
From the perspective of a male fruit fly,  
rotting fruit represents an opportunity. There, 
he can find and court a potential mate by 
chasing her, extending his wings and vibrat-
ing them to produce a fine-tuned ‘love’ song. 
Importantly, this courtship ritual depends 
on the male suitor receiving visual feedback 
from the female of interest1 — but how does 
the male’s eye instruct his brain during this 
courtship dance? Across species, visual sys-
tems transform patterns of light into features 
that are meaningful to an animal’s behaviour: 
for example, a looming shadow can trigger 
certain groups of neurons known as fea-
ture detectors, which drive fast and reliable 
predator avoidance2. Feature detectors can 
also be combined to discern more complex 
visual patterns. Writing in Nature, Cowley et 
al.3 combine a machine-learning tool called 
an artificial neural network with genetics to 
explore how the male fly uses feature detec-
tors to coordinate its movements with those 
of its dance partner.

Brains are dazzlingly complex. As a result, 
there is a growing interest in building artificial 
neural networks (ANNs) that serve as tractable 
proxies for understanding the flow of infor-
mation through real nervous systems. One 
way to do this is to teach an ANN to perform 
the same high-level task as an animal. Trained 
networks can then be studied to give insight 
into how biological neural circuits work — an 
approach that has previously been used to 
help researchers understand how the primate 
visual system categorizes objects4 and how the 
fruit fly detects visual motion5.

Although this work is exciting, how much 
trained ANNs can tell scientists about real 
brains remains unclear. Many different net-
work models can produce the same output, 
making it difficult to identify one that is better 

than another. Cowley et al. reveal a way to 
overcome this challenge using the fruit fly 
Drosophila melanogaster. The authors focus 
on how a male fly chases and sings to a poten-
tial mate6, an activity that relies on visual sig-
nals that must pass through a diverse set of 
lobula columnar (LC) neurons. These neurons 
form a bottleneck between the retina of the eye 
and the central brain. LC neurons of particu-
lar subtypes converge on small regions of the 

brain called glomeruli, which contain compact 
collections of the neuronal processes (axons 
and dendrites) that transmit signals between 
neurons.

This glomerular organization suggests that 
different LC subtypes might be separate chan-
nels that are tuned to respond to specific visual 
features, driving particular actions. Indeed, 
artificial stimulation of one LC subtype that is 
responsive to visual looming can cause flies to 
carry out an escape behaviour2. However, the 
degree to which LC subtypes represent sepa-
rate sensorimotor channels in more natural 
settings is not so clear: several LC subtypes 
have been shown to respond to the same visual 
features and, in some cases, they make con-
nections with the same downstream neurons2.

To investigate how LC neurons contribute 
to courtship decisions, the authors trained 
ANNs that were optimized for the specific task 
of accurately predicting a male fly’s behaviour 
when presented with an approximate image of 
what the male would see during courtship. In 
a novel twist, they further constrained their 
model using an approach they call ‘knockout 
training’. Unlike classic machine-learning 
techniques that ‘silence’ random artificial 
units during training to limit overfitting — a 
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Artificial neural networks that model the visual system of a 
male fruit fly can accurately predict the insect’s behaviour in 
response to seeing a potential mate — paving the way for the 
building of more complex models of brain circuits. 

Figure 1 | An artificial neural network that mimics the fruit-fly visual system.  a, During courtship, a 
male fruit fly (Drosophila melanogaster) exhibits certain behaviours (such as movement and wing vibration) 
in response to visual information about a female (such as its position and size). In the fly brain, visual 
information passes from the optic lobe to the central brain through a ‘bottleneck’ of highly organized lobula 
columnar (LC) neurons, of which there are 23 distinct subtypes (only 3 subtypes are shown). b, Cowley et al.3 
trained an artificial neural network to represent the fly visual system: a vision network passes information 
to a decision network through a bottleneck of 23 LC units, each of which has been trained to correspond 
directly to one LC subtype. The trained model not only succeeded in predicting the fly’s behaviour on the 
basis of visual input, but also revealed that each LC subtype responds to more than one visual feature and is 
responsible for more than one behaviour.
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problem whereby a model makes accurate pre-
dictions for training data but not for other data 
— knockout training instead silences specific 
units during training to predict the behaviour 
of animals in which real, identified neurons 
are also genetically silenced. This approach 
is expected to yield direct mapping between 
artificial units and real neurons.

The authors applied this technique to a large 
body of data in which one of 23 LC subtypes 
is genetically silenced in courting male flies. 
They then designed a task-optimized ANN that 
is given abstract images of the female fly, as 
experienced by the courting male, as its input. 
These images are processed by a ‘vision net-
work’ (representing the optic lobe of the fly 
brain) and then a bottleneck layer of ‘LC units’ 
(representing each of the 23 LC subtypes). 
Finally, the outputs of the LC units are passed 
through a decision network (representing 
the central brain) that predicts what the real 
male fly’s behaviour would be in response to 
those images (Fig. 1). Using knockout training, 
the authors generated a range of successful 
networks, each of which showed one-to-one 
mapping between artificial LC units and known 
LC neuron subtypes. The authors found that 
artificial and real fly LC neurons respond simi-
larly to abstract and naturalistic visual stimuli, 
partially validating the explanatory power of 
their best networks.

By ‘looking under the hood’ of successfully 
trained networks, Cowley et al. found that LC 
units encode visual information about the 
courted female in a combinatorial manner — 
that is, with highly overlapping visual tuning. 

They also observed that LC units regulate male 
courtship in a distributed and redundant way: 
many LC units must be silenced to profoundly 
disrupt behavioural predictions. In support 
of these network-based findings, a graph of 
all of the connections between neurons in the 
real fly brain, referred to as the connectome, 
shows that LC neuron subtypes share many 
visual inputs and also fan out to multiple, over-
lapping central brain regions.

As scientists are often reminded, “all models 
are wrong but some are useful”7. Therefore, 
perhaps the greatest value of knockout train-
ing comes from the predictions it generates 
for which LC subtypes are expected to drive 
specific aspects of courtship behaviour, such 
as whether the male fly’s wing vibrations create 
a song that is constant or pulsing. These pre-
dictions should be tested in future laboratory 
experiments. 

To increase the quality of predictions made 
by the network, knockout training could be 
improved in several ways. Unlike the feed- 
forward ANNs used in this study, LC neurons 
(and many brain circuits) are highly recurrent, 
meaning that they receive feedback from 
downstream areas. Moreover, sensorimotor 
mapping can be modulated8 by an animal’s 
ongoing behaviours9. If ANNs were to take 
neural and behavioural feedback into account, 
this might greatly improve what they can tell 
neuroscientists about the brain.

This study shows how precise, large-scale 
neural-perturbation data can be used to 
improve the interpretability of artificial mod-
els of the brain. The scope of this study might 

seem narrow at first — the authors focus on 
only one class of fly visual neurons during a 
single behavioural task. However, because 
distributed neural encoding improves 
robustness, multitasking and efficiency, it is 
likely to be found across species, including 
humans. Therefore, something similar to 
knockout training might ultimately be nec-
essary to understand larger brains, such as 
those of rodents. How this might be accom-
plished in animals in which neurons cannot 
be identified or silenced with such precision 
remains unclear. For now, as in the past, the 
simple fruit fly can help by illuminating the 
way forwards.
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