=PrL

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

MASTER SEMESTER PROJECT - REPORT

PROJECT ADVISOR: ANNE-MARIE KERMARREC
PROJECT SUPERVISOR: OTHMANE SAFSAFI

RECONSTRUCTION OF A
d=-REGULAR DIGRAPH FROM ITS
PAGERANK AND A SET
OF EDGES

SCALABLE COMPUTING SYSTEM LABORATORY (SACS)

LUDMILA COURTILLAT--PIAZZA

11th June 2022

Abstract

In the following, we introduce the problem of reconstruction of a directed quasi-d-regular graph from
its pageRank and a set of edges and we prove that this problem is NP-Complete. We also propose an
algorithm based on back-tracking that solves the problem exactly and an efficient algorithm to approximate
a solution, based on known algorithms of approximation for SUBSET-SUM problem. Finally, we present
the performances of our algorithms on artificial and real graphs.

CHAPTER 1

INTRODUCTION

Introduced on 1999 by Google’s founders, the pageRank algorithm Page et al.|[1999|revolutionized online
searches, offering results perceived by users as much more relevant than those offered by its competitors
at the time and is today used by a large majority of the browsers. It is based on a vision of the web as a
directed graph in which pages represent nodes and hyperlinks represent edges. The pageRank is then a
metric that models the average proportion of time spent by a random surfer on each node in a graph. This
metric therefore gives more importance to nodes in the graph with a large number of incoming edges. It
provides us with information about the nodes themselves, but also about the overall structure of the graph.

What information does the pageRank contain exactly? This project is part of a larger effort to answer this
question.

During this semester project we managed to reconstruct graphs for which we only know the pageRank
of the nodes and a set of edges (possibly empty). As this problem looks hard in the case of really large
graphs (like Youtube or the Web), we have chosen to approach the question in the form of ego-graphs,
centered on a node called root or entry-point. Even in this case, that may look simpler, we prove that the
problem is NP-hard.

Let us present our motivations and hypothesis for the problem we state.

1.1 MOTIVATIONS & HYPOTHESES

1.1.1 THE RECOMMENDATION SYSTEMS

In real life, the pageRank is not a public data. We can only compute it by extracting the graphs we are
interested in and doing the computations our-self. In this context, deducing the graph topology from
its pageRank doesn’t seem to be an interesting question as we need to know the graph to compute the
pageRank.

However, there exists in real life public metrics that can be good approximations of the pageRank. This is
the case of the number of views in the context of a recommendation system. Indeed, if we assume that

* a recommendation system is a static graph in which the nodes are contents like videos, musics,
posts, films and a directed edge a — b exists between a node a and a node b if and only if users are
offered a link to b when they view content a.

 viewers can be approximated by a random surfer that choose a video/a film/a music among those
proposed after viewing one,

CHAPTER 1 — INTRODUCTION

in this case, the number of views measure the same information than the pageRank up to scaling.

The precedent assumptions are flawed, primarily because actual recommendation systems are not static.
This problem can be solved by doing two snapshots on the number of views close enough in time to
keep the recommendation system quasi static (and long enough to get a sufficient amount of views to
approximate pageRank). The weak points of this hypotheses will be discussed more extensively in the
section Limitations.

The application of number of views in a recommendation system motivate another assumption we made:
the graphs we work with are supposed to have quasi-d-regular out-degree. This models the fact that a
recommendation system will give the same number of recommendations after each content.

FocCuS ON EGO-GRAPHS

Today’s recommendation systems (Youtube, Netflix) are too large to be processed entirely. This is why
we chose to study partial graph in order to stay on realistic settings for this semester project.

The ego-graph perspective is the one we chose in order to extract a part of a graph to study without
creating abrupt cuts of important edges or nodes in the structure we choose to keep.

The idea of ego-graph comes from social networks study and consists in focusing in the close surrounding
of one node (one user in the context of social networks).

We adapt the notion of pageRank such that the random walks can jump to the central node of the graph
(rather than to any node of the graph uniformly at random) at each step with some probability c. In the
traditional notion of pageRank, this can be interpreted as the fact a user stops its navigation and a new user
begin a navigation from an arbitrary point. In our ego-graph based model, each new navigation/random
walk starts from the central/entry-point node. This can be assimilated to the home page of a website with
recommendation system on contents like youtube. In this way we can choose to keep in our graphs only
nodes with a sufficient probability to be reached from the entry-point and the cuts we make in the whole
graph are unlikely to be damaging with respect to this metric (the ego-pageRank).

1.2 RELATED WORK

The graph reconstruction is an extensively studied subject, with in particular the recent work of C. Mathieu
and H. Zhou (Mathieu and Zhou |2021| Kannan, Mathieu and Zhou |2018). But these articles propose
reconstruction using distance queries.

Others authors use a notion of random walk that may be related with pageRank (Hoskins et al. 2018, He
et al. 2014, Fontoura Costa and Travieso [2007, Wittmann et al. 2009).

In Wittmann et al. 2009, the authors reconstruct the adjacency matrix of a graph from the matrix of the
expected average lengths of a random walk leading from one node to another, that is a notion of the
distances between the nodes based on random walks.

In Hoskins et al. 2018], they base their reconstruction on a notion of resistance that also reflects the time
spend by a random walker to go from one node to another.

In our approach we do not suppose any knowledge about the distances between the nodes, and this is why
these works are really different from ours.

In Fontoura Costa and Travieso 2007, the authors use random walk to reconstruct a graph but they suppose
they can do random walks themselves and search the the best way to cover the graph with this random
walks.

CHAPTER 1 — INTRODUCTION

In this semester project, we suppose that we cannot access the graph directly and therefore we cannot
simply discover the edges by searching the graph.

In He et al. 2014}, the authors do not suppose they can access the edges met during the random walks but
they have the information of the intermediate ‘pageRank’ (called here distribution) of the graph after each
one of M random walks. In contrast we suppose we only have one measure of the pageRank.

1.3 CONTRIBUTIONS

* We introduce the problem of reconstruction of a quasi-d-regular graph from its pageRank and a set
of edges.

* We prove that this problem is NP-Complete with a reduction from the known to be NP-Complete
SUBSETSUM problem (Cormen et al. 2007, Chapter 35.5, « The subset-sum problem »).

* We propose a exact deterministic algorithm based on back-tracking to solve the problem.

* Finally, we present an efficient approximation algorithm, based on known SUBSETSUM approxima-
tion algorithm, that we test on both artificial and real graphs.

1.4 CONTENTS

In chapter 2, we present preliminary definitions and state the problems we work with. In chapter 3, we
prove the NP-completness of the problem of reconstruction we introduced. In chapter 4, we present our
algorithms of reconstruction and we test it on both artificial and real graphs in chapter 5. In chapter 6, we
discuss the limitations of our approach and future works on it. We conclude with section 7.

CHAPTER 2

PRELIMINARY NOTIONS

2.1 DEFINITIONS

We introduce here a notion of pageRank adapted with our use of ego-graphs that we call ego-pageRank.

Definition 1 (ego-pageRank). Let G = (V, E) be a directed graph with V. = {vg,v1, -+ ,vp_1} the
set of vertices of G and E the set of edges of G. Let c be a jump probability. We assume vy to be the
‘entry-point’ (or root) of the graph. The ego-pageRank of (G, c) is a vector of probabilities {py, - - - , pn—1}
that associates to each node v; of V' the probability, for a random surfer beginning a random walk at
vertex vg and jumping to node vy with probability c at each step, to pass by the node v; before jumping to
vg. The ego-pageRank of G is the solution of

1-c e
7 Z D if i£0
J:(vj,v)EE
pi = 1—c L
1+ 7 Z pj if i=0

j:(’U]',’l)i)GE

If (v; = v;) € E the quantity %pj is called the contribution of the node v; to the ego-pageRank of the
node v;. The ego-pageRank of v; is thus the sum of the contributions of its predecessors/ingoing edges. By
extension, the contribution of the edge (v; — v;) € E is also called the ego-pageRank of this edge.

The probability ¢ models the chance that a random surfer will stop exploring at the current node. It then
starts a new exploration from the entry-point. Thus, 1/c is the average length of an exploration in this
model. This could reflect a sequence of video viewing/ music listening following a recommendation
system’s suggestions (graph () and starting from a home page (node vy).

By the fixed-point theorem the ego-pageRank is well-defined and unique. In the following, we note
pageRank(G, ¢) this unique vector of probabilities.

In the following we refer to ego-pageRank as pageRank for short.

Remark. The main difference between ego-pageRank and more traditional notions of pageRank consists
in the fact that the random surfer always begins its random walk from the same entry-point. This point is
necessary with ego-graphs so that the nodes furthest from the entry-point have the lowest pageRank.

CHAPTER 2 — PRELIMINARY NOTIONS

FIGURE 2.1
Example of quasi-d-regular graph

Definition 2 (Quasi-d-regular graph). A directed graph G = (V, E) is said to be quasi-d-regular if there
exists a subset of vertices L of V, that are called leafs such that each vertex in V' \ L admits exactly d
outgoing edges and each vertex in L admits no outgoing edge (this is why it is called a leaf):

e VueV\L, #{v: (u,v) € E}| =d
e VYue L, #{v: (u,v) € E}| =0

The notion of quasi-d-regular reflects the concept of ego-graph in the context of d-regular graphs in that a
quasi-d-regular graph is a d-regular graph in which we remove the nodes that are too far away from the
entry-point (that would have been the successors of the leafs).

Definition 3 (Depth). In a quasi-d-regular graph, the depth of node is the length of the shortest path from
the entry-point to this node.
By extension, the depth of an edge is the depth of node from witch it comes.

Example. In figure 2.1] the node 0 has depth 0, the nodes 1, 2, 3 has depth 1 and so on. The edge from
node 5 to node 8 has depth 2 and the node 5 has depth 2.

-

© ()
FIGURE 2.2
Example of a meta-node and a meta-edge

Definition 4 (Meta-node). A meta-node is a group of nodes that we choose to view as a unique one. An
outgoing edge from a meta-node (i.e. a meta-edge) corresponds to an edge from each one of the nodes
forming the meta-node. The pageRank of a meta-node is the sum of the pageRanks of its members. Hence,
the equations on pageRank remains consistent when we consider meta-nodes and meta-edges.

2.2 PROBLEMS
We present the problem we are interested in.

Problem 1: (d, ¢)-graphFromPR*

CHAPTER 2 — PRELIMINARY NOTIONS

parameters: ¢ €]0,1[,d € N; d > 2

input: a tuple (V, P, L, H) with V' = {vy, ..., v,—1 } a set of vertices, P = {p}}, ..., p}:_; } a pageRank
vector, L = {lo, ..., ,, } a subset of V', H a set of directed edges V'

output: a digraph G = (V| E), a quasi-d-regular digraph such that, V' is the set of vertices of G, the
labeled graph H C E, L is the set of leafs of G and PageRank(G,c) = P.

The problem (d, ¢)-graphFromPR consists in, given a set of nodes V' among those we know which
node should be a leaf or not (the leafs are in L), an associate measure of pageRank P for each node and
a set of edges between this nodes, complete the edges of the graph to obtain a quasi-d-regular graph G,
with pageRank P, nodes V' and leafs L.

Remark: Note that the instances of (d, ¢)-graphFromP R* problem are supposed to admit at least one
solution.

Theorem 1. A solution for an instance of (d, ¢)-graphFromP R* is not necessarily unique.

FIGURE 2.3

2 solutions for the same instance of (d, ¢)-graphFromPR* : V = [0;21],P =[0:1,1:1/3,2:4/9,3:

1/3,4 : 2/9,5 ¢ 7/27,6 : T/27,7 : 4/27,8 : 1/9,9 : 2/27,10 : 2/27,11 : 2/27,12 : 7/54,13 : 7/54,14 :

14/54,15 : 7/54,16 : 7/54,17 : 16/54,18 : 4/54,19 : 4/54,20 : 1/27,21 : 2/27],L = [9;21], H =
{0,1),(2.7), (8,21)}

Proof. See a conter-exemple on figure 2.3] Note that, when two nodes have the same pageRank and are
both leafs or both non-leafs nodes, we can always find a new solution from another one by exchanging
the positions of the two nodes in the graph, because we have exactly the same information about the two
nodes. But in the case we present in Figure[2.3] the structure of the two solutions are different, i.e. if we
don’t know the indices of the nodes, the two graphs are still note the same. Indeed, node 14, that is the
only one to get pageRank 14 /54, has two parents with pageRank 7/27 in one case and three parents with
pageRank 1/9, 4/27 and 7/27 in the other case. O

In order to study the complexity of this reconstruction problem, let us introduce the associated decision
problem (d, ¢)-graphFromP R that will be useful for the proofs.

Problem 2: (d, ¢)-graphFromPR

parameters: ¢ €]0,1[, d € N;d > 2

input: A tuple (V, P,L, H) with V' = {wvy, ..., v,—1 } a set of vertices, P = {p{, ..., pj,_; } a pageRank
vector, L = {lo, ..., 1, } a subset of V, H a set of directed edges on V

output: Yes, if there exists a quasi-d-regular digraph G = (V, E) such that, V' is the set of vertices
of G, the labeled graph H C E, L is the set of leafs of G and Page Rank(G, c¢) = P, no otherwise.

CHAPTER 2 — PRELIMINARY NOTIONS

Claim 1. If (d, ¢)-graphFromPR is NP-hard, (d, c)-graphFromP R* is as complex as (d, ¢)-graphFromPR
in time.

Remark. As (d, ¢)-graphFromPR* is not a decision problem, we cannot say that it is NP-hard, but
the precedent claim roughly states that the NP-hardness of (d, c)-graphFromPR is equivalent to (d, c)-
graphFromPR* one.

Proof. Suppose (d, ¢)-graphFromPRis NP-hard. Let (V, P, L, H) be an instance of (d, ¢)-graphFromPR
(the decision problem). Suppose we have an algorithm A that solves(d, ¢)-graphFromP R* in time com-
plexity C(V, P, L, H). We describe an algorithm that solves the decision problem (d, ¢)-graphFromPR
using A.

Let m be the maximal number of steps taken by a Turing Machine to execute algorithm A on (V, P, L, H)
when supposing it is a positive instance of (d, ¢)-graphFromPR* . (Given the algorithm A, we can
compute exactly its time complexity on instances that satisfy the assumptions made by the problem

(d, ¢)-graphFromP R* it solves). Then we can run A(V, P, L, H) on a Turing Machine and stop it after

m + 1 steps if it has not terminated before. Then,

« if the execution has not terminated, we conclude (V, P, L, H) is not a positive instance of (d, c)-
graphFromPR , otherwise A(V, P, L, H) would have terminated before.

* if the execution terminated, it returned a digraph G(V’, E). Let n = |V| and {po, ..., pn—1} be the
set of pageRank of GG. We can check in time polynomial in n that

-V'=V
- L={ueV AveV'|(uv)€eE}=L
-HekFk

Vue V'\ L, #{v: (u,v) € E} =d

1—c¢ Cp .
y Z D) if i#0
J:(vj,v)€EE
1—c¢ e .
1+ 7 Z pj if 1=0
j:(’Uj,Ui)EE

WG[[O,n—l]] Di =

by unicity of the pageRank, it implies that Page Rank(G,c) = P
Then we can check in time ()(n) polynomial in n that G is a certificate of (V, P, L, H) for the
(d, ¢)-graphFromP R problem.

The algorithm to solve the decision problem we just described has a time complexity of C(V, P, L, H) +
Q(n) in the worst case and solves an NP-hard problem. As Q(n) is polynomial in (V, P, L, H) and
C(V,P,L,H) + Q(n) is the complexity of an NP-hard problem, C(V, P, L, H) is as complex in time
as an algorithm solving an NP-hard problem, and (d, ¢)-graphFromPR* is as complex in time as an
NP-hard problem. O

Finally, let us recall the definition of the classical NP-hard problem SUBSET-SUM
Problem 3: SUBSET-SUM

input: P = (p1, ..., pn) a set of integers, ¢ a target integer
output: yes, if there exists a subset of P that sums up to ¢, no otherwise.

CHAPTER 3

PROOF OF NP-COMPLETNESS OF
(d, c)-graphFromPR

We will prove that we can reduce SUBSET-SUM to (d, ¢)-graphFromPR . With claim 1, it implies
that the reconstruction of a quasi-d-regular graph from its pageRank is a problem as complex in time as a
NP-hard decision problem. In addition, as certificate verification is polynomial in the number of nodes,
we conclude that (d, ¢)-graphFromP R is NP-Complete.

3.1 REDUCTION OF SUBSET-SUM 10 (d, ¢)-graphFromPR

In this section, we reduce an instance (.S,) of SubsetSum to an instance (V, L, P, H) of (d, ¢)-graphFromPR
and prove then the NP-hardness of (d, ¢)-graphFromPR .

3.1.1 IDEA OF THE PROOF.

In the problems of reconstruction we are interested in, we want to reconstruct a graph from its pageRank
and a set of edges. First, note that the pageRank of a node is the sum of the contributions(T) given by each
of its predecessors edges. As we consider quasi-d-regular graphs, the contribution of each predecessor j
to the pageRank of a node can be computed from the pageRank of this predecessor (this is (1 — ¢)p;/d).
In other words, we can associate to each outgoing edge of a node a contribution (or flow) (1 — ¢)p;/d
it will give to its tail node. As each successor of a node has the same probability to be joined by a step
from this one, and as we do not allow multiple-edges, the notion of contribution of a predecessor and
contribution of a given edge from this predecessor are the same.

Then, in order to obtain the right pageRank for a given node ¢, we need to choose during the reconstruction
a set of predecessors v{, ..., v, for ¢ from V' \ L such that their contributions (1 — ¢)p;/c sums up to p;

(and include the ingoing edges of ¢ in H). Thus, we can see this question as a SUBSET-SUM problem
with contributions of the nodes in V' \ L as the set and the pageRank p; as the target.

Following this idea we reduce the problem SUBSET-SUM to (d, ¢)-graphFromPR by generating in
polynomial time an instance of (d, ¢)-graphFromP R with a specific node which pageRank equals the
desired target and each possible predecessor presents a contribution that equals one of the elements of the
set of weights. Another node will be a well for the unused edges.

CHAPTER 3 — PROOF OF NP-COMPLETNESS OF (d, ¢)-graphFromPR

8

8

(C) step 3

¥

FIGURE 3.1
Example of reduction for § = {2,5,4,1,6}, ¢t = 8. See figure 3.2]for more readability

THE CONSTRUCTION.

Let us consider an instance of SUBSET-SUM (S, t) with S = {s1, ..., sp } a set of integers and ¢ a target
integer. We will construct an instance of (d, ¢)-graphFromPR (V, P, L, H) such that (S, ¢) admits a
certificate if and only if (V, P, L, H) admits one.

Letm =} gsianda = [(logg(m))].

step 1: T is the the complete d-regular tree of height a. It has d* > m leafs. The root of the tree
will be the entry-point of our graph, then it has a pageRank of 1 and at each depth i, the nodes of
the tree of depth i have a pageRank of ((1 — ¢)/d)*.

V1 and P are the set of nodes of T" and associated pageRanks. L1 = (), H, = T.

step 2: We classify the dP leafs of T" in n 4+ 1 meta-nodes wy, ..., wy41 such that wy, ..., w, are
respectively equivalents to sy, ..., S, leafs of 7" and w41 is equivalent to the dP — m remaining
nodes. For i = 1 to n, the total pageRank of each meta-node w; is given by s;((1 — ¢)/d)®.

Vo =Vi,Py =Py, Ly = {wpy1}, Hy = Hi.

step 3: We create n new nodes vy, ..., v, such that each one has exactly all the members of a
meta-node as predecessors. In other words, for all ¢ in [1,n], v; has for unique ingoing edge a
meta-edge from w;, that is an edge from each node in the meta-node w;. The pageRank of v; is
5;((1 — ¢)/d)**! as each one of the s; leafs of T in w; has an associate pageRank (1 — ¢/d)?.

VE), = ‘/2 U {’Ul, ceey ’Un}, P3 = P2 U {51((1 — C)/d)a+1,) Sn((l — C)/d)a+1}, L3 = LQ,

Hs = Hy U {(wi, Ui) Vi € [[1, n]]}

step 4: We create d — 1 nodes t¢1, ..., t;_1 that receive as parents all nodes that didn’t complete
their number of successors up to d, i.e. wy, ..., w, and vy, ..., v,. This node has a pageRank of
m((1—c)/d)**! +m((1 - ¢)/d)"*?

Vi=VsU{t1,....,tq-1},

Py=P3u{m((1—¢)/d)*™ +m((1 —c)/d)**2 n times},

Ly = Lg @] {tl, ...,tdfl},

Hy=H3U {(U}i,tj) Vie[l,n],j€[l,d—1]}U {(Uz‘,t]’) Vie[l,n],j€[l,d—1]}

step 5: It now only remains one outgoing edge to each of the n nodes vy, ..., v, with pageRank
5;((1 — ¢)/d)**! to be completed, we create two nodes Utarget and vy,ey that will be leafs of our

CHAPTER 3 — PROOF OF NP-COMPLETNESS OF (d, ¢)-graphFromPR

FIGURE 3.2
Complete instance of (d, ¢)-graphFromPR* corresponding to the instance of SUBSET-SUM instance
S =1{2,5,4,1,6},t=28

graph. vqrget has PageRank ¢((1 — ¢)/d)**2 and vy,ey has a pageRank (m — ¢)((1 — ¢)/d)**2.
VYE) =Vu {Utargeta 'Uwell}’

Ps = PpU{t((1—c)/d)**2, (m —t)((1 - ¢)/d)""?},

Ls=LsU {'Utargeta Uwell}

Finally, V, P, L, H = Vs, Ps, L5, Hs.

Notation. In the following we denote by p[v] the pageRank associated to a node v € V in (V, P,L, H).

CORRECTNESS.

In this section, we consider (S,), an instance of SUBSET-SUM and (V, P, L, H), the associated in-
stance of (d, ¢)-graphFromPR . we just describe the construction and we prove the following theorem.

Theorem 2. (S,t) admits a certificate if and only if (V, P, L, H) admits a certificate.

Proof. If there exist a subset S" = {s], ..., s.} C S that sums up to ¢, then calling v}, ..., v). the associ-
ated nodes in V, >0 p[vl] = >0 si((1 —¢)/d)*T2 = t((1 — ¢)/d)**?, i.e. the pageRank of vigyget-

10

CHAPTER 3 — PROOF OF NP-COMPLETNESS OF (d, ¢)-graphFromPR

/

In addition, the remaining edges, that comes from {v1, ..., v, } /{v], ..., v.} sum up to

i=1 j=1
1—c\%2 (& "

-(4) (XX
i=1 j=1

e <1;c>a+2

that is the pageRank of vyey;. Thus, HU{ (v}, vtarget), @ € [1, r]FU{(V", vwenr), @ € {v1, ..., vn}/{V}, ..., v.}}
is a certificate of (d, ¢)-graphFromPR .

If there exist G a certificate of (V, P, L, H), then

Lemma 1. There exists a subset V' € {vy,...,v,} such that
G=HU {(v’,vmrget), v e VUL vpen), v € {v1, .., 00}/ V')

Proof. (of the lemma)

() v¢arget and vy,e are the only nodes that did not complete their pageRank with I, such that all the
other nodes satisfies the equation of pageRank

1—c e
p) > if i#0
o j:(vj,v;)€EE
pl - 1 —c

L+ — > op ifi=0

J:(vj,v)€EE

* the root vy has no ingoing edge and has pageRank 1.

e at each depth ¢ > 1 of the tree, each node of depth 7 has exactly one parent of pageRank ((1 —
c)/d)"~! and its pageRank is ((1 — ¢)/d)* = ((1 — ¢)/d)((1 — ¢)/d)*~*

s for i € [1,n], the node v; has exactly one meta-predecessor of pageRank s;((1 — ¢)/d)**+!
(i.e. s; predecessors of pageRank ((1 — ¢)/d)?) and its pageRank is s;((1 — ¢)/d)** = ((1 —
¢)/d) 351 ((1 =) /d)* = (1 = ¢)/d)p[wi]

e the nodes ¢1, ..., t4—1 have vy, ..., v, and wy, ..., wy, as parents. For all i in [1, n], v; has a pageRank
51((1 — ¢)/d)**! and wy has a pageRank s;((1 — ¢)/d)®. The nodes t1, ..., t4 have a pageRank

SR TN
<1d6>%3i<<1dc) +(1;c>)

— (%7°) X otwd + sl

i=1

11

CHAPTER 3 — PROOF OF NP-COMPLETNESS OF (d, ¢)-graphFromPR

e Finally, v4get and vy,¢y have a non zero pageRank and have no ingoing edge in H, then it need to
complete its paegRank with new edges

Then, vigrger and vyep are the only nodes that did not completed their pageRank with H.

(ii) It only remains one outgoing edge from each one of the n nodes vy, ..., v, to add to H to obtain a
quasi-d-regular graph with set of nodes V' and set of leafs L, in other words, all the nodes in V' \ L
have exactly d outgoing edges in H, except vy, ..., v, that have d — 1 outgoing edges in H. Indeed,

* In T, that is the complete d-regular tree of depth a, all the nodes have exactly d outgoing edges, by
definition of a d-regular tree, except the leafs, that forms the meta-nodes wi, ..., Wy41.

e For i in [1, n], the meta-node w; has one outgoing edge to v; and one outgoing edge to each one of
the d — 1 nodes t1, ..., t4_1 for a total of d outgoing edges.

* Foriin [1,n], the node v; has one outgoing edge to each one of the d — 1 nodes 1, ..., t;_1 fora
total of d — 1 outgoing edges.

¢ The remaining nodes wy41,%1, ..., Ld—1, Vtargets Vwenr are all in L. So they have no edges in H and
they should not have any at all.

Hence, it only remains one outgoing edge from each one of the n nodes v, ..., v, to add to H to obtain a
quasi-d-regular graph with set of nodes V" and set of leafs L.

We conclude lemma (1) by (i) and (ii).

By lemma[l] There exists a subset V' = {v{,--- ,v.} C {v1,-- ,v,} such that
G = HU{(V, vtarget), v € V'IU{(V", ven), v" € {v1,--+ ,v,}/V'}

The nodes in {v1, ..., v, } have pageRank {s1((1 —c)/d)*!,--- , 5,((1 —c)/d)**'}. Then, by denoting
p[vh] = s4((1 —¢)/d)eTL, - plvl] = sh((1 —¢)/d)*TL, s, -, s are the elements of S associated
with the nodes in V/ and

=,
&
)
3
Q
S
Il
7 N\
—t
SO
o
~_—
=,
SC\

Then (s}, -, s},) is a certificate for the SUBSET-SUM instance (.5,). O

COMPLEXITY OF THIS REDUCTION.

In this subsection we discuss the complexity of the reduction we propose in order to ensure it is polynomial.
Indeed, while the generated instance (V, P, L, H) presents an amount of nodes exponential in the size n
of the set S, the time complexity of the construction is already polynomial.

* ¢ can be written with an amount of bits linear in the number of bits required to encode S

12

CHAPTER 3 — PROOF OF NP-COMPLETNESS OF (d, ¢)-graphFromPR

* Step 1 take a time O(a) because describing the d-regular tree " of depth a is O(log(a) + log(d)) =
©(log(a)), as d is a constant and because we only need to describe the tree (not to construct it
explicitely). It takes a time linear in a to attribute the pageRank of the nodes at each depth.

 Step 2 is polynomial in n. Since all the leafs of the tree are identical, the construction of a meta-node
wj is O(log(s;)) (again, we only need to describe it) and computing the pageRank of wj is just a
multiplication.

 Step 3 is linear in n.
* Step 4 has a complexity of ©(d) + ©(n) = ©(n) as d is a constant.
 Step 5 is constant in time.

Then our construction is polynomial in the size of S.

Remark. Ift > m, we can trivially conclude that (S, t) admits no certificate.

This concludes the proof of NP-Hardness of (d, ¢)-graphFromPR .

3.2 NP-COMPLETNESS

As we have seen in the proof of claim |1 given an instance of (d, ¢)-graphFromPR (V, P, L, H) and
a graph G = (V, E), it can be checked in time polynomial in (V, P, L, H) that it is a certificate. Then,
(d,c)-graphFromPR is in the complexity class NP. As it is NP-Hard, (d, ¢)-graphFromPR is NP-
complete.

The problem (d, ¢)—graphFromPR is NP-hard. This is why, in the next chapter, we will see an algorithm
that solves it in time exponential. However, we will also introduce an efficient approximation algorithm,
inspired by the same idea as the reduction from from SUBSETSUM we have seen.

13

CHAPTER 4

ALGORITHMS

In this chapter, we first introduce a basic principle that is important to understand to approach our
reconstruction algorithms. Then, we introduce a simple algorithm that solves exactly the problem
(d, ¢)-graphFromPR in time possibly exponential and finally we present an efficient algorithm that
approximately solve the problem.

Claim 2. In a partially reconstructed graph H' with associated pageRank {py, ..., pn—1}, for which we
know the expected pageRank {pj, ..., p};_1}, we can say, for a node, if it is still missing incoming edges
and if it is still missing outgoing edges.

Proof.

* For ingoing edges, given node v; that is not the root, if

pf:1;C > o

j:(’Uj,’U»L')GE

v; has completed its pageRank. Indeed, it remains to complete the pageRank of its predecessors to
get its pageRank equal to its expected pageRank. On the other hand, if

1—c
R D DN
J:(vj,v)€EE

v; needs additional ingoing edges. The reasoning is the same for the root node, with the equation
— 1— .
pé =1+ dc Zj:(vj,vo)EE p;’ Ui

* for outgoing edges, given a node ¢, if ¢ € L, it does not need outgoing edges. Else, it needs
outgoing edges if and only if it has strictly less than d edges.

O

The following algorithms will use this observations (that does not depend on the current pageRank in the
graph, but only on the edges and the expected pageRank to gradually rebuild a graph by completing the in
and outgoing edges of each node.

14

CHAPTER 4 — ALGORITHMS

4.1 EXACT ALGORITHM BASED ON BACK-TRACKING

In this section we present an exact algorithm to solve the (d, ¢)-graphFrom PR problem. This algorithm
is presented in order to show we can resolve the problem exactly but it does not run in reasonable time. Its
presentation may also be useful in order to understand the approximation algorithm we present in section

The exact algorithm based on backtracking is presented through algorithms[T]and2]

Idea of the algorithm. Starting with the node with the highest pageRank requiring successors (usually
the root), the number of successors for each node not yet processed is increased up to d. Nodes are
processed in order of decreasing pageRank and successors can only be chosen if they have sufficiently
high pageRank and still have few enough parents to satisfy the pageRank equation. The last choices are
cancelled and replaced by others if the reconstruction becomes impossible.

More precisely, during the reconstruction, for each node j which still lacks predecessors, we memorize p;
the part of its label which is still not attributed to a parent. Thus, if PRED; is the set of predecessors

already assigned to j,
1
Pi=pi—y D, g

g€PRED),

The reconstruction algorithm is based on the following data structures:

* the set need_pred of nodes i that lack predecessors, together with the share of their label p/ that has
not yet been assigned to a parent

* the set need_succ of nodes which have already been integrated to the connected component of node
0 in the graph and whose successors have not yet been chosen

* the partially reconstructed graph consisted of the edges provided at the beginning and the other
ones already chosen

If H includes m outgoing edges for the root, the recursive function d, c-GRAPHSEARCH chooses d — m
successors among the possible successors of the root and recursively calls on the previous graph to which
we have added a link between the root and these chosen children. If m = d, we does not begin with
the entry-point but with the node of connected component of the entry-point of highest pageRank which
has not yet completed all its outgoing edges. If there are no solutions with this choice of successors for
the first node, other choices of d — m possible successors are explored until a solution is found. The
procedure is the same for the maximum pageRank successor of the first node and for all the other nodes
that are not leafs (that are not in).

When a graph is partially reconstructed, potential successors of a node ¢ are nodes j such that:

* j still lacks predecessors, in other words p;- =pj— % > qePRED! Pq > 0
J

. p;- > p;/k: what remains of j’s label to be attributed is sufficient for j to be a successor of i,
respecting the definition of pageRank

Algorithm 1 function d, c-EXACTRECONSTRUCTION(V, P, L, H)

1: need_pred < [v € V : P} _[v] > €] > nodes that need ingoing edges
2: need_succ < [v € V'\ L that has less than d outgoing edges| > nodes that need outgoing edges
3:G=H

4. return GraphSearch(P, need_pred, need_succ, G)

15

CHAPTER 4 — ALGORITHMS

Algorithm 2 function d, c-GRAPHSEARCH(P, need_pred, need_succ, 3)

. if need_succ = () then return G
. end if
: 1 < node with maximal pageRank in need_pred
. possible_succs = { j such that (j,p;-) € need_pred N p; > pi/k}
. if |possibles_succs| < k then return ‘No solution’
else
while it remains not explorated choices of k elements in succs_possibles do
succ = choose k successors among possible_succs
nw_graph = graph U {(i — j) such that j € succ}
nw_need_pred = need_pred / {(j,p’;) such that j € succ} U {(4, p; — pi/k) for j € succ such
that p; > p; /k}
11: nw_need_succ = need_succ / {1}
12: if i ¢ L and 7 has less than d successors then
13: nw_need_succ = nw_need_succ U{i}
14: end if
15: s = GraphSearch(P, d, ¢, nw_need_pred, nw_need_succ, nw_graph)
16: if s # ‘No solution’ then return s
17: end if
18: end while
19: return ‘No solution’
20: end if

X RO YR WY

_.
e

4.2 APPROXIMATION ALGORITHM

Principle of the algorithm. We enumerate each node that still need ingoing edges (that we know thanks
to the principle of claim[2]in order of increasing pageRank and complete the ingoing edges of each one
using a subsetSum approximation algorithm.

This is a probabilistic algorithm using deterministic approximation algorithm. As the output of subsetSum
approximation algorithm depends on the order of the input elements, we randomly shuffie the input at
each iteration of our probabilistic algorithm. In our implementation that we present in chapter[5] we use
an approximation algorithm from Ibarra and Kim 1975,

The data structure structures need_pred and need_succ play the same role as in the exact algorithm.
However, there are additional parameters in the approximation algorithm:

* ¢ is the precision used to do the computations. As the subsetSum problem is about integer, we
work with integer normalized version of the pageRank: all the pageRank are multiplied by [5 and
ceiled. Thus, if € = 1079, a pageRank measure of 0.0123456789 will be translated in 12345 for
the computations.

* subsetSum-e is a parameter of the approximation algorithm SUBSETSUMAPPROX that measures
the maximal error in the output of SUBSETSUMAPPROX with respect to the best solution possible

* nb_it is the number of iteration we want our probabilistic reconstruction to run. In the end, it return
the best solution found according to the function BEST.

The function BEST correspond to a measure of proximity with the expected pageRank. In our implement-
ation we choose to use the metric score presented in chapter [5

This approximation algorithm seems to be really efficient and precise as we will see in the next chapter,

16

CHAPTER 4 — ALGORITHMS

Algorithm 3 d, c-APPROXRECONSTRUCTION(V, P, L, H, €, subsetSum-¢, nb_it)

1:

20:
21:
22:

> We will be working with integers for using subsetSum approximation
normFactor < [1/€]|

1 €pis — € X normFactor D €pis = 1
Pbis — { V.= N
v+ [P[v] x normFactor]
Gbest «— H
for £ = 0 to nblt do
GZ' «— H
> Computing remaining PageRank to be completed
Pb*z's A Pbis[v] - EuGV:(u,v)GH %Pbis [u]
need_pred < [v € V : P [v] > ¢ > nodes that need ingoing edges
need_succ < [v € V' \ L that has less than d outgoing edges] > nodes that need outgoing edges
while need_pred is not empty do
Shuffle need_succ
1 <— node with minimal pageRank in need_pred
> We collect possible ingoing edges for node ¢ and eliminate the too big ones
candidates <+ {15°Py; [v], v € need_succ s.t. 6P} [v] < 2 x P li]}
nodes = SUBSETSUMAPPROX(candidates, I _[i], subsetSum-e)
update H, need_pred, need_succ with the edges {u — i, u € nodes}
end while
Gbest «— BEST(Gbest7 Gz)
end for
return Gp.q;

where we present our results.

17

CHAPTER S

EXPERIMENTS

In this section, we present the results of our approximation algorithm on both real and artificial graphs.

5.1 EVALUATION METRICS

Before presenting the results, let us explain the different measures we use to evaluate the performances of
our algorithms.

Definition 5 (Score).

1 ‘ < |p; —m\)
score = ————— p; | 1—————
Zvievp? Z ’ p;k

v, eV
with p} the expected pageRank of node v; and p; the pageRank of v; in the reconstruction graph.

err = ‘pip%p"‘ is a classical measure of error with respect to a target value and 1 — err is in contrast a

measure of precision. With the score we use here, we take in account this notion of precision for each
node proportionally to its expected pageRank, this measures its importance.

However, at the beginning of the reconstruction, each node has often pageRank 0 except the node root that
has pageRank 1, and given the fact that expected pageRank are often approximately close to these values
(generally close to 1 for node root and lower than 1/d for the other nodes), an algorithm of reconstruction
that does not add any edge will often obtain a good score with the precedent metric. In order to evaluate
the real performances of our algorithm, we use a normalized version of the score.

Definition 6 (Normalized score).

) score — scoreg
normalized score = ——mM—————
1 — scoreg

where scoreq is the score it would have reached without adding any edge.

e . 1 |pf —pil
Definition 7 (Error). Average error: error = W Zviev Zp;

Definition 8 (Completeness). We call completeness the ratio of the expected number of edges we actually
added to the graph. If the completeness equals 1 it means that there is |V \ L| x d edges in the graph,
because all the nodes in V' \ L must have exactly d edges and the nodes in L must have 0 edges.

Remark. Because of the construction of our algorithms, the completeness cannot exceed 1, i.e., the
number of edges in the reconstruction cannot be greater than the expected one. This is because we do

18

CHAPTER 5 — EXPERIMENTS

the reconstruction with a set of available edges (need_suc from which we take all the new edges we
construct. When the set is empty, the reconstruction stops.

Definition 9 (Similarity). We call similarity the ratio of edges present in the original graph we find in the
reconstruction. If we denote by G the original graph and by G' the reconstruction:

{ltu = v)st.(u—v)eG A (u—v)eG}
led

similarity =

Definition 10 (weighted similarity). The weighted similarity weight each edge by the pageRank of the
node from witch it begin:

1
weighted similarity = =———— Z Pil{(v;—v;)ecry
2 (wioy)ecr Pi (vi—v;)€C

Definition 11 (Clustering ratio). Ratio between the clustering coefficient of the reconstruction and the
one of the original graph.

Remark. The similarity, the weighted similarity and the clustering ratio are measures of the difference
between the graph we reconstruct and an "original graph' we know to have exactly the expected pageRank.
As shown with the theorem([I| there may exists different graphs that match exactly to a pageRank distribution
and a set of edges. This is why we do not expect the similarity and the clustering ratio to equal 1. This
metrics are there only as information about the distance between our reconstruction and another graph
with close pageRank and a set of common edges.

5.2 RESULTS ON ARTIFICIAL GRAPHS

5.2.1 GENERATION OF THE ARTIFICIAL GRAPHS
We generated artificial quasi-d-regular graphs to test the performances of our approximation algorithm.

The generation process. The generation process begins from the entry-point and create d successors to
it. Then, for each new node, it creates d new edges from it. Each edge goes to an existing node with
probability 1/2 and creates a new node with probability 1/2. When the current pageRank of a node is
lower than a chosen threshold €., it is a leaf and it has no successors. This process terminates because,
when it is created, a node has a pageRank lower than é times the pageRank of its parent. The limit of the
expected average pageRank at each depth is zero.

Here, we present results on a family of artificial graphs generated with this method with approximately
1,500 nodes. These graphs were generated with

* an out-degree d = 7,
* a probability of jump to the entry-point ¢ = 1/5,
¢ nodes with pageRank lower than €.,y = d x 0.0001 chosen as leafs.

On these graphs, in order to get a precision sufficient to do the computations on nodes with the lowest
measures of pageRank, the algorithm will always be run with precision € = 0.00001. This has no influence
on the complexity of the reconstruction.

19

CHAPTER 5 — EXPERIMENTS

1.000 100

— Best score —— MNormalized best score

Average Score Mormalized avg score
—

0.998 — 098

——
/ ©.00014

0996 0.96 \
0.00012

0.994 0.94

0.00016

0.00010

0.992 0.92

0.00008 1 — Smallest Error

Average Error _\\
0.990 090
[

5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
number of iterations number of iterations number of iterations

010 10 1.0000
—— Global Similarity —— Weighted Similarity T

—_—
0.9975

0.5950
006 06 0.5925
0.9900 /
I T - 0.9875 f'

0.02 03 0.9850

—— Best completeness

0.9825
Average completeness

0.00 0.0
Q] 10 15 20 25 o 5 10 15 20 25 Q 5 0 15 20 25
number of iterations. rusmber of itarations number of iterations

—— Clustering Ratio

1o /\Aik T

0 5 10 15 20 25
number of tterations.

FIGURE 5.1
Evolution of different metrics in function of the number of iteration we choose to run the approximation
algorithm with. Average results obtained on 9 different graphs with approximately 1,500 nodes each,
subsetSum-e=1/4, 1% of edges in input.

5.2.2 INFLUENCE OF THE NUMBER OF ITERATIONS

Figure [5.1] presents the evolution of the performances of our algorithm in function of the number of times
we chose to run the probabilistic reconstruction process. The results have been obtained by averaging the
results on 9 graphs with approximately 1,500 nodes each, subsetSum-e=1/4 and each edge of the graph
present in input with probability 0.01.

First, note that the result has a pageRank really close to the expected one, even with only one iteration:
the score measure is greater than 0.996, the normalized score is better than 0.93 and the error is lower
than 0.0002.

As expected, increasing the number of iterations makes us more likely to increase our best score. The best
score, best normalized score and best completeness have similar shape in that they increase quickly when
the number of iteration is between 1 and 5. Then, they increase more slowly with 10 up to 15 iterations
and tend to stabilize after 15 iterations. This means that it is useless to do more than 15 iterations. One
iteration is already good to get a approximate reconstruction with pageRank pretty close to the expected
one. 1 — error acts as the precedent metrics.

The average measures of score, normalized score, error and completeness are a bit fluctuating when the

I"This is actually a set of node, but as we remove a node of the set when it has d edges,so this is equivalent to a set of edges.

20

CHAPTER 5 — EXPERIMENTS

number of iterations is low and stabilize when it increases, this is also an expected effect.

The similarity is always close to 3% and the weighted similarity to 40%. The clustering ratio fluctuates
between 0.9 and 1.1. These 3 measures do not seem to be influenced by the number of iterations. This
means that, how close the pageRank of our reconstruction is to the expected one, it does not influence its
similarities to the "original graph".

We said that, despite really close measures of pageRank, the original graph and the reconstruction has
only 3% of common edges. How can we explain such a low similarity ? The 40% of weighted similarity
gives us a clue: there is really higher similarity among the big edges (edges with high pageRank) than
among the small ones. It can be explained by the fact that there are much more edges associated with a
small pageRank than edges associated with big ones. Among the edges with small pageRank, many share
the same pageRank or really close ones. These edges can be exchanged without changing the pageRank
of the nodes of the graph and the result is as close to the expected one as the precedent. This observation
will be confirmed with figures[5.3] and [5.5]in section [5.2.4]

Finally, we note that the clustering ratio is close to 1, meaning that that the original graph and the
reconstruction have close clustering coefficient.

5.2.3 INFLUENCE OF THE PARAMETER ¢-SUBSETSUM

Figure [5.2] shows the precedent metrics in function of subsetSum-e. This experiment was made on 9
different graphs with approximately 1,500 nodes each and run with 5 iterations by execution. Each edge
is known at the beginning with probability 1%.

Best score Normalized best score Smallest Error
1.000 1.00 00005

0.998 0.98 0.0004
0.996 0.96 0.0003

0.994 0.94 0.0002

0.992 0.92 0.0001

0.990 0.90 0.0000
0.2 04 0.6 08 10 0.2 0.4 0.6 0.8 10 0.2 04 0.6 08 10
& for SubsetSum & for Subsetsum & for Subsetsum

Best completeness Weighted Similarity Clustering Ratio
1010 10 20

1005 18
0.8

oo W Le

0.995 06 14
0.990
0.985 0 —_——
0.980

02 08
0.975

0.970 0.0
02 04 0.6 0.8 10 02 04 0.6 0.8 10 02 04 06 0.8 10

& for SubsetSum & for Subsetsum & for Subsetsum

FIGURE 5.2
Evolution of different metrics in function of the value of subsetSum-e we choose to run the approximation
algorithm with. Average results obtained on 9 different graphs with approximately 1,500 nodes each, and
5 iterations by execution, 1% of edges in input.

We varied the parameter subsetSum-e between 1/10 and 1. In the original article Ibarra and Kim 1975
from witch we have taken the algorithm we use in our implementation, the authors prove the error of the
result of the algorithm with respect to the optimal solution to be slower than subsetSum-e. In practice,
in our implementation we noted errors hundred times lower than this bound. This is why we keep such

21

CHAPTER 5 — EXPERIMENTS

"high" values of subsetSum-e.

First note that, apart from the clustering ratio, the results here are really close to the precedent ones, even
if the axes of the figures are chosen in order to observe variations: the score is greater than 99.5 %, the
normalized score is between 93% and 98%, the error is lower than 0.0003, the completeness is close to 1,
the weighed similarity is close to 40% and the similarity is close to 3%.

The general shapes of the score, normalized score and error we obtain show that, as expected, the higher
subsetSume-e is, the less precise is the reconstruction.

However, we obtain surprising results for subsetSum-¢ lower than 1/7: higher precision on the approxim-
ation seems to imply less at the end for the reconstruction. A possible explanation can be that it is noise
on the data we work with.

On another hand, the completeness, the similarity (not shown here but really similar to the one presented
in [5.1) and the weighted similarity do not seem to be influenced by subsetSum-e. Concerning the
completeness it means that the fact of succeeding in constructing the number of edges we wanted is not
really impacted by subsetSum-e, that is the precision of the choice of the edges.

In contrast, the clustering ratio moves away from 1, when we decrease subsetSum-e. Good precision
seems to guarantee a clustering ratio close to the one of the original graph.

5.2.4 PERFORMANCES ACCORDING TO THE SIZE OF THE GRAPH AND THE NUMBER
OF KNOWN EDGES

In the table[5.1] and the figures[5.4]and [5.5] we compare the performances of our approximation algorithm
on graphs with approximately 1,500 nodes and 10,000 nodes. As the graphs with 1,500 nodes, the graphs
with 10,000 nodes are generated with the same process as described in section with parameters
d =10,¢c = 1/5,epsjeqass = 0.00001. For this graphs, all the computations are made with precision
€ = 0.000001.

We also did a reconstruction on a graph with approximately 100.000 with one iteration, that ran in 70
minutes and obtain a score of 99.8 %.

These results and those presented in table [5.1| show that our approximation algorithm is efficient enough
to face the reconstruction of large ego-graphs.

% of known edges | Graphs 1500 | Graphs 10,000

0 17.397s 10m10.609s

0.001 17.374s 10m1.713s

0.01 17.996s 10m15.792s

0.1 16.073s 8m53.863s

0.5 9.154s 8m53.863s

0.9 2.619s Om45.815s

1 2.173s 0m21.937s

TABLE 5.1

Time of 9 executions with 1 iteration each for graphs with 1500 nodes approximately and graphs with
10,000 nodes approximately, e=1/4

Figure [5.3]shows the influence of the depth on the similarity and the population. Each color figures a
proportion of the total number of expected edges that is given in input. For example, the orange bar has
been obtained with a reconstruction process such that each edge of the original graph had probability
0.001 to be present in the input set of edges given at the beginning of the reconstruction. The x-axis of

22

CHAPTER 5 — EXPERIMENTS

Similarity by depth Population by depth

= known edges ratio: 0 M known edges ratio: 0

1750 4
M known edges ratio: 0.001 W known edges ratio: 0.001

= known edges ratio: 0.01 = known edges ratio: 0.01
= known edges ratio: 0.1 = known edges ratio: 0.1
= known edges ratio: 0.5 M known edges ratio: 0.5
=l known edges ratio: 0.9 1500 1 mmm known edges ratio: 0.9
mm known edges ratio: 1

mm known edges ratio: 1
0.8 4

12501

o
o

1000

Similarity

Proportion of the population
o
o]
g

0.4 4

500 4

0.2 4

0.0 -

FIGURE 5.3
Similarity and Population by the depth in function of different proportions of the total number of expected
edges given in input of the reconstruction. Average results obtained on 9 different graphs with approxim-
ately 1,500 nodes each, e=1/4 and 5 iterations by execution.

the figure corresponds to the depth(3) of the edges. The first figure shows the similarity at each depth in
function of the proportion of known edges at the beginning and the second figure shows the population of
edges at each depth.

Note that the direct successors of the entry-point are always the same in the reconstruction and in the
original graph, whatever the proportion of known edges. Then, the similarity declines exponentially
with the depth and this is true for all the proportions of known edges at the beginning. This confirm the
assumption made in section [5.2.2] about the difference between the similarity and the weighted similarity:
the deeper the edges are, the more numerous they are (this is what we see with population) and the more
likely they are to be exchanged without changing the pageRank of the concerned nodes. The last depth is
an exception to the exponential increase of population because there have predecessors with pageRanks
close to be the ones of a leaf. While being less numerous, these edges have a pageRank so low that they
are even more likely to be exchanged without consequences than the other ones.

In figure 5.4 we focus on the different metrics previously studied on the graphs with 1,500 and 10,000
nodes according to the proportion of the total number of edges given in input. Whatever the number of
known edges, we note that the score, the normalized score, the completeness and the error are better on
the graphs with 10,000 nodes: the algorithms seems to be better at reaching its goals for a larger graph.
In contrast, the measures of similarity that are the similarity, the weighted similarity and the clustering
ratio are higher for the graphs with 1,500 nodes. Indeed, as the clustering ratio is really close to 1 for
the graphs with 1,500 nodes, it reaches 1.8 with the graphs with 10,000 nodes. Then, when the graph is
bigger, the reconstruction is closer to the expected pageRank but farther away from the original graph in
term of common edges and clustering coefficient.

This effect of lower similarity for the graph with 10,000 nodes is also shown by figure[5.5] that shows that
a higher proportion of the edges have high depth, what we identify as a cause of low similarity.

23

CHAPTER 5 — EXPERIMENTS

Average Score Normalized avg score Average comp Average Error

1.000
1000 0.000200

0975 0975 0.000175

095 0.950 0.950 0.000150

0.925 0.925 0.000125

050 0900 0.900 0.000100

0.875 0875 0.000075

085 0.850 0.850 0.000050

0.825 0.825 0.000025

0.80
0800 0800 0.000000
0 0001 001 01 05 09 1 0 0001 001 01 05 09 1 0 0001 001 01 05 09 1 0 0001001 01 05 05 1

Global Similarity Weighted Similarity Clustering Ratio
10 10

0.8 0.8 150

0.6 0.6

0.4 0.4 0.75

0.2 0.2

007 0.0 0.00
0 0001001 01 05 09 1 0 0001001 01 05 09 1 0 0001001 01 05 09 1

FIGURE 5.4
Comparison of different metrics on graphs with approximately 1,500 nodes and 10,000 nodes each in
function of the proportion of edges in input. Average results obtained on 9 different graphs of each type
with subsetSum-e=1/4 and 5 iterations by execution.

5.3 RESULTS ON REALS GRAPHS

We tested our approximation algorithm on an ego-graph from Youtube with out-degree 19 and maximal
depth 5. This graph has 11, 820 nodes and 32, 413 edges.

We run the algorithm on this graph with subsetSum-e¢ = 1/4 and 5 iterations. The results are presented in
tables[5.3]and[5.2] and are really similar to the results on artificial graphs.

best score 0.9990005

avg score 0.9982323
normalized best score | 0.9533408
normalized avg score | 0.9174768
best completeness 0.9761325

depth | population | similarity
0 17 1.0

avg completeness 0.8984882 1 322 0.1273292
isi 2 3207 0.0349236
best precision 0.9999896
avg precision 0.9999831 3 20201 | 0.0180189
common edges 0.0103315 4 47889 0.0043643
pond common edges | 0.3266173 TABLE 5.3

clustering ratio 0.1995812

TABLE 5.2

24

CHAPTER 5 — EXPERIMENTS

Similarity by depth Population by depth
B graphs with 1.500 nodes B graphs with 1.500 nodes
L0+ graphs with 10.000 nodes graphs with 10.000 nodes
0.6 q
0.8 § 0.5 1

e

o
S
=

o
w

0.4 4

Similarity
Proportion of the population

o
[N]

0.2 4
0.1+

FIGURE 5.5
Similarity according to the proportion of known edges at each depth and proportion of the population
at each depth for graphs with approximately 1500 nodes (dark colors) and 10,000 nodes (light colors).
In this figure, the columns on the x-axis corresponds to the depth, i.e. the length of the shortest path
from the entry-point. The colors figure the ratio of known edges. The data concerning the graphs 1500 is
shown in dark color and the one concerning the graphs 10,000 is shown in light color.

25

CHAPTER 6

LIMITATIONS AND FUTURE WORK

Our problem statement is not close to our motivation case of number of views for several reasons:

* The users acts no as random surfer. The mechanisms in choosing recommendation are more complex.
However, the majority of the traffic on youtube is actually generated by the recommendations,
according to youtube it-self (Goodrow n.d.).

* We supposed the graph of the recommendation system to be static, that is not the case in the
majority of the modern recommendation system. However, we can do two snapshots of the number
of views in the graph and subtract the first number of views to the second in order to observe the
views generated between the two snapshots. The snapshots must be close enough in time so that
the system has not evolved too much in the meantime, but far enough in time to get a number of
view sufficient to approximate the pageRank. With this solution, we suppose that the number views
increase really faster than the recommendation system evolves.

* The main problem we have with our problem is that the recommendation graph is often personalized
according to each user. Then, the number of views we observe does not reflect one graph but a
myriad of.

* The ego-graph approach suppose a common home page for all the users.

Nevertheless, this work was a first step to answer the two large and complex questions: ‘What can we
learn about a recommendation system from number of views ?’ and ‘What information does the pageRank
bring with itself ?’

Finally, even if it proves its efficiency on the experiments, our approximation algorithm already need to
get its approximation ratio bounded.

26

CHAPTER 7

CONCLUSION

During this semester project, we introduce the introduce the problem of reconstruction of a directed
quasi-d-regular graph from its pageRank and a set of edges. This problem was motivated by the concrete
case of recovering a recommendation system from the number of views on each content. We prove that
the problem to be NP-Complete. We then propose an algorithm based on back-tracking that solves the
problem exactly but in time exponential and an efficient algorithm to approximate a solution, based on
known algorithms of approximation for SUBSET-SUM problem. We presented the performances of our
approximation algorithm on artificial and real graphs. This algorithm is efficient in practice but we already
need a theoretical bound for its precision.

27

BIBLIOGRAPHY

Page, Lawrence et al. (1999). The PageRank citation ranking: Bringing order to the web. Tech. rep.
Stanford InfoLab.

Mathieu, Claire and Hang Zhou (2021). ‘A Simple Algorithm for Graph Reconstruction’. In: arXiv
preprint arXiv:2112.04549.

Kannan, Sampath, Claire Mathieu and Hang Zhou (2018). ‘Graph reconstruction and verification’. In:
ACM Transactions on Algorithms (TALG) 14.4, pp. 1-30.

Hoskins, Jeremy et al. (2018). ‘Inferring networks from random walk-based node similarities’. In:
Advances in Neural Information Processing Systems 31.

He, Zhe et al. (2014). ‘Network reconstruction by the stationary distribution of random walk process’. In:
arXiv preprint arXiv:1410.4120.

Fontoura Costa, Luciano da and Gonzalo Travieso (2007). ‘Exploring complex networks through random
walks’. In: Physical Review E 75.1, p. 016102.

Wittmann, Dominik M et al. (2009). ‘Reconstruction of graphs based on random walks’. In: Theoretical
Computer Science 410.38-40, pp. 3826-3838.

Cormen, Thomas H. et al. (2007). Introduction to algorithms. MIT Press.

Ibarra, Oscar H and Chul E Kim (1975). ‘Fast approximation algorithms for the knapsack and sum of
subset problems’. In: Journal of the ACM (JACM) 22.4, pp. 463-468.

Goodrow, Cristos (n.d.). Inside Youtube - On Youtube recommendation system https://blog.youtube/inside-
youtube/on-youtubes-recommendation-system/.

28

	Introduction
	Motivations & hypotheses
	The Recommendation systems

	Related work
	Contributions
	Contents

	Preliminary notions
	Definitions
	Problems

	Proof of NP-Completness of (d, c)-graphFromPR
	Reduction of SUBSET-SUM to (d, c)-graphFromPR
	Idea of the proof.

	NP-Completness

	Algorithms
	Exact algorithm based on back-tracking
	Approximation algorithm

	Experiments
	Evaluation metrics
	Results on Artificial Graphs
	Generation of the artificial graphs
	Influence of the number of iterations
	Influence of the parameter -subSetsum
	Performances according to the size of the graph and the number of known edges

	Results on Reals Graphs

	Limitations and future work
	Conclusion

