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Abstract

Today’s recommenders need to work on dynamic datasets, i.e., datasets where users, items, and
ratings change frequently. Our main contribution is a dynamic recommender system that periodically
recommends a subset of unseen items to all users in a user base without retraining. Our second
contribution is the evaluation of techniques to decrease catastrophic forgetting in neural networks.
Our work builds on the work done by Sedhain et al. [SMSX15], a neural Autoencoder that takes
a vector of all user ratings for one item and reconstructs it. The Autoencoder imputes missing
ratings by using a learned latent representation of the users’ feedback behavior. To learn the hidden
representation that permits imputation, we implement a custom training procedure in TensorFlow
that only considers observed entries in the input and does partial forward- and backward propagation.
Our approach achieves an Root Mean Squared Error (RMSE) of 0.86 on the MovieLens-1M
dataset [Mov21] and of 0.77 on the Microsoft MIND dataset [WQC+20]. Out of the techniques
aimed at decreasing catastrophic forgetting, replaying old training samples emerged as the most
effective technique.
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1 Introduction

The rise of the Internet and online services profoundly impacted our daily lives. Today, we can
find a product that exactly fits our preferences from thousands of others that do not. Deciding
between thousands of items would be impossible without Recommender Systems. They help users
choose from large sets of products or services: products on Amazon, movies on Netflix, or songs
on Spotify.

1.1 Motivation for Recommender Systems

Recommender systems recommend items to users based on their preferences. Users make their
preferences visible by providing feedback on items. Service providers collect this feedback in
numerous ways - e.g., by logging clicks, or ratings of an item, or the time spent on a website.

Well-built recommender systems are essential for a business’s success - e.g., they increase the Click-
through-rate of online newsletters or the sales of products. Some companies are even known for
their addictive recommender systems, e.g., TikTok. Furthermore, their positive effect on businesses
is easily measurable by A/B-testing, another reason for their popularity.

1.2 Challenges in Recommender System

While providing value to businesses, recommender systems also generate two general issues for
their users: biases and security issues. Their recommendations might suffer from several biases:
amplification bias, and dataset biases to name two examples. The recommendations of systems
with an amplification bias lose in diversity as the system learns user preferences [MAP+20], which
can lead to echo chambers, a phenomenon criticized by the public [Gri17]. Recommender systems
might also amplify biases of the dataset they are trained on [ETK+18].

Privacy issues are inherent to recommender systems as they work on collected user data. The more
data the system has on a given user, the more relevant its suggestions are - thus, companies are
eager to collect more and more information on users to profile them accurately. However, this is at
odds with user privacy. It has been shown that recommender systems can reveal private information
about users [RKM+01] [AÁK12].

Recommender systems can be segmented in different ways. In this work, we choose to distinguish
between static and dynamic recommender systems. Static systems make recommendations on static
datasets, i.e., datasets that change very little. Even though the datasets are static, these systems still
face challenges. The amount of data available increases day by day; nevertheless, they need to train
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Figure 1.1: Item-user matrix X ∈ R=×< showing ratings between 1 and 5 given by = = 6 users to
< = 6 items and the factor matrices W and ZT. Not every user gave a rating to every
item, thus, some entries of the matrix are empty, i.e. unobserved. Matrix factorization
factorizes X into W ∈ R=×: and Z ∈ R<×: . The latent dimension is : = 2.

in a reasonable amount of time. An example of a static dataset is the Netflix prize [KBV09]: all
users and items are known beforehand; thus, the system only recommends known movies to known
users.

The datasets used in recommender systems can change in three dimensions: new users or new items
can be added, or a user’s feedback for an item changes. User preferences change slowly; therefore,
when referring to dynamic datasets, we refer to datasets where new items and new users are added
frequently.

Dynamic recommender systems operating on dynamic datasets bring their own set of challenges.
First and foremost, they need to make recommendations despite a lack of data - the system has no
prior knowledge of new users or items, which renders making relevant recommendations difficult.
Second, dynamic systems need to quickly incorporate new item and user preferences - i.e., they
need to retrain on new data quickly. Third, they need to make their recommendation fast; users
should not wait for them. An example of a dynamic setting is news recommendation. New articles
are written every day and need to be recommended to an ever-changing user base.

Today’s systems need to increasingly work on dynamic datasets. The amount of data collected
increases every day as more and more users use more and more online services. Thus, systems
need to handle a constant influx of new and changing data - Netflix alone gained 18.2 mill. new
subscribers [Sto21a] and released around 370 movies in 2019 [Sto21b]. Previous techniques
used for recommendation - e.g., Matrix Factorization (MF) [KBV09] or Item Similarity Models
(ISMs) [LSY03] - operate only on static datasets, i.e., items need to be included in a training phase
to be recommended. Therefore, the research community set out to develop novel methods that
assume datasets’ dynamic properties.

9



1 Introduction

, ,,

...

...

3 1 5

3 1 55 2

i = 1...m

uin=

uout=

uin,1 uin,2 uin,3 uin,4 uin,n

uout,1 uout,2 uout,3( uout,4 uout,n

( )

)

, , ,

Figure 1.2: Autoencoder architecture proposed in [SMSX15]. Input is a row of the item-user matrix
with all ratings for one item. Edges to unobserved entries (e.g. D8=,2) in the input are
deactivated (dotted arrows), their weights are not updated during training. Effectively,
every input has its own neural network, with < total neural networks in total (indicated
by plate notation 1 . . . <).

1.3 Existing Methods in Recommendation

Orthogonally to the segmentation of recommender system presented in the previous section, [Agg16]
makes the segmentation by the kind of data that is used to make recommendations: item-user
interactions, such as ratings, and attribute information about items and users, such as user profiles
or item descriptions. Approaches belonging to the former category are called collaborative filtering
methods, whereas methods of the second category are referred to as content-based filtering methods.
Collaborative filtering methods leverage item-user interactions data to find patterns and recommend
items [Agg16]. We can view the users’ feedback on items in a item-user matrix, cf. Figure 1.1.
These matrices are sparse: users typically only provide feedback on a small fraction of available
items. Thus, the majority of item-user combinations are unobserved. Collaborative filtering
methods assume that some pattern in the observed ratings can be exploited to impute unobserved
interactions.

One method that has proven to be particularly useful is Matrix Factorization (MF) [KBV09]. It
factorizes the item-user matrix shown in Figure 1.1 into two matrices: X = W · ZT, where - ∈ R=×<,
, ∈ R=×: , / ∈ R<×: . W and Z represent users and items in latent spaces of dimension : . High
correspondence of item and user factors leads to a high rating, and thus, a recommendation. However,
there is one particular problem arising with MF: inclusion of new users or items. For every new
item matrix Z needs to be expanded by one row and retrained; the same holds for a new user and
W. Retraining becomes computationally expensive if the dataset is dynamic. Additionally, new
items and users lack ratings, MF cannot calculate the latent vectors without any ratings. Making
relevant recommendations is difficult in this case. This phenomenon is referred to as the Cold-Start
problem.

The recent successes of deep-learning methods prompted researchers to employ them in recom-
mender systems. One fundamental approach for this work, presented by Sedhain et al. [SMSX15],
uses an Autoencoder to impute missing ratings. The input to the Autoencoder is a row- or column
vector of the item-user matrix, and the output is the reconstructed vector. Autoencoders exhibit
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Figure 1.3: The problem setting of this work. We recommend @ items per day per user out of <′

items arriving every day to = users.

specific properties that are useful for recommendation. Much like MF, they project their input into
a lower dimension, thereby learning a lower-dimensional representation of it. However, vanilla
neural networks cannot handle the unobserved entries in the input. This is the key contribution
of Sedhain et al. [SMSX15], cf. Figure 1.2. For every input, edges associated with unobserved
entries are deactivated, such that they do not contribute to training. Thus, only weights associated
with active edges are trained. Effectively, every input gets its personal neural network. Even though
not all input values are observed, using the latent representation, they still produce a prediction for
those values as an output.

1.4 Our Contribution

Our main contribution is a dynamic recommender system that periodically recommends a subset of
unseen items to the complete user base. This setting stems from news article recommendation in
newsletters. New articles are written and published every day. Daily newsletters advertise a selected
subset of these new articles to subscribed readers. The selection of which news articles to include
in the newsletters is essential for a high readership of new articles. Thus, online news publishers
personalize each newsletter to its receiver to preferably advertise articles that could interest the
reader. This work assumes that <′ items are added to the dataset every day. Every day, we need to
recommend @ of these unseen items to every user of a stable user base. We assume that some users
interact with new items between recommendations. Thus, there is little user feedback available for
new items, which we can use to make recommendations.

Our second contribution is the evaluation of techniques to decrease catastrophic forgetting in neural
networks. We retrain our recommender system periodically on new items to capture user preference
drift over time. Neural networks are prone to catastrophic forgetting: when retrained on new data,
they perform much worse on old data. We present different techniques to combat forgetting, their
effectiveness, and their trade-offs.

11
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1.5 Key Findings

We evaluate our autoencoder approach on two datasets: MovieLens-1M [Mov21], achieving a
state-of-the-art RMSE of 0.86, and MIND [WQC+20], achieving an RMSE of 0.77 on unseen items.
Out of the techniques to reduce catastrophic forgetting, replaying old training data proved the most
effective with a minor training time penalty.

To develop and evaluate our recommender system, we employ the following structure: In the next
chapter, we present relevant research to this work. Here, we show papers implementing neural
approaches for recommendation and how their approaches differ from ours. Then, we give the
implementation of our recommender system, showing how we implement the training to only
consider observed values in the input and our evaluation setup. Next, we evaluate our system on
multiple datasets. This chapter presents the accuracy results of our approaches and the influence
of retraining strategies on catastrophic forgetting. Lastly, we conclude our work and give a brief
outlook on future work.

12



2 Related Work

The research of recommender systems is fragmented. It is an umbrella term for a class of systems
that uses different methods to recommend items. The method used depends heavily on the context of
the recommendation system and the dataset. For instance, MF lends itself to a static context where
predictions of ratings are wanted, whereas other approaches recommend items sequentially without
predicting a rating. Neural networks are one of the methods that gathered traction recently due to their
success on other problems, e.g., in image classification [KSH12]. The main contribution of this work
is a recommender using a neural approach; therefore, in Subsection 2.1, we present related research
on recommender systems using neural networks. Dynamicity of datasets implies retraining on new
data, and retrained neural networks suffer from catastrophic forgetting. Catastrophic forgetting is
relevant to our work since we retrain our system on new data and we explore techniques to combat
forgetting; therefore, we present research on catastrophic forgetting in Subsection 2.2.

2.1 Neural Approaches to Recommendation

Generally, neural approaches learn a numerical representation of users and items and combine
the representations to predict the user feedback or which item to suggest next. The advantage of
neural methods to established methods is that they can model non-linear interactions between users
and items [HLZ+17]. Furthermore, they can be trained using fast, robust, and readily-available
backpropagation methods.

In [KM18], the authors develop a recommender system that considers sequence dynamics to
recommend items sequentially. Their key contribution is to employ self-attention to capture short-
and long-term patterns in item sequences. Input to their model is a sequence of items chosen by the
user. The system creates item and positional embeddings. The positional embeddings are especially
important to capture the order of items. The self-attention then weights the importance of elements
in the input sequence to find out how strongly an element is correlated to other elements. The authors
evaluate their recommender on three datasets: Amazon dataset containing product review, Steam
dataset containing reviews of games and user profiles, and the MovieLens-1m dataset containing
user ratings of movies. They evaluate the hit rate and entropy of top-10 recommendations [KM18]:
hit rate “counts the fraction of times that the ground-truth next item is among the top 10 items, while
entropy is a position-aware metric which assigns larger weights on higher positions.” Their work
improves these two metrics significantly compared to previous sequential neural models. However,
all items must be known at training time. The recommender uses item embeddings, which must be
pre-trained for all items. As a result, we cannot apply this result to our problem setting.

In [HLZ+17], the authors design a framework for neural networks in collaborative filtering and
present a neural network architecture to model latent feature vectors of users and items. The dot-
product in conventional MF can only model linear interactions between users and items. They
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User Latent Vector of user u Item Latent Vector of item i

rating

dot

(a) Conventional MF as a neural network.

User Latent Vector of user u Item Latent Vector of item i

Layer 1

Layer 2

Layer X

rating

...

(b) Network architecture proposed in [HLZ+17]

Figure 2.1: Xiangnan et al. [HLZ+17] propose to replace the dot product in MF with a neural
network to model non-linear interactions of user and item representations.

hypothesize that replacing the dot-product with a neural network can improve the accuracy of
recommendations since neural networks can also model non-linear functions. Figure 2.1b shows
their network architecture. The network learns item and user embeddings and combines them in
a neural network to produce a rating. The authors map MF back to their architecture: MF can
be thought of as a particular neural network consisting of one perceptron without an activation
function. The authors evaluate their approach on the MovieLens-1M dataset and Pinterest dataset.
They transform the ratings in both datasets to be implicit, i.e., 0 or 1, and evaluate the hit rate
and entropy of the top-10 recommendations. Their approach shows improved results over MF and
ISM. However, Dacrema et al. [DCJ19] have shown that well-tuned ISMs outperform the author’s
approach significantly on the MovieLens dataset. Like the previous approach, this recommender uses
item embeddings. Therefore, all items need to be known during training, making this recommender
unsuitable for our problem setting.

Generally, neural approaches use embeddings to represent users and items in a latent space. However,
this always implies that all users and items must be known at training time. One requirement for
the recommender system is that it can make fast predictions for new items. Fast predictions are
impossible if the recommender needs to be retrained for every new item. As such, recommenders
employing embeddings to represent items do not fit this requirement. This is what makes the
approach of Sedhain et al. [SMSX15] attractive to our work: their neural network does not use item
embeddings, and thus, can predict for new items as long as some ratings for it exist.

2.2 Catastrophic Forgetting

If not explicitly constrained, neural networks forget old patterns if trained on new samples. The
weights will be updated to better fit the new data, which inevitably increases the loss of old data.
One method to reduce catastrophic forgetting is changing the training procedure to reduce the loss
of old and new training samples. Another approach modifies the network architecture to reduce
forgetting.

14



2 Related Work

*θA

low error for Task B

low error for Task A

EWC
no constraints

Figure 2.2: Figure adapted from [KPR+16]. Grey and cream indicate parameter regions leading to
good performance for Task A and Task B. \� denotes the parameters of the learner after
training on Task A. By constraining the parameters in \�, the learner finds parameters
that optimize performance on both datasets.

In [KPR+16] Kirkpatrick et al. introduce a new training procedure called Elastic Weight Consolida-
tion (EWC) that reduces catastrophic forgetting. They compute the importance of every parameter
of a neural network with regard to tasks that the network has already been trained on. During the
training of new tasks, EWC constrains the important old weights to stay close to their original
values. The more important parameter is to previous performance, the less it can change during
retraining. They show that their augmented training procedure improves performance on old tasks
when the learner is trained on new tasks while not drastically reducing performance on new data.
However, Kutalev et al. [KL21] show that EWC does not translate well to more complex network
architectures [KL21].

Goodfellow et al. investigate in [GMX+15] the influence of activation functions and Dropout on
forgetting. They find that larger neural nets and nets using Dropout are less prone to forgetting,
hypothesizing that they are more resistant to forgetting since they take longer to converge. No
activation function did show consistent improvements to forgetting; choosing the best function
depends on the problem and needs to be cross-validated.
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3 Implementation

The Autoencoder approach to recommendation by Sedhain et al. [SMSX15], introduced in Sec-
tion 1.3, receives vectors of all user ratings for one item as input and reconstructs the vector as an
output with all unobserved entries imputed. Effectively, every input has its own neural network.
Their key contribution is that unobserved entries in the input are ignored during forward- and
backward propagation.

Although the authors provided their code, we implemented our own training routine. Their paper
dates back to 2015 when machine learning libraries were not as developed as they are now. State-
of-the-art research uses TensorFlow or PyTorch to implement custom neural networks and training
procedures. Therefore, we decided to re-implement their approach in today’s TensorFlow. We
decided to use TensorFlow [Ten21] through the Keras API [Ker21] due to its ease of use and wide
usage in research and production environments.

We divide the implementation into two parts. First, we describe how we implement the Autoeno-
cer in Keras. Second, we present our implementation of a partial training routine in Keras that
only considers observed entries in forward- and backward propagation during Stochastic Gradient
Descent.

3.1 Implementation of our Autoencoder

0 1 2 3 n-2n-4 n-3 n-1

0 1 2 3 n-2n-4 n-3 n-1

0 1 k-2 k-1

...

...

...

Figure 3.1: Architecture of our Autoencoder.

The implementation of the neural network is straightforward in Keras. We define the input- and
output layer as size =, which is the number of users. The hidden layer is a dense layer of size :

with a kernel regularizer and an activation function. We leave the exact choice of : , the activation
function, regularization parameters, and other hyperparameters for the Evaluation Chapter 4.
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3 Implementation

Layer Output Shape
Input =

Dense :

Activation :

Dense/Output =

Table 3.1: Overview of the implementation of the Autoencoder in Keras.

3.2 Implementation of Partial Training in Keras

We segment the implementation of partial training in Keras into two parts: partial forward propaga-
tion and partial backward propagation. In partial forward propagation, we want unobserved entries
in the input not to influence the output. We achieve this by constraining unobserved entries in the
input to 0. Furthermore, we want the gradients of weights corresponding to unobserved entries to
be zero in partial backward propagation. We achieve this by calculating the loss only on observed
values and that unobserved entries are constrained to be 0. In the subsequent paragraphs, we explain
both segments in further detail.

We introduce notation to present our implementation. Let G (;) denote the output of the l-th layer of
a neural network. Then G (0) denotes the first layer, i.e. the input to the Autoencoder. Let G (0)

9
refer

to one entry in the input, G (;)
9

refers to the output of node 9 in Layer ;. F (;)
8, 9

indicates an entry 8, 9

in the weight matrix W(;) , 1 (;)
9

refers to the bias of node 9 in Layer ;. The activation function is
denoted by Φ.

Forward Pass

The notion of unobserved values in the input does not exist in neural networks, a neural network’s
input needs to be well-defined.

G
(1)
9

= Φ

(∑
8

F
(1)
8, 9

· G (0)
8

+ 1
(0)
9

)
(3.1)

The variable G
(1)
9

in Equation 3.1 shows the output at Node 9 in Layer 1, G (0) denotes the input.
However, we want the output to take the following form:

G
(1)
9

= Φ

(∑
8∈Ω

F
(1)
8, 9

· G (0)
8

+ 1
(0)
9

)
(3.2)

where Ω denotes the observed entries of G (0) . A hidden node should consider only weights cor-
responding to observed values. Instead of only calculating the sum over observed values, which
would be computationally expensive, we employ the following trick: we set all unobserved entries
in the input to be 0. We define G (0)′ to be the same vector as G (0) , except for unobserved entries:

G
(0)′
8

=

{
0, if G (0)

8
unobserved

G (0) , otherwise
(3.3)
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Then, calculating Equation 3.2 falls back to known vector multiplication of Equation 3.1:

G
(1)
9

= Φ

(∑
8∈Ω

F
(1)
8, 9

· G (0)
8

+ 1
(0)
9

)
(3.4)

= Φ

(∑
8

F
(1)
8, 9

· G (0)′ + 1
(0)
9

)
.

Using this trick, we do not need to change the forward-pass procedure in Keras; we set all unobserved
entries to 0. Setting to 0 may cause problems in datasets where it occurs as a value but can be dealt
with by, e.g., remapping the 0 to another value.

Backward Pass

Backwards propagation works by computing a gradient of the loss function with reference to the
weights in the neural network, cf. Equation 3.5:

mL
mF

(1)
8, 9

= X
(1)
9

· G (0)
8

(3.5)

where X
(1)
9

= W(2) · X (2) � Φ
′ (I (1) ). Starting at the ouput node, the gradient is passed backwards

through the network. For weights associated to unsobserved weights not to train, we want their
gradient to be zero.

mL
mF

(1)
8, 9

= 0 for 8 ∈ Ω(3.6)

The trick of setting unobserved values to 0 also ensures that the corresponding gradients are 0.

mL
mF

(1)
8, 9

= X
(1)
9

· G (0)
′

8
= X

(1)
9

· 0 = 0 for 8 ∈ Ω(3.7)

Taking the gradient leaves G
(0)′
8

, however, since G
(0)′
8

= 0 the resulting gradient is also 0. We
achieved that deactivated weights do not train; however, the loss is still computed on all input entries,
including the zero entries of unobserved values.

A conventional loss function computes the loss on all input values. In this work, we use the Mean
Squared Error (MSE) as a loss function during training, cf. Equation 3.8.

L =
1

2#
·
=−1∑
8=0

(Ĝ8 − G8)2(3.8)

However, we want to loss function to only consider observed values:

L =
1

2#
·
∑
8∈Ω

(Ĝ8 − G8)2(3.9)
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We achieve this in Keras by creating a loss function that accepts a mask as an additional input.
Instead of calculating the loss on all values, the loss function first uses the passed mask to mask the
input and output and then calculates the loss on unmasked values. We create the mask by masking
all values which are equal to 0. This way, unobserved entries are masked, and the loss is calculated
only over observed entries.

We can see that setting unobserved entries to 0 serves two mechanisms: First, entries with a value
of 0 do not contribute in a calculation. Second, 0 entries are masked so that the loss function is only
calculated on observed entries. Figure 3.2b shows the results of our implementation in Keras.
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(b) Input, weights and their gradients of our example Autoencoder in Keras

Figure 3.2: We implemented a dummy Autoencoder to illustrate our implementation. Figure 3.2a
shows the architecture of the dummy Autoencoder: number of users is = = 10, the
hidden layer size is : = 5. The dotted arrows are deactivated weights. Figure 3.2b
shows the circled weights and their respective gradients in Keras. The gradients of
deactivated weights (in our example weight row 0, 2, and 5 in the middle plot in 3.2b)
are 0, showing that our implementation works.
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We choose to present our evaluation segmented by dataset, as the evaluation approach and results
differ significantly between the two. We evaluate our work on two datasets: the MovieLens-1M
dataset [Mov21] and the Microsoft MIND dataset [WQC+20]. For each dataset, we present our
evaluation setup and our results.

4.1 MovieLens Dataset

MovieLens is a widely-used set of datasets maintained by the University of Minnesota. The
MovieLens-1M dataset [Mov21] is especially popular among researchers in recommender systems
research. It contains 1,000,209 ratings of < = 3,952 movies by = = 6,040 users on MovieLens
from 2000 to 2003, with a sparsity of 95.81%. For one item, 5,787 entries are unobserved and
273 are observed. Users made ratings on a 5-star scale; each user has at least 20 ratings. The
dataset is provided in the form shown in Figure 4.1, where each row is one rating given by one
user. We transform the dataset into the known item-user form, where a row refers to one movie

Figure 4.1: Screenshot of the format of the MovieLens dataset.

with all observed ratings for it. In contrast to Sedhain et al. [SMSX15] we construct the training,
validation, and test sets by splitting the dataset along the item axis. I.e., the test set is movies which
the Autoencoder has not seen during training. The authors split the dataset along the individual
ratings; thus, the test set contains only unseen ratings, not completely unseen movies.

4.1.1 Evaluation Setup

We run our evaluation on widely-available server hardware, cf. Table 4.1.

Table 4.2 shows the parameters for the Autoencoder architecture and its training procedure. We
determined the parameters using a hyperparameter search.

We split the dataset in two different ways to run two different evaluations. Table 4.3a shows the first
split to which we refer to as the Forgetting Split, Table 4.3b shows the Tradeoff Split. The splits
differ primarily in the test set size.
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CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
Memory 8 x 16 GiB DIMM DDR4 Synchronous 2133 MHz (0.5 ns)

OS Ubuntu 20.04.2 LTS
Kernel 5.4.0-77-generic

Table 4.1: Hardware and OS Parameters.

Layer Output Shape
Input = = 6,040
Dense : = 100

Activation ReLU
Dense/Output = = 6,040

(a) Autoencoder Architecture Parameters.

Batch Size 64
Training Epochs 3,500

Kernel Regularizer 1 × 10−3

Optimizer Default Keras Adam
Learning Rate 1 × 10−2

(b) Autoencoder Training Parameters.

Table 4.2: Autoencoder Evaluation Parameters for the MovieLens-1M dataset.

The Forgetting Split simulates the settings where 100 new items arrive every day, defined in
Section 1.4. The test size is 50% of the dataset size; thus, we can simulate 19 days of items arriving
every day. We use it to quantify the decrease of the RMSE (forgetting) when retraining on new
samples.

We use the Trade-off Split to determine the accuracy of our Autoencoder and to explore the trade-offs
of three techniques aimed at fighting catastrophic forgetting: reducing epochs spent on retraining,
reducing the learning rate, and replaying old training samples. The number of epochs spent on
retraining influences the accuracy of the network on new training samples: more epochs during
retraining lead to lower RMSE on the new data; however, also to overtraining on these new samples.
Here, a compromise needs to be chosen between a low RMSE on new data and forgetting the old
data. The intuition behind reducing the learning is that a reduced learning rate also reduces the
decrease of the RMSE on old samples. However, reducing the learning rate also reduces learning
on the new samples. Instead of augmenting training parameters, we can replay old samples when
retraining on new ones. By replaying old samples, the network should forget old patterns to a lesser
extent.

Dataset Size
Training Set 45%

Validation Set 5%
Test Set 50%

(a) Forgetting Train/Test Split.

Dataset Size
Training Set 90%

Validation Set 10%
Test Set 100 samples

(b) Tradeoff Train/Test Split.

Table 4.3: The two different Train/Test splits of the MovieLens-1M dataset we evaluate in this
work.

All three techniques introduce a trade-off between RMSEs on old- and new samples. Thus, we
analyze the RMSE on the training, validation, and test set. The training set consists of 100 new
items, which simulates one day of new items arriving. Therefore, we limit the forgetting in the
trade-off analyses to one day. To evaluate the epoch trade-off, we retrain the Autoencoder on the
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100 new samples for an increasing number of epochs. We evaluate the learning rate trade-off by
retraining the Autoencoder using different learning rates. We vary the fraction of training data we
replay during retraining for the replay trade-off. We record the RMSE on the training, validation,
and test sets and average over the last ten epochs of retraining for each technique. Table 4.4 shows
the range of values we analyze for each technique.

Technique Values Analyzed
Epoch Trade-off 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

200, 300, 400, 500, 600, 700, 800, 900, 1,000
Learning Rate Trade-off 1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4,

5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2

Replay Trade-off 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 4.4: Each technique and the values we analyze in this work for the MovieLens-1M dataset.
The values for the Replay Trade-off refer to the fraction of the training data replayed
during retraining on new samples. When not varied, epochs, learning rate, and replay
fraction were kept at 5, 1 × 10−2, and 0 respectively.

4.1.2 Evaluation Results
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Figure 4.2: Training and validation loss of the Autoencoder on the MovieLens-1M dataset using
the Trade-off split. Final validation RMSE is around 0.86 which is state-of-the-art
performance.

The Autoencoder trained in 16 minutes and achieved a state-of-the-art RMSE of 0.86 on movies that
were not seen during training, cf. Figure 4.2. The Autoencoder trains regularly without overfitting.
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Figure 4.3: RMSE on the test set with 100 movies arriving every day, which is the problem setting
of this work. The movies in the dataset are not ordered chronologically; thus, no
preference change is visible, indicated by an increasing RMSE on the test set.

Each rating given by a user has a timestamp. We could have used the timestamps to order the
movies chronologically by their appearance in the dataset. However, we decided against this for
two reasons: First, MovieLens advised against using the timestamps since they do not correspond
to any real action such as watching the movie. Second, most movies existed for a long time when
users gave ratings; thus, the movies cannot be thought of as new. Therefore, the test set of the
Forgetting Split consists of 3,000 randomly sampled movies. Figure 4.3 shows the accuracy on
100 new items arriving each day. The accuracy on the test set hovers around the validation set
as the days increase. So, in reality, we would not need to retrain the Autoencoder. However, in
the remaining paragraphs, we still retrain on new items as an academic exercise to analyze the
catastrophic forgetting techniques.

Increasing the number of epochs spent on retraining on new data decreases RMSE on new samples
but increases RMSE monotonically for old samples, cf. Figure 4.4. Additionally, the Autoencoder
overfits to the new samples very quickly, which is indicated by the RMSE of 0.1 starting at around
100 epochs. This is not surprising since we retrain the Autoencoder on 100 new samples only. In
contrast, the training set comprises around 5,400 samples. The RMSE on the training and validation
set converge to 1.0. The convergence happens very quickly, after 50 epochs both RMSEs already
reached 1.0.

Increasing the number of new samples to retrain on, i.e., the test set size increases RMSE on the test
set and decreases it on the training and validation set, indicating less overfitting, cf. Figure 4.5. So
the overfitting observed previously is indeed rooted in the small number of new samples (100).

Increasing the learning-rate increases the RMSE on the training and validations sets while showing
changing behavior on the test set. The optimal learning rate on the test set is at 1 × 10−3, at
other learning rates, RMSE increases. However, training and validation RMSE already increased
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Figure 4.4: The trade-off for number of epochs spent on retraining on the new 100 samples versus
the RMSE on training, test, and validation set. The RMSE on the training and validation
set increase very quickly, while decreasing very quickly on the test set. This indicates
massive overfitting on the new 100 test samples.
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Figure 4.5: Retraining on 1,000 instead of 100 new samples reduces the overfitting seen in Fig-
ure 4.4.

significantly at that 1 × 10−3, suggesting that increasing learning rate increases overfitting. At
5 × 10−3 the test set RMSE increases again, suggesting that the learning rate is too high and the
Autoencoder is not learning anymore.
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Figure 4.6: Learning-rate versus the RMSE on training, test, and validation set during retraining
on the new 100 samples. The RMSE on training and validation set increase gradually,
while first decreasing and then increasing on the test set. Note the logarithmic scale.
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Figure 4.7: In the replay trade-off, the RMSEs on the training and validation set decrease monoton-
ically, while increasing monotonically on the test set, which suggests less overfitting
and more generalizability.

The replay fraction has a positive effect on all RMSEs, reducing the overfitting of the Autoencoder.
The RMSEs on the training and validation set decrease monotonically. At a replay fraction of 1.0,
the validation RMSE dropped back to 0.86. In contrast, the RMSE increases monotonically on the
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test set. The increased RMSE on the test set suggests less overfitting and more generalizability.
It also converges to about 0.77, indicating that the five epochs spent on retraining are enough to
incorporate the new samples into the Autoencoder. A replay fraction of 1.0 seems to be best for the
Autoencoder performance. Retraining does take 5 seconds since we retrain for five epochs; however,
choosing this trade-off seems reasonable considering its impact on Autoencoder performance.

The Autoencoder exhibited an RMSE of 0.86 on new movies, which is a state-of-the-art performance
for the MovieLens-1M dataset. The accuracy did not decrease for the 100 new movies arriving every
day. However, this is not surprising since it was impossible to introduce the movies in chronological
order by their appearance in the dataset. Out of the catastrophic forgetting techniques, a replay
fraction of 1.0 is the most effective in combatting forgetting and reducing overfitting on new items.
However, there is a slight increase in training time due to replaying the whole dataset during the five
training epochs. Increasing the epochs for retraining makes the Autoencoder forget fast, thus, it is
best to keep the number of epochs low at around 5. Increasing or decreasing the learning rate does
not seem to combat catastrophic forgetting. At learning rates of 1 × 10−4 or lower, the Autoencoder
does not learn at all. The Autoenocder is not forgetting, however, neither is it incorporating the new
data. A too high learning rates makes it underfit severely on all datasets. Neither effect reduces
forgetting, so it is best to keep the learning rate at its optimal value to allow learning during the
replay technique.

4.2 MIND Dataset

The MIND dataset is a large dataset published by Microsoft to facilitate news recommendation
research. It contains anonymized behavior logs of users on a Microsoft News website. The large
versions contains 160,000 english news articles in more than 15,000,000 impression logs generated
by 1,000,000 users. The smaller version contains 51,282 articles in 156,965 impression logs
generated by 50,000 users. This corresponds to a sparsity of 99.77%; in contrast, the MovieLens
dataset had a lower sparsity of 95.81%. We use the smaller version of the dataset in this work,
as the number of users is already one magnitude larger than in the MovieLens-1M dataset. An
impression is a selection of articles that Microsoft presented to a user on their news website. Ideally,
the impression should be catered to the user, i.e., created with the user’s preferences in mind. Users
give feedback implicitly by clicking on articles. A clicked article is a 1; non-clicked articles get a 0.

Figure 4.8: Screenshot of the format of the dataset. Each user has a history of read articles. Each
impression has a timestamp, a user who saw the impression, and the articles shown in
the impression.
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To feed the dataset as an input to the Autoencoder, we have to distinguish between non-clicked
movies shown in impressions and non-clicked movies never shown to a user. We have to make this
distinction for two reasons. First, the Autoencoder could always predict 1s for unobserved entries
to minimize loss. Thus, we must introduce at least one more value to force the Autoencoder to
decide between two values. Second, it makes sense to separate the non-clicked events because their
user feedback has a different meaning. A user made a conscious decision to not click on a movie
shown in an impression, while he could not have made that decision on a movie not shown to him.
Thus, we assign non-clicked articles not shown in impressions 0’s and non-clicked articles shown
in impressions -1’s.

In contrast to the MovieLens dataset, we chronologically order the articles by their first appearance
in the dataset. Microsoft published news articles more frequently than new movies were added to
MovieLens; thus, the chronological ordering makes sense. We transform the dataset into item-user
form and create the training, validation, and test splits chronologically along the item dimension.

4.2.1 Evaluation Setup

Table 4.5 shows the parameters for the Autoencoder architecture and its training procedure. We
determined the parameters using a hyperparameter search.

Layer Output Shape
Input = = 50,000
Dense : = 1,000

Activation ReLU
Dense/Output = = 50,000

(a) Autoencoder Architecture Parameters.

Batch Size 256
Training Epochs 500

Kernel Regularizer 1 × 10−3

Optimizer Default Keras Adam
Learning Rate 1 × 10−2

(b) Autoencoder Training Parameters.

Table 4.5: Autoencoder Evaluation Parameters for the MIND dataset.

Like for the MovieLens dataset, we split the MIND dataset into the Forgetting Split and Tradeoff
Split, cf. Table 4.6.

Dataset Size
Training Set 45%

Validation Set 5%
Test Set 50%

(a) Forgetting Train/Test Split.

Dataset Size
Training Set 90%

Validation Set 10%
Test Set 100 samples

(b) Tradeoff Train/Test Split.

Table 4.6: The two different Train/Test splits of the MIND dataset we evaluate in this work.

We again analyze the three catastrophic forgetting techniques introduced in Section 4.1.1, Table 4.7
shows the values we analyze.
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Technique Values Analyzed
Epoch Trade-off 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Learning Rate Trade-off 1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4,
5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2

Replay Trade-off 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 4.7: Each technique and the values we analyze in this work for the MIND dataset. The
value ranges did not change compared to the MovieLens dataset, except for the Epoch
Trade-off, where we go up to 100 epochs maximum.
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Figure 4.9: Training and validation loss of the Autoencoder on the MIND dataset using the Trade-off
split. Final validation RMSE is around 0.77.

4.2.2 Evaluation Results

The Autoencoder trained in 20 hours on the MIND dataset and achieved a validation RMSE of
0.77. The increased training set RMSE compared to MovieLens is due to the higher sparsity of
the MIND dataset: Out of 50,000 users, only 115 have given feedback on one item on average. On
the MovieLens dataset, 253 out of 6,040 have given feedback. The higher sparsity makes learning
a hidden representation of user preferences harder since a high proportion of edges in the neural
network graph is deactivated, and thus, their gradients are 0. The RMSE difference on the MIND
dataset is 0.27, compared to 0.16 on MovieLens, even though the rating range (from −1 to 1) is
smaller on MIND.

Changed user preferences cause the high RMSE difference between training and validation set on
the MIND dataset. Since the validation set is split chronologically from the training set, it contains
10% of news articles that appeared last in the dataset. If the hidden representation learned on the
training set does not translate to the validation set, the RMSE increases. The sparsities are equal in
both datasets, meaning that the difference cannot be caused by the validation set containing less user
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feedback. Furthermore, only five users appearing in the validation set did not give any feedback in
the training set. The difference cannot be caused by different user bases giving feedback. Thus, we
conclude that a user preference shift causes this difference.
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Figure 4.10: RMSE on the MIND Forgetting test set with 100 movies arriving every day. The
RMSE increases on the test set as the days go by, suggesting that there is a preference
shift in the dataset. In this case, it would make sense to retrain the Autoencoder to
capture this shift.

Figure 4.10 reinforces our intuition that the proportionally high validation RMSE is caused by a
user preference shift. Apart from two outliers, the test RMSE is below the validation RMSE at
a value of 0.75 on Day 20. The test RMSE then increases up to value of 0.95 by Day 50. The
Autoencoder’s learned hidden representation cannot capture the shifted user preferences, and thus,
the RMSE increases gradually. In this case, retraining the Autoencoder would capture this shift and
reduce the error.

The epoch trade-off shows different behavior compared to the MovieLens dataset, caused by the
previously explained preferences shift. The training set RMSE increases quickly and converges after
20 retrain epochs. In contrast to the MovieLens dataset, the validation RMSE now decreases with
the test set RMSE and converges to a value of 0.55. We attribute this behavior to the change in user
preferences between the validation and training set. The preferences in the validation and test set
are closer than in training and validation set. As a result, retraining on the test set also reduces the
error on the validation set. However, the Autoencoder still forgets patterns learned on the training
data, as indicated by the high training RMSE.

Increasing the learning rate increases forgetting on the training and validation sets while improving
the learning new patterns on the test set, cf. Figure 4.12. Again, the learning rate of 1 × 10−3

seems to be optimal to incorporate new patterns from the test set. However, at this learning rate,
the RMSE on the training and validation set already increased significantly, indicating forgetting.
Higher learning rates lead to underfitting on all datasets; the Autoencoder does not learn at lower
learning rates.
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Figure 4.11: The trade-off for number of epochs spent on retraining for the MIND dataset. The
RMSE on the training set increases very quickly while decreasing very quickly on the
validation and test set. Patterns learned on the test set translate to the validation set
and reduce its RMSE. However, overfitting still occurs, indicated by the increasing
training RMSE.

Increasing the fraction of old samples reduces catastrophic forgetting but hinders learning new
preferences for the MIND dataset. The training RMSE decreases until it converges to 0.55, the
value that was achieved during training. The validation set RMSE increases with the test set RMSE,
which we explain with the preference shift. The increase indicates that the Autoencoder has trouble
learning the new preferences. This is not surprising since the size of the test set is 0.2%. The
Autoencoder needs more new samples to incorporate the new patterns.

The Autoencoder achieves an RMSE of 0.77 on the validation set. It has more difficulties generalizing
because the preferences between the training and validation set shift, further demonstrated by the
increasing RMSE on the Forgetting Split. Like for the MovieLens dataset, the replay techniques
turn out to be the most effective at hindering catastrophic forgetting, but at a penalty of retraining
time. ´
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Figure 4.12: The learning-rate trade-off on the MIND dataset. A learning rate of 1 × 10−3 seems
to be optimal to incorporate new patterns from the test set. Higher learning rates lead
to underfitting on all datasets; at lower learning rates, the Autoencoder does not learn.
Note the logarithmic scale.
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Figure 4.13: In the replay trade-off, the RMSEs on the test and validation set increase, while
decreasing monotonically on the training set, which suggests less overfitting and more
generalizability.
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5 Conclusion and Outlook

Recommender systems recommend items to users based on their preferences. Well-built recom-
mender systems are essential for a business’s success. Today’s recommenders need to work on
dynamic datasets, i.e., the users, items, and their ratings change frequently. Most techniques, like
Matrix Factorization (MF) [KBV09], need to be continually retrained to give recommendations on
items that were not included in the training set.

Our main contribution is a dynamic recommender system that periodically recommends a subset of
unseen items to the complete user base without retraining. Our second contribution is the evaluation
of techniques to decrease catastrophic forgetting in neural networks. Our work builds on the work
done by Sedhain et al. [SMSX15]. We implement a neural Autoencoder that takes a vector of
all user ratings for one item and reconstructs it. The key here is that the Autoencoder imputes
unobserved entries in the input (some users have not given feedback for an item) by using a learned
latent representation of the users’ feedback behavior. Effectively, the Autoencoder is predicting
missing entries.

We implement the Autoencoder and a custom training procedure in TensorFlow. The Autoencoder, a
neural network, requires the input to have no unobserved entries. However, our implementation only
considers observed entries by ignoring weights of the neural network associated with unobserved
entries during forward- and backward propagation. Every input has its own set of activated weights
and thus its own neural network. We implement this by setting unobserved values to 0. This way,
deactivated weights are multiplied with 0 during forward propagation and do not influence the result.
This trick also leads the corresponding gradients to be 0. Lastly, we implemented a custom loss
function that only calculates observed entries’ loss.

Our Autencoder achieves an RMSE of 0.86 on the MovieLens-1M dataset [Mov21]. It achieves this
RMSE on movies that were not included in the training. We then retrained the Autoencoder on new
movies to analyze three techniques to combat catastrophic forgetting: reducing epochs spent on
retraining, reducing the learning rate, and replaying old training samples. Out of all techniques,
replaying old training samples emerged as the most effective technique to stop catastrophic forgetting
of patterns learned on old data while at the same time inhibiting overfitting to the new samples.

Our approach attains an RMSE of 0.77 on the Microsoft MIND dataset [WQC+20]. The test and
validation sets contain articles that appeared later in the dataset, whereas the training set contains
early appearing articles. When simulating 100 new articles arriving each day with the test set, the
Autoencoder can predict user behavior with an RMSE of 0.75 on Day 0. However, the RMSE
increases gradually until 0.95, indicating a user preference shift in the dataset. In this case, retraining
would be advantageous to incorporate this shift into the Autoencoder’s hidden representation. Again,
replaying proved to be the most effective technique against catastrophic forgetting.
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5 Conclusion and Outlook

Outlook

While showing promising results on the two evaluated datasets, evaluation on other datasets should
be part of future work. Further evaluation on other datasets is necessary to ensure that our approach
is feasible in many applications.

Further work could go into improving the scalability of our approach. The training time and memory
requirements scale with the number of users. While the scalability did not pose problems in our
work, it could become a problem in datasets with a substantial user base in the millions. One
approach could be partitioning the users into batches and training a network separately for each
batch. Handling user batches separately would reduce memory requirements but not training time.
Another approach could be to cluster similar users and give one representative user of each cluster
as input to the Autoencoder.

Currently, our approach only works on a stable user base; future work could expand our approach
to work in settings where new users arrive. The network architecture depends on the number of
users. If a new user joins, the network would need to be expanded by one node and then retrained to
include them. Our approach can also work on user vectors instead of item vectors by simply passing
a vector of one user and all his feedback as input. We imagine that combining two Autoencoders,
one to recommend new items and one to recommend old items to new users, could cover datasets
where new movies and new users arrive.
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