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Connecting the dots in ethology: applying network
theory to understand neural and animal collectives
Adam Gosztolai and Pavan Ramdya

Abstract

A major goal shared by neuroscience and collective behavior is
to understand how dynamic interactions between individual el-
ements give rise to behaviors in populations of neurons and
animals, respectively. This goal has recently become within
reach, thanks to techniques providing access to the connectivity
and activity of neuronal ensembles as well as to behaviors
among animal collectives. The next challenge using these
datasets is to unravel network mechanisms generating popu-
lation behaviors. This is aided by network theory, a field that
studies structure—function relationships in interconnected sys-
tems. Here we review studies that have taken a network view on
modern datasets to provide unique insights into individual and
collective animal behaviors. Specifically, we focus on how
analyzing signal propagation, controllability, symmetry, and ge-
ometry of networks can tame the complexity of collective system
dynamics. These studies illustrate the potential of network
theory to accelerate our understanding of behavior across
ethological scales.
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Introduction

A central goal in neuroscience is to understand how animal
behavior is orchestrated by the activity of formidably
complex neuronal networks [1]. Parallel efforts in collec-
tive animal behavior have addressed an analogous question
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at a larger scale of organization: how do population-level
behaviors arise from the interactions between individual
animals [2]. Both fields have, until now, favored a reduc-
tionist view by studying (i) how single neurons or small
functional units regulate specific animal behaviors [3] or
(i1) how simple interaction rules between self-propelled
particles give rise to collective behaviors [4—6]. Howev-
er, recent work is beginning to reveal that animal behavior
— be it the movements of individuals or the foraging of
groups—may not be fully explainable from the dynamics
of individual constituent units [7—10] (Figure 1). Hence a
paradigm shift is needed to move from reductionist ana-
lyses to those that embrace the complexity of distributed
information processing over networks spanning multiple
levels [11,12].

Network theory is a mathematical framework for
modeling interacting systems as networks (or graphs)
formed by a set of relations (edges) between discrete
entities (nodes). Additionally, nodes can carry time-
varying dynamical processes or signals [13], including
the activity of neurons, or a behavioral feature (e.g.,
velocity) of individual animals. Because of their gener-
ality, ability to encompass different datasets, and favor-
ing of interactions rather than spatial layouts (in physical
or state space), network models are uniquely suited to
bridge across the neuroscience of individual and col-
lective animal behaviors. Importantly, they can also
discover universal structure—function relationships that
are robust to uncharacterized interaction parameters.

In this review, we first describe how new large-scale
datasets can be characterized by different network ob-
jects. We focus on graph-based network objects and will
use the terms ‘graph’ and ‘network’ interchangeably. We
do not consider the use of artificial neural networks for
modeling neural activity or animal behavior (these have
been reviewed elsewhere [14]), nor their construction
or study using graph theoretic approaches. Then, we
highlight four network theoretic concepts — signal
propagation, controllability, symmetry and geometry —
to illustrate how the graph-based view is often rich
enough to relate the time-evolution of dynamical pro-
cesses on networks to network structures. Finally, we
illustrate the use of these concepts for data-driven in-
vestigations of animal behavior. We put a particular
emphasis on Caenorhabditis elegans and Drosophila mela-
nogaster because for these organisms whole-brain
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Information processing in collective animal systems occurs across hierarchical layers. (a) To orchestrate the actions of individual animals,

populations of neurons interact, generating circuit dynamics. These dynamics converge and are read out by muscles, causing bodypart movements and
ethological behaviors. (b) At a higher hierarchical layer, individual animals — with diverse preferences — transmit their behaviors (e.g., heading direction)
as sensory signals to a social network that coordinates group dynamics, for example, moving through a patchy nutrient landscape (adapted from the study

by Gosztolai et al. [15]).

connectomes, brain-wide neural recordings in behaving
animals, and high-resolution population behaviors are, or
soon will be, readily available.

Large-scale measurements of neural and
animal interaction networks

As illustrative examples, here we review three kinds of
datasets that are amenable to modeling by networks
and how they are defined in terms of nodes and edges.
We note that other definitions are also possible and
this choice is an important part of the modeling effort.
Some examples are also more explicitly shown in
Box 1.

Connectomic reconstruction of neural networks. A
‘connectome’ is an extensive anatomical reconstruction
of neural connections — typically through semi-
automated segmentation of serial section electron mi-
croscopy data (Figure 2, left). The first connectome was
obtained for the hermaphrodite sex of the worm
C. elegans, a resource that now includes nearly the com-
plete nervous systems of both sexes (hermaphrodite and
male) across development [16]. Similar reconstruction
efforts are underway for the Drosophila central brain
[17], central complex [18], olfactory system [19], motor
circuits in the ventral nerve cord [20], and whole brain

of a female fly [21,22]. Beyond invertebrates, connec-
tomics datasets have also been generated for a larval
zebrafish [23], parts of mouse visual cortex [24] and
human cerebral cortex [25].

Connectomes provide a structural network: individual
neurons (nodes) connect to one another via directed
chemical or undirected/bidirectional electrical synap-
ses (edges). Moreover, at a finer scale, network nodes
may also represent dendritic compartments as funda-
mental units of computation [26]. Because connec-
tomic reconstructions typically involve one or at most
a few network instances, their networks are generally
considered static. This may be accurate on the time-
scale of animal behaviors, except when learning and
plasticity occur. Edges are typically unweighted (i.e.,
having unit weight), but anatomical features of axons
like their diameters have sometimes been used as a
proxy for edge weights [16]. This classical network
model may be limiting when the heterogeneity of
synaptic interactions plays an important role in
network dynamics. In this case, ‘multilayer networks’
can be used to account for different network features
[27,28]. Here, layers represent different modalities
combined into a single mathematical object via inter-
layer edges. For example, connections mediated by
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Network descriptions of structural and functional data capturing the properties of neural and animal ensembles. (a) Connectomes describe
anatomical connections of neurons or neural compartments obtained using synaptic-resolution electron microscopy reconstruction (image of C. elegans
re-produced from the study by Hens et al. [64]). Connectomes are typically represented as static networks in contexts where synaptic plasticity is
irrelevant (e.g., short timescales). Multilayer networks can represent interactions between different classes of neurons. (b) Functional recordings reveal
the dynamic activity of neural populations (image reproduced from the study by Rumyantsev et al. [47]). Functional networks encode a certain similarity
between nodal dynamics. Because these connections covary with node dynamics, they can be represented as temporal networks, which in their simplest
form are an ensemble of temporal network snapshots. (¢) Animal tracking and visual field reconstructions can characterize behaviors: the output of the
neural activity. Thus, they provide a bridge between individual and collective animal behaviors (images reproduced from the study by Harpaz et al. [61]
and Cook et al. [63]). Inter-animal interactions can be represented using functional networks. In addition, multilayer networks can represent multiple

modalities not captured by a single network layer.

neuromodulators have been modeled as different
network layers [29].

Functional recordings of large-scale neural networks.
Complementing structural neuronal connectivity, opti-
cal functional recordings enable a readout of neural ac-
tivity (Figure 2, middle). Although these recordings
offer a lower temporal resolution than multi-electrode
array recordings [30], state-of-the-art genetic reagents
enable the measurement of calcium influx [31,32],
voltage [33,34], or neuromodulator dynamics [35] across
large swaths of neural tissue, while also more effectively
conveying information about each cell’s type, identity,
and spatial location. These functional datasets exist for a
variety of small transgenic animals including C. elegans
[36,37], larval [38] and adult Drosophila [39—44], larval
zebrafish [45], and rodents [46—48].

Functional recordings represent dynamic signals over
network nodes. These can be used to build a ‘functional
network’. In this case, edge weights are not based on
physical connections, but on a correlational or causative
link between nodal dynamics. When edge weights
represent correlational links, or ‘dynamic similarity’,

they typically covary with the node dynamics. Thus,
functional networks are termed ‘temporal’ in network
theory, which at its simplest can be visualized as a
multilayer network with layers encoding a sequence of
discrete temporal snapshots [49].

A current limitation of brain-wide imaging is that
regions-of-interest cannot be easily unambiguously
assigned to individually identifiable neurons. Therefore,
a crucial current effort aims to couple functional and
anatomical/connectomic  datasets: a  challenging
endeavor due to inter-animal variability in cell locations
as well as movement-related microscopy image de-
formations. Progress on this front has been mostly
limited to studies of C. ¢legans, an animal for which the
positions and identities of neurons are largely con-
served across individuals. This fact facilitates multi-
color labeling strategies to recover each neuron’s iden-
tity from its spatial position and fluorescent protein
expression profile [50,51]. Because this technique is not
easily compatible with freely moving wormes, alternative,
deep learning-based methods have also been developed
to recognize and track neuron positions and identities
across time [52,53].
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Box 1. Example network constructions

Connectome Functional connectome Animal interaction network
Nodes Neurons Neurons Animals
Edges Dynamic similarity Pairwise social interactions

Synapses
Node dynamics -

Neural activity Animal behaviors

Behavioral-tracking of animal collectives. A simple way
to capture inter-animal interactions is by tracking their
body positions in 2D space and using proximity as a
readout of interactions [54]. In addition, finer-scale 3D
body kinematics can be precisely measured using deep
learning-based markerless motion capture and multi-
camera triangulation of multiple 2D poses [55—57] or
by lifting single-camera 2D poses [58]. Recent methods
have extended 2D pose estimation to multi-animal
settings allowing investigators to track kinematics for
up to 10 animals at once [59,57,60,61] (Figure 2, right).
Further insights may be gained by combining positional
tracking of animals with body and head orientation
measurements to infer their visual fields [62,63].

Animals (nodes) and their pairwise interactions (edges)
like spatiotemporal proximity, shared group member-
ship, or behavioral similarity must be modeled as tem-
poral networks (Figure 2, right). Furthermore,
multilayer networks can account for the same in-
dividuals interacting via different sensory modalities or
individuals interacting across different spatial compart-
ments [28].

Applications of network theory for studying
neural and animal social network dynamics
The behaviors of neural and animal collectives can be
thought of as dynamical signals propagating along the
edges of network nodes. This is often referred to as
dynamic flow or information spreading in statistical
physics [67] (Figure 3A). Indeed, the activity of a node
influences the likelihood that a neighboring node
changes its activity which can lead to a cascade propa-
gating throughout the network.

A model-based dynamical systems approach to under-
stand the patterns of this flow entails considering nodes
as state variables (e.g., the firing rate of a neuron, or
swimming velocity of a fish) coupled through often non-
linear interactions. The interaction model, which can be
phenomenological (e.g., Integrate-and-Fire neurons) or
mechanistic (e.g., Hodgkin-Huxley neurons), explicitly
describes how state variables change as a function of
other variables. This framework typically entails suitably
parametrizing the interaction functions and performing

simulations of the network’s activity [36]. Although this
approach is useful for making predictions about network
activity, it is unlikely to provide generalizable insights
because there is no one-to-one mapping between dy-
namics and parameters. For example, neural networks
can exhibit the same dynamics despite morphological
variations of neurons, heterogeneous circuit parameters,
and neuromodulation [68—70], and conversely, net-
works can support different dynamics despite very small
variations in connectivity [67].

The abstraction provided by network theory is powerful
because it allows one to translate a network’s topology to
observe signal propagation patterns without requiring a
detailed characterization of dynamical interactions. This
hinges on describing network processes as epidemic or
rumor-spreading models in which nodes adopt their
neighbors’ states —— such as whether they are suscep-
tible or infected. Likewise, neurons change their activity
depending on the states of neighboring neurons, the
interaction rules between them and their processing at
nodes. Similarly, for animal collectives, epidemic models
capture the process whereby changes in an individual’s
behavior propagates through the network [71].

"To understand the role of individual neurons in network-
wide signal propagation, a common simplifying
assumption is to model network activity as a linear
process. In C. elegans, this technique has been effective
to predict which nodes (neurons), when removed, cause
maximal disturbance in flow patterns [72]. This is likely
because the worm’s nervous system consists of many
neurons communicating using gap junctions, which can
be modeled as linear resistors. Although chemical syn-
apses may introduce nonlinearities, their sigmoidal
transfer functions are well-approximated by a lineariza-
tion around their operating point [72]. However, this
linear approximation may also generally apply to other
organisms because nonlinear neural dynamics often
evolve on a low-dimensional manifold [73,74] that is also
well-approximated by linearization in the neighborhood
of a point in neural space. Taking advantage of this
feature, one study examined the dynamics of a linear-
ized system and formed a new ‘similarity’ network
where edge weights represent pairwise correlations
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Relevant network theoretical concepts for understanding neural and animal social network dynamics (a) Network dynamics can be conceptu-
alized as signals evolving on network nodes (edges are not shown; image reproduced from the study by Yan et al. [65]). (b) The controllability of a network
quantifies the role of inputs in influencing network dynamics. The networks on the left are controllable because each node can be driven to an arbitrary
state by the two inputs. The network on the right is uncontrollable because the red nodes cannot be driven to arbitrary states by the inputs. Controllability
has been used to identify C. elegans sensory neurons that affect the global network state and thus are of likely behavioral relevance (schematic based on
[66]). (c) Network symmetries are closely related to permissible network dynamics. The function of large networks can be decomposed into small network
units or motifs with well-characterized symmetries and input—output relationships. Here, the symmetries of a network of six central pattern generators
(CPGs) controlling insect locomotion can provide insights into functional circuit dynamics generating gaits. (d) Network geometry aims to represent
network structure as a mathematical object that can better reveal network symmetries or dynamical properties. One example is edge curvature, which is
typically defined based on some analogy to canonical geometries such as balls, planes or hyperboloids. Amongst other predictions, network geometry

can infer a network’s robustness (redundancy) or vulnerability (bottlenecks).

between nodal dynamics [75] (Box 2). Clustering this
network predicted which groups of neurons were likely
to be coactive in the nonlinear system. It is known that
signal propagation patterns depend on nonlinear node
dynamics [67]. Yet, strikingly, for a variety of networks in
neuroscience, ecology, and epidemiology, spreading be-
haviors fall into distinct modes depending on purely
structural features. These include the shortest paths
between nodes and high degree nodes (hubs) [65].
Studies aiming to understand the global effect of non-
linearities are extremely valuable for predicting how
specific features of neural tuning can influence large-
scale network computations.

Epidemics-inspired models are also insightful in the
study of animal collectives. Indeed, animal interactions
typically depend only on the relative position of in-
dividuals except, for example, in cases of crowding [76].
Modeling the behavioral changes mediated by network
interactions, often termed social contagion, is simpler
than modeling the evolution of a population’s state,
which has traditionally been studied using approaches
from the kinetic theory of gases [77]. Early ‘simple

contagion’ models considered the probability of an in-
dividual adopting a new behavior to be proportional to
the number of neighbors with that behavior [78].
However, it is now recognized that this probability must
include a nonlinear function of neighboring behaviors,
known as a ‘complex contagion’ [79]. For example, in
schooling fish, only models accounting for the coopera-
tive effects of neighboring active individuals can explain
group dynamics [80]. Thus, by simulating social cas-
cades, it has been possible to distinguish the effect of
individual—level parameters from that of the group’s
structure [81]. The dynamics of signal propagation have
also been extended to multilayer networks to reveal the
roles of different interaction modes [27].

Controllability of network signals. In addition to
network structure, network dynamics are also shaped by
inputs [82], such as sensory inputs driving neural net-
works, or predators disturbing animal interaction net-
works. Inputs can affect the network locally or they can
spread to the majority of nodes. ‘Controllability’ is the
notion that links network signals to their inputs [75].
This measures the ability of an input to drive network
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states to a desired target in finite time [83]. A special
case that assumes a linear system is ‘structural control-
lability’, which tests whether an input to a specific node
can significantly affect network dynamics. Although it is
a linear property, structural controllability predicts the
minimal set of inputs sufficient to control an underlying
nonlinear system (Figure 3B, Box 2). When applied to
connectomes, structural controllability can infer which
inputs — from sensory organs or other brain regions —
are behaviorally relevant. Classically, this task has been
performed by ablating sensory neurons and subse-
quently searching for a loss of function: an approach that
is experimentally intractable for larger groups of neurons
or to probe combinations of neurons. One study exam-
ined structural controllability of the C. elegans connec-
tome to predict sensory neuron classes, as well as single
neurons within these classes, whose removal would
reduce the number of controllable muscles, thus
impairing locomotion [66] (Figure 3B).

Controllability has also been generalized to temporal
networks, which are useful for studying animal collec-
tives [49]. In temporal networks, signal propagation is
slower but control is easier because the increased
number of layers enlarges the space of possible control
trajectories [49]. For example, controllability can be
achieved more rapidly in a network of antenna—body
interactions in ants than a network composed only of
static interactions [49]. Thus, control theory can pro-
vide insights into how brains generate robust actions
while also enabling diversity at the level of individual
and group-level behaviors.

Understanding dynamics through network symmetries.
Networks may contain ‘structural symmetries’. These are
possible rearrangements of nodes that leave network to-
pology invariant or unchanged (Figure 3C, Box 2). In
neural networks, structural symmetries are required for
controllability [88] and synchronization [89]. For
example, central pattern generators, which are frequently
used to model animal locomotion, must have ipsilateral
and contralateral symmetries to generate locomotor gaits
[90]. Based on this insight, one study suggested that
certain C. elegans locomotor patterns are associated with
structural symmetries in the worm’s connectome [85].
They found that circuits regulating forward/backward
locomotion can be decomposed into a hierarchical system
of dynamical units (filters) with well-defined symme-
tries. The dynamics of these units contribute to loco-
motion but are largely independent of the specific
dynamic parameters of the neurons. This decomposition
is related to network motifs — network units with well-
characterized input—output behaviors [9]. As a result,
evidence for network motifs between pairs of nodes can
also be found experimentally by injecting a prescribed
dynamic signal into one node and looking for certain
dynamical signatures in other nodes [91]. Similar
symmetry—function relationships are also emerging for

animals with larger nervous systems. For example, the
connectivity, inputs, and outputs of the Drosophila central
complex have recently been examined to link circuit
motifs with potential functional properties [18].

Network geometry linking dynamics and structure.
Further links between network symmetries, controlla-
bility, and signal propagation can be discovered using
tools from the emerging field of network geometry [92].
Briefly, network geometry aims to represent a network
by either identifying a continuous latent space in which
it can be embedded or by defining a geometric object
based on features of the network’s structure or node
signals (Figure 3D, Box 2). The motivation behind
constructing geometric objects is that they may be
particularly suited to reveal structure—function re-
lationships. For example, geometric notions have been
exceptionally useful in identifying hidden symmetries
and predicting the spatiotemporal evolution of network-
driven dynamical processes [92]. A geometric approach
has been used to uncover symmetries in the human
functional connectome, suggesting universal organiza-
tional principles across scales [93]. Network geometry
has also been used to infer information-limiting bottle-
necks between regions [87] and those that are redun-
dant for signal propagation [86,87]. Structural features
like the association to a high-degree node might not
highlight these properties. Thus, network geometry has
the potential to predict the relevance of connections
from dynamic network models or neural recordings.
Network geometric ideas have also been used in col-
lective behavior to detect dynamical transitions when a
hidden parameter is varied. In the study by Runge et al.
[94], the authors noticed that, in a collective system,
the state of the whole system can be encoded as a
probability distribution over the local connectivity of
each individual. Thus, they could compare the dynamics
across different conditions based on their respective
probability distributions. Using this approach, they were
able to detect dynamical transitions in collective
behavior without temporal information but based purely
on changes in the relative arrangement of individuals.

Limitations of network theoretic

approaches

Thus far we have highlighted the possibilities offered by
network theory when the system of interest can be
abstracted as a set of nodes and interactions. However, this
approximation is a modeling assumption and, thus, has
shortcomings. To begin with, functional networks —
where edges must be indirectly inferred from the simi-
larity between node dynamics — can be challenging to
infer. Several algorithms are available that rely on an un-
derlying generative network model or use correlative or
causative measures [95] that depend on factors such as
sampling rate, unobserved nodes, noise, and sample size.
In this context, missing nodes and edges can interrupt
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Box 2. Common Terminology in 3D Behavioral Tracking

Controllability The activity of N neurons can be modelled as the time-evolution of a state x(t) over N nodes connected by edges representing
synapses. The network may be subject to inputs u(t) representing sensory neurons. These neurons drive M muscles, whose activity y(t) is a
linear readout of x(t). Although the full non-linear governing equations are necessary for prediction, finding the minimal set of sensory inputs
required to control network activity can be accomplished by studying the linear system

x(z) = Ax(r) + Bu(r)

y(r) = Cx(2),

where A is the adjacency matrix of the connectome, B are the sensory neurons which convey external stimuli and Cis a readout matrix to the
muscles. This linear system is structurally controllable if, for almost all choices of the non-zero entries of A, B, C, the Kalman condition holds

rank[CB, CAB, CA*B, ...,CAY™B] = N.

An efficient approach to find the minimal set of inputs is to transform the control problem to a geometric one [84]. First, find the maximum matching
in the network, that is, the maximum number of edges that do not share endpoints. A node is matched if an edge in the maximum matching is
directed toward it. Then, inputs at unmatched nodes form the minimum set needed to control network activity if there is a directed path from each
input to every matched node (Figure 3B).

Signal propagation One way to quantify signal propagation is to compute the similarity between dynamic processes at nodes connected by an
edge. For example, considering the time-evolution of a state x(t) = (x1 (), ..., Xxn(t)) (such as neural activity) over N nodes, one can compute the
inner product

Y1) = (i(e),x5(2)) = wi(t)xi(e)”

Instead of an inner product, other measures of similarity could be considered, such as different correlations, or information theoretic measures.
However, taking the inner product and assuming that x(t) obeys linear dynamics, the similarity can be expressed as [75].

_ p1dGo(?)
ll/(l) - B df B7

t
where Go(t) = [ dteA"tCcT Cetl is the observability Gramian of the system over a time horizon ¢. Thus, ¥;(?) is related to control, by quantifying
how predictive tHe node i is for the dynamics of node j over a time horizon t.

Symmetry The symmetry of a network can be formalized as an automorphism, a relabeling of nodes that preserves the connectivity in the sense
that the same nodes are connected before and after the application of the automorphism (Figure 3C). The set of automorphisms forms a
symmetry group of the network. The symmetry groups of a network can be found algorithmically and then factorized into subgroups. Finding
these factors predicts subsets of neurons that drive distinct animal behaviors [85].

Geometry One way to capture the geometry of a network is by defining its curvature. There are several possible curvature notions, typically
based on some analogy to the curvature of continuous spaces. A popular definition is the Ollivier-Ricci curvature of an edge, which generalizes
the coarse Ricci curvature on continuous manifolds in a given direction. It measures the extent to which the edge length wj; between two
connected nodes i and j differs from the (weighted) average length of shortest paths between the respective neighborhoods of these nodes.
Mathematically, the Ollivier-Ricci curvature of an edge jj is

Kij = l—W(mi,mj)/wij,

where W is the optimal transport distance and m; and m; are distributions supported by the neighborhoods of i and j that serve to weight the
importance of geodesics. For example, they can be uniform distributions [86], or weighted based on the distance of neighbors to account for the
network topology at different scales [87]. Computing the curvature for all edges in the network can predict dynamically related nodes based on
similar values of the curvature (Figure 3D).
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signal propagation and cause network-wide differences in
dynamic patterns. Thus, a naive approach should attempt
to include all nodes and edges in a network analysis. That
said, studies of the resilience of networks against failure
(i.e., the ability of networks to maintain their function
despite missing nodes and edges) offer techniques for
estimating whether incomplete datasets are likely to
result in erroneous predictions depending on the sur-
rounding network topology [96]. Furthermore, the accu-
racy and interpretations of network theory metrics can, on
a case-by-case basis, depend on network and dynamic
properties including network size, stochastic dynamics or
measurement noise, and the dimensionality of dynamics.

Conclusions

Recent technical advances have enabled the acquisition
of large-scale datasets in neuroscience and collective
behavior. These can be represented as networks of
neural connectivity, functional dynamics, and also
population-level inter-animal interactions. Network
theory offers a set of tools that can help to distill uni-
versal principles from these data, linking structure and
function, often from only a few noisy network instances.
Progress in this direction will offer new avenues for
investigating distributed computations per formed by
collective systems of neurons and animals and can
advance machine learning approaches that leverage the
power of bioinspired network operations.
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