + g_n||_{L^p}^p = ||f_n||_{L^p}^p + ||g_n||_{L^p}^p,\tag{13}
$$

thus by Minkowski inequality

$$
\lim_{|h| \to +\infty} ||\tau_h(f) + g||_{L^p}^p - ||f||_{L^p}^p - ||g||_{L^p}^p < \varepsilon + \lim_{|h| \to +\infty} ||\tau_h(f - f_n) + g - g_n||_{L^p}^p < \varepsilon + \varepsilon^p. \tag{14}
$$

(ii) For the bounded linear operator T, we are able to select $f \in L^p$ such that $||Tf||_{L^q} = C_0||f||_{L^p}$, where C_0 is the norm of the operator. Suppose that $q < p$ then let $|h| \to +\infty$, in the sense of limit we have

$$
||T(\tau_h f + g)||_{L^q}^q = ||\tau_h Tf + Tg||_{L^q}^q = ||\tau_h Tf||_{L^q}^q + ||Tg||_{L^q}^q = 2C_0^q ||f||_{L^p}^q,
$$

$$
\leq C_0^q ||\tau_h f + g||_{L^p}^q = C_0^q 2^{\frac{q}{p}} ||f||_{L^p}^q,
$$

hence $q \geq p$, contradiction.

4. (i) By the extension theorem of linear operators on Banach spaces, we know that the inequality holds for any $f \in L^p$. We select $f \in L^p$ such that $||\hat{f}||_{L^q} = C_0||f||_{L^p}$, where C_0 is the norm of the operator. Then we use the classical scaling trick, we know that $\widehat{f(\lambda x)}(\xi) = \lambda^{-n} \widehat{f}(\xi)$ $\frac{\xi}{\lambda}$), thus

$$
\|\widehat{f(\lambda x)}\|_{L^q} = \lambda^{-n} \lambda^{\frac{n}{q}} \|\widehat{f}\|_{L^q} = \lambda^{-n} \lambda^{\frac{n}{q}} C_0 \|f\|_{L^p}
$$
\n(15)

On the other hand we have

$$
||\widehat{f(\lambda x)}||_{L^q} \le C_0||f(\lambda x)||_{L^p} = C_0||f(x)||_{L^p} \lambda^{-\frac{n}{p}},
$$
\n(16)

thus

$$
\lambda^{n(-1+\frac{1}{q}+\frac{1}{p})} \le 1, \forall \lambda > 0. \tag{17}
$$

(ii) From (*i*) we know that $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1$, also we know that for $p \in [1, 2]$ the argument is true. It seems to be quite natural to prove $q \geq p$ as the preceding exercise, however, we are not able to conclude similar conditions as h tends to ∞ :

$$
\lim_{h} \|\hat{f}e^{2\pi ih\cdot\xi} + \hat{g}\|_{L^{q}}^{q} \neq \|\hat{f}\|_{L^{q}}^{q} + \|\hat{g}\|_{L^{q}}^{q}, \forall q < 2,\tag{18}
$$

though which is true for $q = 2$.

Now we attempt to construct directly counterexamples. At first, we treat the case that $n = 1$. Let us introduce Shapiro polynomial, briefly speaking, we are able to find polynomials $P_n(x)$ and $Q_n(x)$ by

$$
P_n(x) := \sum_{k=1}^{2^n - 1} (-1)^{a_{n,k}} e^{2\pi i k x},
$$

$$
Q_n(x) := \sum_{k=1}^{2^n - 1} (-1)^{b_{n,k}} e^{2\pi i k x},
$$

satisfying

$$
|P_n(x)|^2 + |Q_n(x)|^2 = 2^{n+1}.
$$
\n(19)

Indeed, this can be achieved by mathematical induction, the detail of which we omit and can be found easily.

Next we select some function $\phi(x) \in \mathcal{S}$ such that $\hat{\phi}$ supp $(0, 1)$, and define

$$
f_n(x) := P_n(x)\phi(x) \tag{20}
$$

that satisfying

$$
||f_n||_{L^p} \le ||P_n||_{L^\infty} ||\phi||_{L^p} \le 2^{\frac{n+1}{2}} ||\phi||_{L^p}.
$$
\n(21)

On the other hand, direct calculation on the Fourier transformation of $e^{2\pi i kx}\phi(x)$ gives

$$
||\hat{f}_n||_{L^q}^q = \int_{\mathbb{R}}|\sum_{k=1}^{2^n-1}\hat{\phi}(\xi-k)|^q d\xi = \int_{\mathbb{R}}\sum_{k=1}^{2^n-1}|\hat{\phi}(\xi-k)|^q d\xi = 2^n||\hat{\phi}||_{L^q}^q,
$$
\n(22)

thus

$$
||\hat{f}_n||_{L^q} \le 2^{\frac{n}{q}} ||\hat{\phi}||_{L^q}.
$$
\n(23)

Therefore, by letting *n* tends to ∞ we get $q \ge 2$ hence $p \le 2$.

As for multi dimensions, for $\mathbf{x} = (x_1, x') \in \mathbb{R}^n$, it suffices to define

$$
f_n(\mathbf{x}) := f_n(x_1) \chi_{[0,1]^{n-1}}(x'). \tag{24}
$$