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To identify how actions arise from neural circuit dynamics, one 
must first make accurate measurements of behavior in labo-
ratory experiments. Recent innovations in three-dimensional 

(3D) pose estimation promise to accelerate the discovery of these 
neural control principles. 3D pose estimation is typically accom-
plished by triangulating two-dimensional (2D) poses acquired 
using multiple, synchronized cameras and deep learning-based 
tracking algorithms1–9. Triangulation requires that every tracked 
keypoint (body landmark) be visible from at least two synchronized 
cameras10 and that each camera is calibrated. These requirements 
are often difficult to meet in space-constrained experimental sys-
tems that also house sensory stimulation devices11–13, or when video 
recording untethered, freely behaving animals such as fur-covered 
rodents14 for whom keypoints can sometimes be occluded.

Because of these challenges, most animal studies have favored 2D 
pose estimation using one camera1,2,6,15–17. Nevertheless, 3D poses are 
more desirable because they eliminate a problematic camera-angle 
dependence that can arise during behavioral analyses3. Recent work 
on human pose estimation has performed ‘lifting’ of 2D poses by 
regressing them to a library of 3D poses18–21. However, high accu-
racy has only recently been achieved using deep learning22–34. These 
techniques have not been adapted to the study of animals due to the 
lack of large and diverse training datasets.

Here, we introduce LiftPose3D, a tool for 3D pose estimation 
of tethered and freely behaving laboratory animals from a single 
camera view. Our method builds on a neural network architecture 
designed to lift human poses30. We develop data transformations 
and network training augmentation methods that enable accurate 
3D pose estimation across a wide range of animals, camera angles, 
experimental systems and behaviors using relatively little data. We 
applied LiftPose3D to a series of use cases to demonstrate that (1) a 
library of 3D poses can be used to train our network to lift 2D poses 

from one camera, with minimal constraints on camera hardware 
and positioning and, consequently, no calibration, (2) by aligning 
animal poses, our network can overcome occlusions and outliers in 
ground truth data and (3) pretrained networks can generalize across 
experimental setups using linear domain adaptation.

Results
Predicting 3D poses with a single camera at an arbitrary posi-
tion. Rather than taking independent 2D keypoints as inputs, as 
for triangulation-based 3D pose estimation, LiftPose3D uses a deep 
neural network to regress an ensemble of 2D keypoints viewed from 
a camera—the 2D pose—to a ground truth library of 3D poses. 
Considering all keypoints simultaneously allows the network to 
learn geometric relationships intrinsic to animal poses.

First, we illustrate how this approach can reduce the number 
of cameras needed for 3D pose estimation on a tethered adult 
Drosophila dataset3. Here, 15 keypoints are visible from three syn-
chronized cameras on each side of the animal (Fig. 1a). These key-
points were annotated and triangulated using DeepFly3D3. Using 
this dataset as a 3D pose library we trained a LiftPose3D network 
that lifts half-body 2D poses from any side camera without knowing 
the camera’s orientation Fig. 1b,c). First, we ensured that the output 
of LiftPose3D was translation invariant by predicting the keypoints 
of the respective legs relative to six ‘root’ immobile thorax-coxa 
joints (green circles, Fig. 1b,c). Second, to avoid the network having 
to learn perspective distortions, we assumed that the focal length 
(intrinsic matrix) of the camera and the animal-to-camera distance 
were known, or that one of them is large enough to assume weak 
perspective effects. In the latter case, we normalized 2D input poses 
by their Frobenius norm during both training and testing. Third, to 
facilitate lifting from any angle, we assumed that extrinsic matrices, 
which could be obtained by calibration, might also be unknown. 
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Instead, we parametrized them by Euler angles ψz, ψy, ψx represent-
ing ordered rotations around the z, y and x axes of a coordinate 
system centered around the fly (Fig. 1d). During training, we took 
as inputs 2D poses (from 3D poses randomly projected to virtual 
camera planes, rather than 2D pose estimates) and as outputs 3D 
poses triangulated from three cameras. To measure lifting accuracy, 
we tested the network on software-annotated 2D poses (Fig. 1b) 
from two independent animals and computed the mean absolute 
error (MAE), ete

j , for each joint j as well as the MAE across all joints 
ete = (1/n)

∑
je

te
j  relative to triangulated 3D poses.

We found that LiftPose3D could predict 3D poses using only 
one camera per side (Fig. 1c). When the virtual projections dur-
ing training were performed using known intrinsic and extrinsic 
matrices, the network’s accuracy was at least as good as triangula-
tion using two cameras per keypoint (Fig. 1e). The accuracy did not 
suffer when the network was trained using virtual 2D projections 
around an approximate camera location (Fig. 1e) rather than with 
known intrinsic matrices, or using normalized 2D poses rather 
than with known intrinsic matrices. Accuracy remained excellent 
when virtual projections extended to all possible angles around 
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Fig. 1 | LiftPose3D predicts 3D poses with a single, flexibly positioned camera. a, Ground truth 3D poses of tethered Drosophila are triangulated using six 
camera views (three cameras per keypoint). b, LiftPose3D predicts 3D poses using deep network-derived 2D poses from only two cameras (red and blue, 
one camera per keypoint). The coordinates are considered relative to a set of root joints (green). The inputs are scaled up and passed twice through the 
main processing unit (gray rectangle) comprising batch norm, dropout and rectified linear units (ReLU) wrapped by a skip connection. c, The output, 3D 
half-body poses (blue/red), are compared with triangulated 3D poses. Limbs are labeled by position as left (L)/right (R) and front (1), mid (2) or hind (3) 
legs. d, LiftPose3D can be trained using virtual camera projections of 3D poses to lift from cameras within the angles ψz, ψy, ψx (representing ordered yaw, 
roll, pitch rotations). e, Error of 3D poses relative to triangulation using three cameras per keypoint. We compare triangulation error using two cameras per 
keypoint (white), test error for a network trained with known camera parameters (orange) and two angle-invariant networks with narrow (green, ψz = ±10∘, 
ψy = ±5∘, ψx = ±5∘ with respect to a known camera orientation), or wide ranges (red, ψz = ±180∘, ψy = ±5∘, ψx = ±5∘). f, Error of lifted 3D poses at different 
virtual camera orientations of the wide-range lifter network and a network with known camera parameters. Blue dots represent lifting errors for a given 
projected 2D pose. Orange circles represent averages over the test dataset for a given camera. g, Error of estimated 3D poses for a network trained and 
tested on different combinations of behavioral data including optogenetically induced backward walking (MDN, left), antennal grooming (aDN, middle) 
or spontaneous, unstimulated behaviors (control, right). h, Two representative images from the OpenMonkeyStudio dataset. 2D poses are superimposed 
(black). i, 3D poses obtained by triangulating up to 62 cameras (red lines), or using a single camera and LiftPose3D (dashed black lines). j, Absolute errors 
for different body parts with respect to total body length. Violin plots represent Gaussian kernel density estimates with bandwidth 0.5, truncated at the 
99th percentile and superimposed with the median (gray dot), 25th and 50th percentiles (black line).
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the meridian (Fig. 1e). Lifting could be performed for optogeneti-
cally induced backward walking (Supplementary Video 1), anten-
nal grooming (Supplementary Video 2) and spontaneous, irregular 
limb movements (Supplementary Video 3). Because the network 
predicts joint coordinates with respect to thoracic root joints, the 
MAE was larger for distal joints that move within a larger kinematic 

volume. By contrast, the error for triangulation depended only on 
the accuracy of 2D annotations because it treats each keypoint inde-
pendently. We also assessed camera-angle dependence for our wide 
angle-range network by lifting virtual 2D poses projected onto the 
meridian of the unit sphere, or 2D poses captured from each of the 
six cameras (Fig. 1f). The test MAE was low (<0.05 mm) and had no 
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Fig. 2 | LiftPose3D performs 3D poses estimation on freely behaving animals with occluded keypoints. a, Drosophila behaving freely within a narrow, 
transparent enclosure. Using a right-angle prism mirror, ventral (top) and side (bottom) views are recorded with one camera. Afterward, 2D poses are 
annotated (colored lines). Ventral 2D poses (green box) are used to lift 3D poses. b, Keypoints near the prism mirror (red and blue) can be tracked in 
both views and triangulated. Other keypoints (gray) are only visible ventrally and thus have no 3D ground truth. Unilateral ground truths for both sides are 
obtained by registering the orientation and position of ventral images of the fly. c, Training data consist of full ventral 2D poses and their corresponding 
partial 3D poses. d, After training, LiftPose3D can predict 3D poses for new ventral view 2D poses. e, Joint-wise and overall absolute errors of the 
network’s 3D pose predictions for freely behaving Drosophila. f, A similar data preprocessing approach is used to lift ventral view 2D poses of mice (green 
boxes) walking within a narrow enclosure and tracked using LocoMouse software. LocoMouse ground truth (blue and red) and LiftPose3D (orange) pose 
trajectories are shown for the right forepaw (top) and hindpaw (bottom) during one walking epoch. Arrowheads indicate where LiftPose3D lifting of the 
ventral view can be used to correct LocoMouse side-view tracking errors (red). Asterisks indicate where inaccuracies in the LocoMouse ventral view 
ground truth (red) disrupt LiftPose3D’s side-view predictions (orange). g, Absolute errors of LiftPose3D and LocoMouse side-view predictions for six 
keypoints with respect to manually annotated ground truth data. h, Camera image from the CAPTURE dataset superimposed with the annotated 2D pose 
(left). LiftPose3D uses this 2D pose to recover the full 3D pose (right). i, LiftPose3D can be trained to lift 3D poses of a freely moving rat with occluded 
keypoints (open circles). j, Histograms of the measured lengths of the spinal segment for two different animals. k, Error distribution over all keypoints for 
the CAPTURE dataset.
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Fig. 3 | A pretrained LiftPose3D network predicts 3D poses for diverse data and when triangulation is impossible. a, Linear domain adaptation between 
domain A (fly on a spherical treadmill) and domain B (fly on a flat surface). 2D poses in B are mapped to A by a linear transformation d2 then lifted with a 
network trained only on domain A poses. After lifting, the 3D poses are mapped back to B by another linear transformation d3. b, A typical 2D pose in domain B 
mapped into domain A by the best-fit linear transformation d2 between poses in B and their nearest neighbors in A. c, Error between mapped pose and k nearest 
neighbor poses for d2, d3 against the number of poses used to train them (k = 1 for d2 and k = 2 for d3). d, Lifted 3D pose following domain adaptation of a ventral 
domain B 2D pose and lifting with a network trained on domain A data. The prediction is superimposed with the incomplete ground truth 3D pose in domain B. 
e, Lifting error following domain adaptation of domain B poses compared with lifting error in the domain A with no domain adaptation. f, Freely behaving flies 
were recorded from below using a low-resolution camera. Following body tracking, the region-of-interest containing the fly was cropped and registered. 2D pose 
estimation was then performed for 24 visible joints. g, 2D poses are adapted to the prism-mirror domain. These are then lifted to 3D poses using a network 
pretrained with prism-mirror data and coarse-grained to match the lower-resolution 2D images in the new experimental system. h, These 3D poses permit the 
analysis of claw movements in an otherwise unobserved x–z plane (bottom). i, Freely behaving fly recorded from below using one high-resolution camera. 2D 
pose estimation was performed for all 30 joints. Following tracking, a region-of-interest containing the fly was cropped and registered. j,k, The same LiftPose3D 
network trained in b—but without coarse graining—was used to predict 3D poses (j) and unobserved claw movements (k) in the x–z plane (bottom)16.
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camera-angle dependence. Because we make no assumptions about 
camera placement when training our angle-invariant networks, 
these pretrained networks might also be used to predict accurate 
3D poses for tethered Drosophila recorded in other laboratories.

We next explored how the similarity between animal behaviors 
used for training and testing might influence lifting accuracy. Our 
tethered Drosophila dataset contained optogenetically induced 
antennal grooming (antennal descending neurons: ‘aDNs’) and 
backward walking (moonwalker descending neurons: ‘MDNs’), 
as well as spontaneous behaviors such as forward walking (‘con-
trol’). We trained a network using poses from only one behavior 
(not including rest frames) and evaluated it on all three behaviors 
while keeping the amount of training data fixed (2.5 × 104 poses). As 
expected, the MAE was higher when test data included untrained 
behaviors than when test data included trained behaviors (Fig. 1g). 
Furthermore, training on all three behaviors led to comparable or 
lower MAE (Fig. 1e) than training and testing on one single behav-
ior (Fig. 1g). Thus, higher training data diversity improves lifting 
accuracy.

To illustrate the advantage of using lifted 3D poses versus 2D 
poses in downstream analyses, we derived joint angles during for-
ward walking from lifted 3D poses and from 2D poses projected 
from 3D poses in the ventral plane (Extended Data Fig. 1). Joint 
angles derived from lifted and triangulated 3D poses were in close 
agreement. On the other hand, when viewed from a projected 
plane, we found spurious dynamics in the distal joints likely due 
to rotations upstream in the kinematic chain (proximal joints) 
that cause movements of the whole leg. Thus, 3D poses predicted 
by LiftPose3D can help to decouple underlying physical degrees  
of freedom.

We also tested LiftPose3D in freely behaving animals where the 
effective camera angle dynamically changes, and in animals with-
out exoskeletons whose neighboring keypoints are less constrained. 
Specifically, we considered freely behaving macaque monkeys4 where 
3D poses were triangulated using 2D poses from 62 synchronized 
cameras (Fig. 1h). After training LiftPose3D with only 6,571 3D 
poses, we could lift 3D poses from test images with diverse animal 
poses (Supplementary Video 4), acquired from any camera (Fig. 1i)  
and with relatively low body length-normalized MAE (Fig. 1j).

Taken together, these results demonstrate that, using simple data 
preprocessing and a relatively small but diverse training dataset, 
LiftPose3D can reduce the number of cameras required to perform 
accurate 3D pose estimation.

Predicting 3D poses despite occluded keypoints. In freely behav-
ing animals, keypoints are often missing from certain camera angles 
due to self-occlusions and, therefore, only partial 3D ground truth 
can be obtained by triangulation. We asked how the global nature 
of lifting—all keypoints are lifted simultaneously—might be lever-
aged to reconstruct information lost by occlusions, allowing one to 
predict full 3D poses.

To address this question, we built an experimental system simi-
lar to others used for flies and mice14,35,36 that consisted of a trans-
parent enclosure coupled to a right-angle prism mirror and with a 
camera beneath to record ventral and side views of a freely behav-
ing fly (Fig. 2a). Due to the right-angle prism and the long focal 
length camera (that is, negligible perspective effects), the ventral 
and side views are orthographic projections of the true 3D pose. 
Triangulation thus consisted of estimating the z axis depth of key-
points from the side view. Although keypoints closer to the prism 
were simultaneously visible in both views and could be triangulated, 
other joints had only ventral 2D information. We therefore aligned 
flies in the same reference frame in the ventral view (Fig. 2b), turn-
ing lifting into a regression problem similar to that for tethered ani-
mals. During training we took ventral view 2D poses as inputs, but 
trained only those keypoints with complete 3D information, that is, 

those having both ventral and side views (Fig. 2c). By also aligning 
these data, we found that the network training converged despite 
the unseen coordinates (Extended Data Fig. 2), which were implic-
itly augmented during training by learning geometric relationships 
between keypoints. The network could predict 3D positions for 
every joint at test time, including those occluded in the side view 
(Fig. 2d and Supplementary Video 5). Notably, owing to the high 
spatial resolution of this setup, the accuracy, based on available 
triangulation-derived 3D positions (Fig. 2e), was better than that 
obtained for tethered flies triangulated using four cameras (Fig. 1e). 
Thus, LiftPose3D can estimate 3D poses from 2D images in cases 
where keypoints are occluded and cannot be triangulated.

These results indicated an opportunity to apply lifting to poten-
tially correct inaccurate 3D poses obtained using other track-
ing approaches. To test this, we used a dataset consisting of freely 
behaving mice traversing a narrow corridor and tracked using 
the LocoMouse software from ventral and side views14. We trian-
gulated and aligned incomplete 3D ground truth poses as we did 
for Drosophila and then trained a LiftPose3D network using ven-
tral 2D poses as inputs. Predictions were in good agreement with 
the LocoMouse’s side-view tracking (Fig. 2e and Supplementary 
Video 6) and could recover expected cycloid-like kinematics 
between strides (Fig. 2f). LiftPose3D predictions could also cor-
rect poorly labeled or missing side-view poses (Fig. 2f). However, 
lifting accuracy depended on the fidelity of input 2D poses: incor-
rect ventral 2D poses generated false side-view predictions (Fig. 2f). 
These errors were always localized to a single joint and were rela-
tively infrequent. Overall, LiftPose3D and LocoMouse performed 
similarly compared with manual human annotation (Fig. 2g) dem-
onstrating that LiftPose3D can be used to test the consistency of 
ground truth datasets.

To assess how well spatial relationships learned by LiftPose3D 
could generalize to animals with more complex behaviors and larger 
variations in body proportions, we next considered the CAPTURE 
dataset that was taken using six cameras that recorded freely behav-
ing rats within a circular arena37 (Fig. 2h). Animal joints were 
intermittently self-occluded during a variety of complex behaviors  
(Fig. 2i). Therefore, to allow the network to learn the skeletal 
geometry, we aligned animals in the camera-coordinate frame and 
replaced missing input data with zeros. Furthermore, to make the 
network robust to bone-length variability within and across animals 
(Fig. 2j) we assumed that bone lengths were normally distributed 
and generated, for each triangulated 3D pose, rescaled 3D poses 
by sampling from bone-length distributions while preserving joint 
angles. Then, we obtained corresponding 2D poses via a virtual 
projection within the Euler angle range of ±10∘ with respect to the 
known camera locations (to augment the range of camera-to-animal 
angles). Finally, we normalized 2D poses by their Frobenius norm, 
as before, assuming a large enough camera-to-animal distance.

To show that the network generalizes across new experimental 
setups, we used two experiments from this dataset (that is, two ani-
mals and two camera arrangements) for training and tested with 
a third experiment (a different animal, camera focal length and 
animal-to-camera distance). By replacing low confidence or miss-
ing coordinates with zeros, LiftPose3D could accurately predict 
the nonzero coordinates (Fig. 2h,k and Supplementary Video 7).  
Thus, this is a viable way to correct for erroneous input key-
points and makes our network directly applicable to other rat  
movement studies.

Lifting diverse experimental data without 3D ground truth. 
Although our angle-invariant networks for lifting 3D poses in teth-
ered flies (Fig. 1d–f) and freely behaving rats (Fig. 2h–k) can be 
used in similar experimental systems without the need for addi-
tional training data, small variations resulting from camera distor-
tions or postural differences may limit the accuracy of lifted poses. 
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Therefore, we explored how domain adaptation might enable pre-
trained networks to lift poses in new experimental systems despite 
small postural variations.

We assessed the possibility of domain adaptation by training 
a network in domain A—tethered flies—and predicting 3D poses 
in domain B—freely moving flies (Fig. 3a). To do so, we identified 
two linear transformations d2 and d3. d2 is used to map 2D poses 
from domain B as inputs to the pretrained network in domain A, 
while d−1

3  is used to transform lifted 3D poses back to domain B. 
These linear transformations were found as best-fit mappings from 
every pose in a training dataset B’ to their k nearest neighbors A’ 
(Fig. 3b). They are expected to generalize as long as the poses in 
domain A are rich enough to cover the pose repertoire in domain B 
and are sufficiently similar between domains. We found by tenfold 
cross-validation that the error associated with the transformations 
converged after training with less than 500 poses (Fig. 3c). The final 
lifted poses were also in good agreement with the triangulated poses 
in domain B (Fig. 3d) having accuracies comparable to a network 
lifting purely in domain A (Fig. 3e).

To demonstrate the full potential of linear domain adaptation, 
we next lifted Drosophila 2D poses from a single ventral camera. 
This experimental system is common due to its simplicity, low cost 
and increased throughput, and has been used to study C. elegans38, 
larval zebrafish39, larval Drosophila40, adult Drosophila41 and mice42. 
Because depth sensors43,44 cannot resolve small laboratory animals, 
3D pose estimation from a single 2D view remains unsolved, but 
has the potential to enrich behavioral datasets and improve down-
stream analysis.

We developed an experimental system with a square-shaped 
arena in which multiple freely behaving flies were recorded ven-
trally using a single camera (Fig. 3f, left) at fourfold lower spatial 
resolution (26 px mm−1) than in our prism-mirror system. We pre-
trained a network using prism-mirror training data for keypoints 
present in both datasets and then augmented these data using a 
Gaussian noise term with standard deviation of roughly four. We 
adapted annotated 2D poses into the network’s domain before lift-
ing (Fig. 3b). We found that the network could predict physiologi-
cally realistic 3D poses in this dataset using only ventral 2D poses 
(Fig. 3g and Supplementary Video 8). This is remarkable because 
ventrally viewed swing and stance phases are difficult to distinguish, 
particularly at lower resolution. During walking, 2D tracking of the 
tarsal claws traced out stereotypical trajectories in the x–y plane45 
and circular movements in the unmeasured x–z plane (Fig. 3h). The 
amplitudes of these movements were consistent with real kinematic 
measurements during forward walking46.

Another possibility offered by LiftPose3D is to ‘resurrect’ previ-
ously published 2D pose data for 3D kinematic analyses. We applied 
our network that was trained on prism-mirror data to lift video 
data of a fly walking through a capsule-shaped arena16 (Fig. 3i). 
Using a similar processing pipeline as before (Fig. 3b,f,g), includ-
ing registration and domain adaptation but not noise perturbations 
(the target data were of a similarly high resolution as the training 
data), LiftPose3D could predict 3D poses from this dataset (Fig. 3j).  
We again observed physiologically realistic cyclical movements 
of the pretarsi during forward walking (Fig. 3k, bottom and 
Supplementary Video 9). These data illustrate that linear domain 
adaptation and LiftPose3D can be combined to lift 3D poses from 
previously published 2D video data for which 3D triangulation 
would be otherwise impossible.

Drosophila LiftPose3D station. These domain adaptation results 
indicated that one could make 3D pose acquisition more accessible 
by designing a ‘Drosophila LiftPose3D station’—an open-source 
hardware system including a 3D printed rig supporting a rectangu-
lar arena (Extended Data Fig. 3 and Supplementary Note 1). A com-
mon hardware solution such as this overcomes potential variability 

across different experimental systems that arise from camera dis-
tortions and perspective effects. Using pretrained DeepLabCut 
and LiftPose3D networks we found that one can effectively lift 
Drosophila 3D poses with this system (Supplementary Video 10). 
We envision that a similar approach might, in the future, also 
facilitate cross-laboratory 3D lifting of mouse 2D poses from a  
single camera.

Discussion
Here we have introduced LiftPose3D, a deep learning-based tool 
that simplifies 3D pose estimation across a wide variety of labora-
tory contexts. LiftPose3D can take as inputs 2D poses from any of 
a variety of annotation softwares2,3. Through input data preprocess-
ing, training augmentation and domain adaptation, one can train a 
lifting network30 with several orders of magnitude less data as well as 
incomplete or inaccurate ground truth poses. LiftPose3D is invari-
ant to camera hardware and positioning, making it possible to use 
the same networks across laboratories and experimental systems. 
We provide an intuitive Python notebook that serves as an interface 
for data preprocessing, network training, 3D predictions and data 
visualization.

Several factors must be considered when optimizing LiftPose3D 
for new experimental systems. First, because predicting depth 
from a 2D projection depends on comparing the lengths of body 
parts, input poses must be sufficiently well-resolved to discriminate 
between 3D poses with similar 2D projections. Second, prediction 
accuracy depends on training data diversity: previously untrained 
behaviors may not be as accurately lifted. Further work may 
improve LiftPose3D by constraining 3D poses using body priors47–51 
and temporal information31.

Using our domain adaptation methodology, networks with the 
largest and most diverse training data, such as those for the tethered 
fly, may be sufficiently robust to accurately lift 2D to 3D pose in 
other laboratories. In the future, similarly robust lifting networks 
might be generated for other animals through a cross-laboratory 
aggregation of diverse 3D pose ground truth datasets. In summary, 
LiftPose3D can accelerate 3D pose estimation by reducing the need 
for complex and expensive synchronized multi-camera systems, 
and arduous calibration procedures. This enables the acquisition of 
rich behavioral data that can advance our understanding of the neu-
romechanical control of behavior.
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Methods
Theoretical basis for LiftPose3D. LiftPose3D estimates the 3D pose X = (X1, …, Xn), 
that is, an ensemble of 3D keypoint coordinate vectors, by learning a nonlinear 
mapping between triangulated ground truth 3D poses and corresponding 2D poses 
xc = (xc,1, …, xc,n), an ensemble of 2D coordinate vectors. Formally, this operation 
is encoded in a lifting function f mapping a 2D pose from any camera c to their 
corresponding 3D pose in camera-centered coordinates, Yc = f(xc), and a camera 
transformation ϕc, encoding a rotation and translation operation (equation (2)), 
mapping from camera-centered coordinates to world coordinates X = ϕ−1

c (Yc). The 
lifting function f can be approximated using a deep neural network F(xc; Θ), where Θ 
represents the network weights controlling the behavior of F. In a specific application, 
Θ are trained by minimizing the discrepancy between 3D poses predicted by lifting 
from any camera and ground truth 3D poses,

J1(Θ) :=
∑

c

n∑

j=1
χVc

(j)||(F(xc;Θ))j − Yc,j||
2
2 , (1)

where χVc
(j) is an indicator function of the set Vc of visible points from camera 

c. For F(xc; Θ), we adapted a network architecture from ref. 30 composed of fully 
connected layers regularized by batch norm and dropout52 and linked with skip 
connections (Fig. 1b). This network was developed to perform human pose 
estimation following training on approximately 106 fully annotated 2–3D human 
pose pairs for many different behaviors.

Our approach implicitly assumes that the network learns two operations: 
lifting the 2D pose xc to camera-centered 3D coordinates Yc by predicting the 
depth component of the pose, and learning perspective effects encoded in the 
animal-to-camera distance and the intrinsic camera matrix (equations (2)–(5)). 
The intrinsic camera matrix is camera-specific, suggesting that a trained network 
can only lift poses from cameras used during training and that application to 
new settings with strong perspective effects (short focal lengths) may require 
camera calibration. We show that this is not necessarily the case and that one 
can generalize pretrained networks to new settings by weakening perspective 
effects. This can be accomplished by either using a large focal length camera, or by 
increasing the animal-to-camera distance and normalizing the scale of 2D poses.

Obtaining 3D pose ground truth data by triangulation. Triangulated 3D positions 
served as ground truth data for assessing the accuracy of LiftPose3D. If a keypoint 
j of interest is visible from at least two cameras, with corresponding 2D coordinates 
xc,j ∈ R

2 in camera c and camera parameters (extrinsic and intrinsic matrices), 
then its 3D coordinates Xj ∈ R

3 in a global world reference frame can be obtained 
by triangulation. Let us express Xj = (x1j , x2j , x3j ) in homogeneous coordinates as 
X̂j = (x1j , x2j , x3j , 1). The projection from the 3D points in the global coordinate 
system to 2D points in a local coordinate system centered on camera c is performed by 
the function πc : R

4
→ R

3 defined as x̂c,j = πc(X̂j). This function can be expressed 
as a composition πc = proj1,2 ∘ ϕc of an affine transformation ϕc : R

4
→ R

4 from global 
coordinates to camera-centered coordinates and a projection proj1,2 : R4

→ R
3 

to the first two coordinates. Both functions can be parametrized using the pinhole 
camera model10. On the one hand, we have

ϕc(Xj) := CcX̂T
j = Ŷc,j , (2)

where Cc is the extrinsic camera matrix corresponding to the ϕc and can be written 

as

Cc =   Rc     Tc (3)(3)
0 1

where Rc ∈ R
3×3 is a matrix corresponding to rotation around the origin and 

Tc ∈ R
3 is a translation vector representing the distance of the origin of the world 

coordinate system to the camera center. Likewise, the projection function can be 
expressed as

proj1,2Ŷc,j := KŶc,j = x̂c,j , (4)

where K is the intrinsic camera transformation

K =





fx 0 cx 0

0 fy cy 0

0 0 1 0



 , (5)

where fx, fy denote the focal lengths and cx, cy denote the image center. The 
coordinates projected to the camera plane can be obtained by converting back to 
Euclidean coordinates xc,j = (x̂1c,j /̂x3c,j , x̂2c,j /̂x3c,j).

Triangulation of the coordinate Xj of joint j with respect to πc is obtained by 
minimizing the reprojection error, that is, the discrepancy between the 2D camera 
coordinate, xc,j, and the 3D coordinate projected to the camera frame, πc(Xj). Let Vc be 
the set of visible joints from camera c. The reprojection error for joint j is taken to be

eRP (j; {πc}) =
∑

c
χVc

(j) ||xc,j − πc(Xj)||
2
2 , (6)

where χVc
(·) is the indicator function of set Vc of visible keypoints from camera c. 

The camera projection functions πc are initially unknown. To avoid having to use 
a calibration grid, we jointly minimize with respect to the 3D location of all joints 
and to the camera parameters, a procedure known as bundle adjustment10. Given a 
set of 2D observations, we seek

min
πc , Xj

∑

j
eRP (j; {πc}) (7)

using a second-order optimization method. For further details, we refer the 
interested reader to ref. 3.

LiftPose3D network architecture and optimization. The core LiftPose3D 
network architecture is similar to the one in ref. 30 and is depicted in Fig. 1b. Its 
main module includes two linear layers of dimension, 1,024 rectified linear units53, 
dropout52 and residual connections54. The inputs and outputs of each block are 
connected during each forward pass using a skip connection. The model contains 
4 × 106 trainable parameters, which are optimized by stochastic gradient descent 
using the Adam optimizer55. We also perform batch normalization56.

In all cases, the parameters were set using Kaiming initialization54 and the 
optimizer was run until convergence—typically within 30 epochs—with the 
following training hyperparameters: batch size of 64 and an initial learning rate of 
10−3 that was dropped by 4% every 5,000 steps. We implemented our network in 
PyTorch on a desktop workstation running on an Intel Core i9-7900X CPU with 
32 Gb of DDR4 RAM, and a GeForce RTX 2080 Ti Dual O11G GPU. Training time 
was less than 10 min for all cases studied.

Weak perspective augmentation. To project 2D poses from 3D poses, one needs 
to know the camera transformation ϕc (equation (2)), encoded by the extrinsic 
matrix Cc (equation (3)) and the projection function proj1,2 (equation (4)), encoded 
by the intrinsic matrix K (equation (5)). K may be unknown a priori at test time. 
Alternatively, one may want to use one of our pretrained networks on a new dataset 
without having to match the camera positioning (focal length, camera-to-animal 
distance) used to collect the training data. In this case, one may still be able to predict 
the 3D pose in a fixed camera-centered coordinate frame by assuming that either the 
camera-to-animal distance or the focal length are large enough to neglect perspective 
effects and by normalizing the scale of 2D poses. Following ref. 57, we chose the 
Frobenius norm to perform normalization on the input 2D poses xc,j/∣∣xc,j∣∣F, which 
is the diagonal distance of the smallest bounding box around the 2D pose. Note that 
if the 2D poses are obtained via projections, one may use the unit intrinsic matrix 
equation (5) with fx = fy and cx = cy = 0 before performing normalization. Here, using 
cx = cy = 0 assumes that the 2D poses are centered, which in each of our examples is 
achieved by considering coordinates relative to root joints placed at the origin. The 2D 
poses must be normalized both at training and test times.

Camera-angle augmentation. The object-to-camera orientation is encoded by 
the extrinsic matrix Cc of equation (3). When it is unavailable, one can still use our 
framework by taking 3D poses from the ground truth library and, during training, 
performing virtual 2D projections around the approximate camera location or for 
all possible angles. To this end, we assume that the rotation matrix R is unknown, 
but that the intrinsic matrix K and the object-to-camera distance d are known such 
that we may take T = (0, 0, d)T. When K or d are also unknown, or dynamically 
changing, one can make the weak perspective assumption as described in the next 
section. Then, instead of training the LiftPose3D network with pairs of 3D poses 
and 2D poses at fixed angles, we perform random 2D projections of the 3D pose 
to obtain virtual camera planes whose centers cx, cy lie on the sphere of radius d. 
To define the projections, we require a parametric representation of the rotations. 
Rotating a point in 3D space can be achieved using three consecutive rotations 
around the three Cartesian coordinate axes x, y, z commonly referred to as Euler 
angles and denoted by ψx, ψy and ψy. The rotation matrix can then be written as

R = Rxyz = Rx(ψx)Ry(ψy)Rz(ψz)

=





1 0 0

0 cos ψx − sin ψx

0 sin ψx cos ψx









cos ψy 0 sin ψy

0 1 0

− sin ψy 0 cos ψy









cos ψz − sin ψz 0

sin ψz cos ψz 0

0 0 1





(8)

Given equations (2)–(5) we may then define a random projection x̂j on the sphere 
of radius d of a keypoint with homogeneous coordinate X̂j as

Xj  = K   Rxyz      T Xj (9)(9)
0 1

where T = (0, 0, d)T. Likewise, the 3D pose in camera coordinates can be expressed as

Yj  =    Rxyz      T Xj . (10)(10)
0 1

Before training, we fix d, fx, fy, cy, cy and define intervals for the Euler angle 
rotations. We then obtain the mean and standard deviation in each dimension for 

(3)

(9)

(10)
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both 2D and 3D poses in the training dataset by performing random projections 
within these angle ranges. The obtained means and standard deviations are then 
used to normalize both the training and test datasets.

Linear domain adaptation. Here we describe the process of adapting a network 
trained on data from experiment A to lift 2D poses in experiment B. Domain 
adaptation is also useful if the camera parameters or the distance from the camera 
are not known and the weak perspective assumption cannot be invoked. Before 
performing domain adaptation, we first estimate 2D poses from ventral images in 
domain B, as before. This allowed us to circumvent the difficulties arising from 
differences in appearance and illumination that are present in the more general 
image domain adaptation problem35,58,59. Thus, adapting poses became a purely 
geometric problem of adjusting proportions and postural differences across 
domains.

The basis for domain adaptation is to first find a function d2: B∣2 → A∣2, where 
A∣2 and B∣2 are restrictions of 3D poses in the two domains, to the corresponding 
2n-dimensional spaces of 2D poses. This function maps poses in domain B to 
domain A and makes them compatible inputs for the network trained on poses in 
domain A. In the scenario that 3D data are available in domain B, we can also find 
a function d3: B → A where A and B are 3n-dimensional spaces of 3D poses in the 
two experimental domains. After 3D poses have been obtained in domain A, we 
map these poses back to domain B by inverting this function.

We now describe how to obtain the functions d2 and d3, which we denote 
collectively as d. To find d, we assume that poses in domain B can be obtained 
by small perturbations of poses in domain A. This allows us to set up a matching 
between the two domains by finding nearest neighbor 2D poses in domain A 
for each 2D pose in domain B, xBi = (xBi,1, …, xBi,n). We use 2D rather than 3D 
poses to find a match because 3D poses may not always be available in domain 
B. Moreover, the nearest poses in 3D space will necessarily be among the nearest 
poses in 2D space. Specifically, for each xBi , we find a set of k nearest poses in 
domain A, {N (xBi )j}

k
i=1

 such that ||N (xBi )j − xBi ||2 < ||N (xBi )j+1 − xBi ||2. We 
then use these poses to learn a linear mapping WBA ∈ R

2n×2n from domain B to A, 
where n is the number of keypoints, as before. We can find this linear mapping by 
first defining a set of p training poses in domain B, xBtr = (xB1 , …, xBp ) and writing 
WBAxBtr = xAtr , where xBtr ∈ R

dn×kp and xAtr ∈ R
dn×kp with d = 2 or 3 are matrices 

defined according to

WBA





| |

xB1 · · · xB1
| |

� �� �
k

· · ·

| |

xBp · · · xBp

| |

� �� �
k




=





| |

N (xB1 )1 · · · N (xB1 )k

| |

� �� �
k

· · ·

| |

N (xBp )1 · · · N (xBp )k

| |

� �� �
k




.

(11)

Transposing this linear equation yields the linear problem (xBtr)
TWT

BA = (xAtr)
T . 

Given that the p training poses are different, xBtr has linearly independent columns 
and this problem is overdetermined as long as kp > dn. Thus, by least-squares 
minimization, we obtain WT

BA = ((xBtr)
TxBtr)

−1
(xBtr)

T
(xAtr)

T .

Experimental systems and conditions. All adult Drosophila melanogaster 
experiments were performed on female flies raised at 25 °C on a 12-h light/dark 
cycle at 2–3 d posteclosion. Before each experiment, wild-type animals were 
anesthetized using CO2 or in ice-cooled vials and left to acclimate for 10 min. 
DeepFly3D tethered fly data were taken from ref. 3. OpenMonkeyStudio macaque 
data were taken from ref. 4. LocoMouse mouse data were taken from ref. 14. 
CAPTURE rat data were taken from ref. 37. FlyLimbTracker freely behaving fly 
data were taken from ref. 16 (see these publications for detailed experimental 
procedures). For more information on the datasets including the number of 
keypoints, poses, animals, resolution and framerate we refer the reader to 
Supplementary Table 2.

Freely behaving Drosophila recorded from two high-resolution views using one 
camera and a right-angle prism mirror. We constructed a transparent arena coupled 
to a right-angle prism mirror35. The enclosed arena consists of three vertically 
stacked layers of 1/16” thick acrylic sheets laser-cut to be 15 mm long, 3 mm 
wide and 1.6 mm high. The arena ceiling and walls were coated with Sigmacote 
(Sigma-Aldrich, Merck) to discourage animals from climbing onto the walls and 
ceilings. One side of the enclosure was physically coupled to a right-angled prism 
(Thorlabs PS915). The arena and prism were placed on a kinematic mounting 
platform (Thorlabs KM100B/M), permitting their 3D adjustment with respect to 
a camera (Basler acA1920-150um) outfitted with a lens (Computar MLM3X-MP, 
Cary). Data were acquired using the Basler Pylon software (pylon application 

v.1.2.0.8206, pylon Viewer v.6.2.0.8206). The camera was oriented vertically 
upward below the arena to provide two views of the fly: a direct ventral view and 
an indirect prism-mirror-reflected side view. The arena was illuminated by four 
Infrared LEDs (Thorlabs, fiber-coupled LED M850F2 with driver LEDD1B T-Cube 
and collimator F810SMA-780): two from above and two from below. To elicit 
locomotor activity, the platform was acoustically and mechanically stimulated 
using a mobile phone speaker. Flies were then allowed to behave freely, without 
optogenetic stimulation.

Freely behaving Drosophila recorded from one ventral view at low resolution. 
We constructed a square arena consisting of three vertically stacked layers of 
one-sixteenth of an inch-thick (approximately 1.6 mm)acrylic sheets laser-cut to 
be 30 mm long, 30 mm wide and 1.6 mm high. This arena can house multiple flies 
at once, increasing throughput at the expense of spatial resolution (26 px mm−1). 
Before each experiment, the arena ceiling was coated with 10 μl of Sigmacote 
(Sigma-Aldrich, Merck) to discourage animals from climbing onto the ceiling.  
A camera (pco.panda 4.2 M-USB-PCO, Gloor Instruments, with a Milvus 2/100M 
ZF.2 lens, Zeiss) was oriented with respect to a 45° mirror below the arena to 
capture a ventral view of the fly. An 850-nm infrared LED ring light (CCS Inc. 
LDR2-74IR2-850-LA) was placed above the arena to provide illumination. 
Although the experiment contained optogenetically elicited behaviors interspersed 
with periods of spontaneous behavior, here we focused only on spontaneously 
generated forward walking.

The positions and orientations of individual flies were tracked using 
custom software including a modified version of Tracktor60. Using these data, a 
138 × 138 px image was cropped around each fly and registered for subsequent 
analyses.

2D pose estimation. In the prism-mirror setup, we split the data acquired from a 
single camera into ventral and side-view images. We hand-annotated the location 
of all 30 leg joints (five joints per leg) on 640 images from the ventral view and up 
to 15 visible unilateral joints on 640 images of the side view. We used these manual 
annotations to train two separate DeepLabCut 2D pose estimation networks 
(root-mean-squared errors for training and testing were 0.02 and 0.04 mm for 
ventral and side views, respectively). We ignored frames in which flies were climbing 
the enclosure walls (thus exhibiting large yaw and roll orientation angles). We also 
removed keypoints with <0.95 DeepLabCut confidence and higher than a 10-px 
mismatch along the x coordinate of ventral and side views. FlyLimbTracker data16 
were manually annotated. Images acquired in the new low-resolution ventral view 
setup were annotated using DeepLabCut2 trained on 160 hand-annotated images. 
Due to the low resolution of images, the coxa-femur joints were not distinguishable. 
Therefore, we treated the thorax-coxa and coxa-femur joints as a single entity.

Training the LiftPose3D network. An important step in constructing LiftPose3D 
training data is to choose r root joints (see the specific use cases below for how 
these root joints were selected), and a target set corresponding to each root joint. 
The location of joints in the target set are predicted relative to the root joint to 
ensure translation invariance of the 2D poses.

The training dataset consisted of input–output pose pairs (xtr
c , Xtr) with 

dimensionality equal to the number of keypoints visible from a given camera c 
minus the number of root joints r, namely xtr

c ∈ R
2(|Vc|−r) and Xtr

∈ R
3(|Vc|−r). 

Then, the training data were standardized with respect to the mean and standard 
deviation of a given keypoint across all poses.

Tethered D. melanogaster. Of the 38 original keypoints in ref. 3, here we focused 
on the 30 leg joints. Specifically, for each leg we estimated 3D position for the 
thorax-coxa, coxa-femur, femur-tibia and tibia-tarsus joints and the tarsal tips 
(claws). Thus, the training data consisted of input–output coordinate pairs for 24 
joints (30 − 6 thorax-coxa root joints) from all cameras. The training convergence 
is shown in Extended Data Fig. 2a.

Freely behaving macaque monkeys. The OpenMonkeyStudio dataset4 consists of 
images of freely behaving macaques inside a 2.45 × 2.45 × 2.75-m3 arena in which 62 
cameras are equidistant horizontally at two heights along the arena perimeter. We 
extracted all five available experiments (7, 9, 9a, 9b and 11) for training and testing. 
Since 2D pose annotations were not available for all cameras, we augmented this 
dataset during training by projecting triangulated 3D poses onto cameras lacking 
2D annotation using the provided camera matrix. We removed fisheye lens-related 
distortions of 2D poses using the provided radial distortion parameters. We 
normalized each 2D pose to unit length, by dividing it by its Euclidean norm as well 
as the 3D pose with respect to bone lengths to reduce the large-scale variability of 
the OpenMonkeyStudio annotations (animals ranged between 5.5 and 12 kg). We 
set the neck as the root joint during training. We compare our absolute errors to the 
total body length, calculated as the sum of the mean lengths of the nose–neck, neck–
hip, hip–knee and knee–foot joint pairs. Over multiple epochs, we observed rapid 
convergence of our trained network (Extended Data Fig. 2b).

Freely behaving mice and Drosophila recorded from two views using a right-angle 
mirror. Freely behaving mouse data14 consisted of recordings of animals traversing 
a 66.5 cm long, 4.5 cm wide and 20 cm high glass corridor. A 45° mirror was used 
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to obtain both ventral and side views with a single camera beneath the corridor. 
2D keypoint positions were previously tracked using the LocoMouse software14. 
We considered six main keypoints—the four paws, the proximal tail and the 
nose. Keypoint positions were taken relative to a virtual root keypoint placed on 
the ground midway between the nose and the tail. The networks were trained on 
partial ground truth data following pose alignment, as described in the main text. 
The networks for Drosophila and mouse training data converged within 30 and ten 
training epochs (Extended Data Fig. 2c,d).

Freely behaving rat in a naturalistic enclosure. The CAPTURE dataset contains 
recordings of freely behaving rats in a 61-cm (2-foot) diameter cylindrical 
enclosure video recorded using six cameras. Motion capture markers on the animal 
were tracked using a commercial motion capture acquisition program37 to obtain 
2D poses. Out of 20 possible joints, we limited our scope to the 15 joints that were 
not redundant and provided most of the information about the animal’s pose. The 
dataset includes four experiments recording three rats from two different camera 
setups. Before using LiftPose3D, we removed the distortion from 2D poses using 
radial distortion parameters provided by the authors. The CAPTURE dataset has 
many missing 3D pose instances, which we handle by not computing the loss 
corresponding to these keypoints during back propagation. We selected the neck 
joint as the single root joint and predicted all of the other joints with respect to 
this root joint. We observed that LiftPose3D converged within 15 training epochs 
(Extended Data Fig. 2e).

Freely behaving adult D. melanogaster recorded from one ventral camera view. For 
both the newly acquired low-resolution and previously published high-resolution16 
images of freely behaving flies taken using one ventral view camera, we trained a 
LiftPose3D network on partial ground truth data acquired from the prism-mirror 
system. For the high-resolution data, we considered the thorax-coxa joints as roots. 
For the low-resolution data, the coxa-femur joints were imperceptible. Therefore, 
the thorax-coxa joints were selected as roots. The training dataset consisted of 
coordinate pairs (xtr

ventral + η, ztr
side) where xtr

ventral, ztr
side were chosen to represent 

the annotated ventral coordinates and z axis depth for the visible joints, as before. 
Meanwhile, η was a zero-mean Gaussian noise term with a joint-independent 
standard deviation of 4 px. The role of this noise term was to account for the 
keypoint position degeneracy inherent in the transformation from high-resolution 
prism training data to lower-resolution testing data. For the high-resolution dataset 
this noise term was set to zero.

Comparing joint angles derived from lifted 3D and 2D poses. To illustrate 
the benefits of using lifted 3D coordinates versus 2D coordinates for kinematic 
analysis, we derived the joint angles obtained from 3D coordinates along 
with projected 2D coordinates. Consider the (2D or 3D) coordinates of three 
consecutive joints in the kinematic chain of one leg with coordinates u, v, w. Then, 
vectors s1 = u − v and s2 = u − w describe adjacent bones. Their enclosed angle is 
found by the cosine rule, cos−1( s1 · s2/(||s1|| ||s2||) ). Due to the uncertainty of 
2D and 3D pose estimation, we assumed that keypoint coordinates are Gaussian 
distributed around the estimated coordinate. As a proxy for the variance, we 
took the variation of bone lengths ∣∣s1∣∣ and ∣∣s2∣∣ because they are expected to 
remain approximately constant owing to the low mechanical compliance of the 
fly’s exoskeleton (with the exception of the flexible tarsal segments). This allowed 
us to predict 3D joint angles by Monte Carlo sampling (using 5 × 103 samples), 
drawing one sample from each of three distributions and then computing the 
corresponding joint angle by the cosine rule.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets used in this paper and their sources are listed in Supplementary 
Table 2. Data used for Figs. 1–3 and Extended Data Figs. 1 and 2 can be 
downloaded from https://doi.org/10.7910/DVN/KHFAEI. Source data are 
provided with this paper.

Code availability
LiftPose3D code can be installed as a pip package at https://pypi.org/project/
liftpose/. The source code and custom software used to acquire images with the 
LiftPose3D station is available at https://doi.org/10.5281/zenodo.5031774. The 
code is licensed under GNU General Public License v.3.0.
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Extended Data Fig. 1 | Joint angles resulting from lifting compared with 3D triangulated ground truth and 2D projections. Joint angles α, β, γ, and ω 
for the front, mid, and hind left legs during forward walking. Shown are angles computed from 3D triangulation using DeepFly3D (blue), LiftPose3D 
predictions (red), and ventral 2D projections α′

, β′

, γ′, and ω′ (green). The mean (solid lines) and standard deviation of joint error distributions 
(transparency) are shown. Joint angles were computed by Monte Carlo sampling and errors were computed by taking the fluctuation in bone lengths.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NaTurE METHODs

Extended Data Fig. 2 | Training and test loss convergence of the LiftPose3D network applied to a variety of datasets. A-E Absolute test errors of 
LiftPose3D for all joints as a function of optimization epoch. A Two-camera data of Drosophila on a spherical treadmill (each color denotes a different 
pair of diametrically opposed cameras). B OpenMonkeyStudio dataset (each color denotes a different training run). C Single-camera data of Drosophila 
behaving freely in the right-angle prism-mirror system. D LocoMouse dataset. E CAPTURE dataset.
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Extended Data Fig. 3 | Drosophila LiftPose3D station. A CAD drawing of the LiftPose3D station indicating major components (color-coded). B Photo 
of the LiftPose3D station. C Electronic circuit for building the illumination module on a pre-fabricated prototyping board (see Supplementary Table 1), 
electronic components and additional wiring are indicated (color-coded). D Printed circuit board provided as an alternative to the pre-fabricated board for 
building the illumination module.
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