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Abstract

Decentralized machine learning gained popularity as a promis-
ing solution to privacy and data management challenges
introduced by increased data generation in recent years. In
order to bring this paradigm closer to practical use, this field
needs a lot of research in conditions similar to real-world
scenarios. To help in the better understanding of privacy
guarantees in such a condition, in this paper, we perform,
to the best of our knowledge, the first privacy evaluation of
decentralized machine learning in a non-IID setting. In the
assumed passive threat model, we evaluate the effectiveness
of membership inference and gradient inversion attacks. Fi-
nally, we disclose how dynamic topologies could be used to
mitigate the risks and enhance privacy guarantees offered
by decentralized machine learning.

CCS Concepts: - Computer systems organization — Em-
bedded systems; Redundancy; Robotics; » Networks —
Network reliability.

Keywords: privacy evaluation, dynamic topologies, non-IID

ACM Reference Format:

Filip Carevic, Rishi Sharma, and Rafael Pires. 2018. Fighting Against
Attacks on Decentralized Learning Systems with Dynamic Topolo-
gies. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym "XX). ACM,
New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

An enormous increase in the amount of data produced by mo-
bile and IoT devices introduced new issues in data gathering
for the purpose of traditional centralized machine learning:
(i) vast amounts of data has to be moved and stored in a
centralized location and (ii) collection of sensitive data has
to comply with legislation (e.g., GDPR [30]). To resolve the
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aforementioned challenges, the paradigms of collaborative
learning emerged, with the main idea of performing the
learning process while keeping sensitive user data locally on
personal devices.

The first paradigm to gain traction is Federated ML [23],
where model parameters (i.e., FedAvg) or model updates
(i.e., FedSGD) are shared with the central server. In partic-
ular, each data owner performs local training and at regu-
lar time intervals sends model weights/updates to the cen-
tral server where the global model is built by averaging
received model updates. However, due to the assumed cen-
trality, this paradigm has disadvantages related to (i) commu-
nication efficiency [16, 26, 27], where the centralized server
quickly becomes a bottleneck, and (ii) privacy and security
risks [3, 9, 10, 14, 19, 24, 25, 31], where the centralized server
is the single point of trust and the single point of failure. In
addition, this paradigm is extremely difficult to implement
unless the underlying network topology supports centralized
communication.

To address the drawbacks of Federated ML, the second
paradigm of collaborative learning, Decentralized ML [21],
has been introduced. In Decentralized ML, instead of send-
ing data to the central aggregator, the participants share
and aggregate model parameters only with their neighbors.
The global model is obtained by achieving consensus in the
system. In other words, Decentralized ML leverages peer-to-
peer communication in order to resolve issues created by im-
plicit centrality in Federated ML. As such, Decentralized ML
became an area of active research. Dozens of theoretical and
empirical studies have been performed in order to explain
and relax conditions for the system convergence [21, 22, 28],
reduce communication overhead [7, 29] and investigate pri-
vacy or security risks [25]. However, most of the studies
assume an IID environment [21, 22, 25] where every local
dataset is a random uniform subsample of a single global dis-
tribution. In real-world scenarios, data is produced in diverse
conditions, thus the distributions of local datasets are more
likely to be distant. For example, the amount of noise in data
collected for sound processing heavily depends on the quality
of recording devices. Recent works focus on understanding
the learning process in this Non-IID environment [11], and
designing algorithms robust to high data variance [28]. How-
ever, to the best of our knowledge, no work has performed
privacy evaluation in this heterogeneous environment.
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In this paper, we perform, to the best of our knowledge,
the first privacy evaluation of decentralized learning in a
Non-IID setting. We assess privacy guarantees against pas-
sive (i.e, honest-but-curious) adversaries. In particular, we
evaluate the vulnerability towards the gradient inversion and
membership inference attacks and demonstrate how some-
thing as simple as randomness could be used to mitigate the
effectiveness of the aforementioned attacks.

Organization. Section 2 introduces fundamental concepts
required to understand the topic. We discuss the privacy
threats and describe how to leverage the dynamic topolo-
gies as defense mechanisms against membership inference
attacks in Section 3, and gradient inversion attacks in Sec-
tion 4. We highlight related work in Section 5, disclose future
work in Section 6 and draw relevant conclusions in Section 7.

2 Background

In this section, we provide the background information nec-
essary to comprehend the key components of the study.

Decentralized ML. Decentralized ML enables collabora-
tive model training without sharing the sensitive raw data.
The main goal of Decentralized ML is to combine local learn-
ings into a single machine learning model. Instead of relying
on a central aggregator, the nodes employ peer-to-peer syn-
chronous [21] or asynchronous [22] communication, thus
alleviating the problems induced by centralized topology.

Formally, the problem of finding the best global parame-
ters 0 (with respect to the unobserved union of local data
distributions D;) that decentralized learning tries to solve is
defined as:

1 n
argemin; Z E (xpyi)~D; [ Li (%1, yi, )] 1)

i=1

where L; is the loss function calculated on i node, and n is
the total number of nodes in the system.

In this study, we focus on a family of learning algorithms
based on the distributed consensus averaging, with Distributed-
Parallel SGD (i.e., D-PSGD) [21] as representative. In D-
PSGD, all users in the system agree on the same hyperpa-
rameters, model architecture and weights initialization. The
communication is peer-to-peer with the topology modeled
as undirected graph G = (N, E), where {i, j} € E represents
a communication channel (i.e., an edge) between nodes i and
Jj- The pseudocode of this algorithm is given in Algorithm
1. In every communication round, each node performs: (i)
stochastic gradient descent (SGD) step on the local data and
(ii) sharing and aggregation of model parameters with a full
set of neighbors. One execution of this algorithm is called the
communication step/round. The algorithm terminates when
the system reaches the consensus state.

Intuitively, the first step performs learning on the local
data, while the second step transfers knowledge and capabil-
ities across neighboring models. From a statistical point of
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view, the local training step maximizes the likelihood func-
tion by selecting the parameter values of local models that
make the observed local data most probable, whereas the
aggregation step finds the model parameters that maximize
the joint likelihood of posterior distributions of neighboring
models.

Algorithm 1 D-PSGD

Set of nodes N, Hastings weight-matrix W, learning
rate 1, local dataset D; of it" node , total number of
communication rounds T, local model weights x;; of
ih node in t*" communication round, set of neighbours
N (i) for i*" node.

Require: Vi € |N|. x0; = xo

1: fort=1,2,...,T do
> LocalSGD_Step
2 i~ D;
3: Xjpel = Xip =1 % Vi L(xi 4, ¥i)
> Averaging_Step

4: Vn e N(i) send x;,,1 ton
4 2
5: Vn € N(i) receive x,,,,1 from n
4 2
N
6: Xit+1 = Zj=1 Wi j * Xjt+l
7: end for

In our work, we run experiments in static and dynamic
graph topologies. In order to ensure that, in both of these
settings, models converge on average to a stationary point of
the optimization problem defined in 1, we employ weighted
averaging as the aggregation function, with weight calcula-
tion adopted from Metropolis-Hastings algorithm [32] !:

1/(1+ max{d;(t),d;(t)}) {i,j} € E(?)
Vvij = 1_Zk€1\7i(t) Mk(t) i=j (2)
0 otherwise

where d;(t) is the degree of i*" node, E(t) set of edges, and
N (i) set of neighbours for i*” node at time-step ¢.

Non-IID. In practice, the data is generated in different
contexts and diverse conditions. The devices placed in the
same geolocation are plausible to produce correlated mea-
surements (e.g., nearby camera devices capture similar image
backgrounds, while microphones record similar background
noise). On the other hand, if devices are placed in different
surroundings, it is natural to assume variations in label dis-
tributions (e.g., terrestrial cameras cannot capture images of
deep-sea animals). Henceforth, the assumptions of identical
and independent data (i.e., IID) in real-world scenarios do
not hold. In other words, in a non-IID environment, local
data distributions P;(x, y), where x is a feature and y a label,
for each of the node i vary significantly.

The proof of convergence with time-varying Metropolis weights is shown
in the original work [32].
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Following the classification from [34], non-IID setups
distinguish attribute, label, and quantity skewness.?. At-
tribute skewness implies setting where marginal feature dis-
tribution P;(x) across attributes vary for each node, quantity
skewness assumes differences in amount of data stored at
each node, while label skewness suggests dissimilarities in
marginal label distribution P;(y) across nodes. Recent work
concludes detrimental effects of data-skewness on model
quality in decentralized learning [11]. Moreover, the non-IID
environment became a fundamental and ubiquitous problem
of collaborative learning in general [11, 20, 27, 34].

3 Membership inference attack

Firstly, we discuss the privacy guarantees offered by de-
centralized machine learning against membership inference
attacks. In particular, we provide analysis of privacy threats
in static graph topologies and describe how dynamic graph
topologies could be used to reduce the risks.

3.1 Definition

The goal of membership inference attacks (MIA) is to infer
whether a particular data sample was part of the training
dataset. This presents a major privacy threat in cases where
the datasets contain sensitive data such as medical or finan-
cial records.

Membership inference attacks exploit differences in be-
havior when models are presented with unseen samples and
samples seen during the training [12]. In this paper, we focus
on the membership inference attack known as the threshold
attack [33].

The Threshold attack aims to exploit dissimilarities in the
train and test loss distributions. The attack works as follows:
Given a threshold t, the sample is classified as part of the
training dataset if the corresponding loss is smaller than t.

1, L(x) <t

,dteR (3)
0, L(x)>t

ThresholdAttack(x) = {

The metric used to evaluate the effectiveness of this attack
is Attacker advantage. It is defined as

Attacker_advantage = Pr(success) — Pr(random_guess)

where Pr(success) is the probability that the sample is cor-
rectly classified as part of the training dataset, while the
Pr(random_guess) is probability of a random guess (in bi-
nary classification equal to 0.5). Threshold ¢ is chosen such
that the Attacker advantage metric is maximized. In this
study, the metric is scaled to interval [0,1].

It is important to note that the threshold attack provides
the lower bound vulnerability of the model towards the

2Note that in the original paper [34] authors introduced temporal skew as
an additional non-1ID category. However, it has been neglected since it is
irrelevant to our study
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whole family of MIA. Consequently, we consider the thresh-
old attack as a vulnerability assessment method for member-
ship inference attacks, rather than the actual attack.

3.2 Threat model

We evaluate privacy against a passive (i.e, honest-but-curious)
adversary. The attacker, as part of the system, wants to infer
information about sensitive datasets of other nodes to the
greatest extent, while not being allowed to deviate from the
protocol (i.e., the attacker is not allowed to intentionally
share malicious weights, tamper with the model architec-
ture, loss function, hyperparameters or local datasets). In this
study, we are interested in examining the privacy guarantees
of the system as a whole. Thus, in our experiments, every
node mounts an attack on its own local model, i.e., every
node performs self-evaluation.

3.3 Experimental setup

We evaluate the privacy guarantees offered by the Decentral-
ized ML in a label-skew non-IID environment. More precisely,
every node performs self-assessment twice per communica-
tion round: firstly, after the training on the local dataset, and
secondly, after the aggregation phase has been completed.
In our experiments, we use the following setup:

Topology. We evaluate privacy in both, static and dy-
namic graph topologies. We utilize regular graph topology
with 96 nodes and node-degree set to 4. Moreover, the same
topology is used in static and dynamic settings, with the
main difference being that in a dynamic setting, we randomly
choose the new set of neighbors for each node at every com-
munication round. Lastly, as the baseline, we leverage the
fully-connected graph with 96 nodes.

Architecture and hyperparameters. The model used in
our experiments is based on the LeNet [18] model architec-
ture. To train the model, we use the vanilla SGD optimizer
(i.e., without momentum or adaptive learning rate) with
learning rate set to 0.01. In every communication round,
each node performs 3 mini-batch stochastic gradient descent
steps with mini-batch size equal to 8. Lastly, in the averaging
step, nodes perform full-model sharing.

Datasets. In our experiments, we use the CIFAR10 [17]
dataset consisting of 10 evenly balanced classes. It comprises
60 000 data points, separated in global training (50 000) and
global testing (10 000) sets. To establish the label-skew envi-
ronment, we employ a heterogeneous partitioning scheme
proposed in [23]. In particular, the training samples are
sorted by class and split into shards of equal sizes. Each
node is given two random shards. This partitioning ensures
that most of the nodes will have local datasets containing
samples from exactly 2 classes.

Metrics. As described in section 3.1, the metric we adopt
is the Attacker advantage. For the purpose of self-assessment,
each node i crafts a new dataset D; consisting of the entire
local training dataset (denoting class member), and a random
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subsample of global test dataset (denoting class non-member),
where the size of the subsample is equal to the size of local
training dataset. In other words, the dataset D; is balanced
with respect to the membership distribution.

3.4 Results and discussion

To evaluate the privacy guarantees, we observe how the av-
erage, minimum and maximum level of vulnerability (i.e.,
attacker advantage) in the system vary across the commu-
nication rounds (i.e., iterations). The results are depicted in
the figures 2. 3 and 4, respectively. We observe:

o The level of vulnerability in the system decreases
over time.

In general, during the classification-task training, mod-
els learn class-specific features in order to establish suitable
classification boundaries. In the label-skew non-IID environ-
ment, during the local SGD phase, models are only able to
learn the characteristic features for the limited number of
classes. In such a setting, models are prone to overfitting
the local training dataset, which amplifies the differences in
behaviours under the seen and unseen samples in the initial
rounds of training. In order to be able to generalize on the
global data distribution, models rely on the process of trans-
fer learning in the averaging phase of D-PSGD. Thus, as the
learning progresses and the system gets closer to reaching
the consensus state, the discrepancies in loss distributions
are reduced.

It is important to note that the complete opposite be-
haviour is exhibited in the IID setting [25], where the vul-
nerability increases during the training. This shows that the
conclusions from experiments in IID environments may be
misleading for real-world scenarios.

e Dynamic topologies reduce the vulnerability to-
wards the family of membership inference at-
tacks

From figures 2, 3 and 4, we observe that the attackers in dy-
namic topology achieve lower average, minimum and maxi-
mum level of advantage compared to the attackers in static
topologies. If we recall that threshold attacks assess lower-
bound vulnerability towards the whole family of membership
inference attacks, we conclude that the dynamic topologies
reduce the lower-bound vulnerability. We explain this with
two reasons:

If in d-Regular graph, we pick one node i, we observe that
features learned by its local model are transferred to direct
neighbours with factor ‘—11, to first indirect neighbours with
factor ﬁ, etc. In other words, the influence of model w; on
model w; reduces exponentially with increase in the number
of nodes in shortest path between nodes i and j. Thus, in
static topologies, if the closest dataset containing samples
from class x is k steps away from node i, then the model
w;, in each communication round, learns features of class x

Anonymous authors

with factor dik. On the other hand, in dynamic topologies,

the value of k varies in each round. This is illustrated in
Figure 1, where we observe enormous differences in accu-
racies on the classes {1, 2, 6} and classes {3,4, 5} obtained by
the model in static graph topology, whereas the dynamic
topology mitigates the differences among all classes. In other
words, in static graph topologies, in the averaging step, mod-
els with the greatest factors transfer learning only for fixed
set of classes that exist in the local datasets of direct neigh-
bours, while in dynamic topologies, factors for all classes
constantly change. This results in different behaviours of
models trained in static and dynamic topologies when pre-
sented with unseen random samples from the global test
distribution.

mmm Static
Dynamic
B Fully-Connected

80

Accuracy
o
o

N
o

20

Figure 1. Class accuracies of the final models in static
4-Regular, dynamic 4-Regular and fully-connected graph
topologies with 96 nodes.

In static graphs, as a consequence of the model sharing, the
influence of local model weights of node i from time step ¢
will be distributed back by its neighbours in time step ¢ + 1.
This additionally increases the overfit to local dataset. On
the other hand, the probability of model being distributed
back in the following communication round is significantly
lowered in dynamic topologies.

4 Gradient inversion attack

The second attack we analysed in this study is the gradient
inversion attack. As in section 3, we highlight privacy guar-
antees offered by decentralized machine learning in static
graph topologies and describe how dynamic graph topolo-
gies could be leveraged to mitigate the risks.

4.1 Definition

The goal of gradient inversion attack is to reconstruct the in-
put data given the gradient information. Previous works [10,
13] formulated reconstruction as an optimization problem:
Given model parameters 9, and the gradient VyLg(x*, y*)
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Figure 2. Comparison of the attacker advantage metric for static 4-Regular, dynamic 4-Regular and fully-connected graph
topologies with 96 nodes after the : (a) local training and (b) averaging phases of D-PSGD algorithm. Figure depicts the
moving-average for the attacker advantage metric with window size equal to 20.

0.38 —— STATIC-MIN
~—— DYNAMIC-MIN

—— FULLYCONNECTED-MIN
0.36

° ° o
w w W
o N B

Attacker advantage

o
N
53

0.26

0.24

1000 1500 2000

Iteration

(a) Best-case model vulnerability after the local training phase

0.18 —— STATIC-MIN
~—— DYNAMIC-MIN

—— FULLYCONNECTED-MIN
0.16

o
N
IS

Attacker advantage

0.06

oo \WWM

2500

0 500 1000 1500 2000

Iteration

(b) Best-case model vulnerability after the averaging step

Figure 3. Comparison of the attacker advantage metric for static 4-Regular, dynamic 4-Regular and fully-connected graph
topologies with 96 nodes after the : (a) local training and (b) averaging phases of D-PSGD algorithm. Figure depicts the
moving-minimum for PSNR metric with window size equal to 20.

computed on a mini-batch of sensitive data (x*, y*) € R?*? x
RY (b, d being the batch size, image size), the approximation
of x*, referred to as x € RV*4;

argmin Lgrad(X; 0, V0L6 (x*’ y*)) + aRaux (x) (4)

where Lg,qq(x; 0, VoLg(x*,y")) is the cost function measur-

and the gradient of recovered batch x, while Ry, (x) enforces
regularization based on the image prior(s).

Gradients carry information in their magnitude and direc-
tion components. The magnitude component captures infor-
mation about the training state. It is low in the areas of local
minima, valleys, or stable points. On the other hand, the di-
rection component captures the change in the prediction at a

ing the similarity between the ground-truth gradients Vo Ly (x*, y*)
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topologies with 96 nodes after the (a) local training and (b) averaging phases of D-PSGD algorithm. Figure depicts the moving-

maximum for PSNR metric with window size equal to 20.

data point x;, when taking the gradient step calculated using
the data point x;. This makes the direction component more
suitable for exploitation in high-dimensional settings [10].
Following the study from [10], we define the optimization
function 4 as:

(VoLo(x,y), VoLg(x",y))
IVoLo (x, )l VoLo(x* y)l|

where (-, -) is the inner-product of two vectors, and TV (+)
is the total variation of images. Intuitively, this objective
function finds approximations that lead to a similar change
in model prediction as the unobserved ground truth.

argmin 1 — +aTV(x) (5)
X

4.2 Threat model

Similar to Section 3.2, we assume the existence of an honest-
but-curious adversary. The adversary cannot deviate from
the protocol, craft malicious model updates or tamper with
the model architecture. However, the adversary is allowed
to accumulate previously received victim’s model weights in
order to increase the effectiveness of the attack (more details
in the section 4.3).

4.3 Experimental setup

We run our experiments in a label-skew non-IID environ-
ment. We pick one random node to be the attacker and its
random neighbor as the target. The attack is performed at
each communication round. In particular, we use the follow-
ing setup:

Topology. We evaluate privacy in both, static and dy-
namic graph topologies. We utilize 4-regular (i.e., node de-
gree set to 4) and fully-connected graph topology with 36

nodes. Moreover, the same topology is used for static and
dynamic settings. However, in a dynamic setting, we ran-
domly choose the new set of neighbors for each node at every
communication round but keep the same set of cardinality.’

Architecture and hyperparameters. We use similar ar-
chitecture and hypeparameters described in 3.3. The main
differences are: the learning rate is set to 0.02, in each com-
munication round, every node performs one mini-batch sto-
chastic gradient descent step and the batch size is equal to 4.

Datasets. We use the FashionMNIST dataset consisting of
ten evenly balanced classes. It comprises 70 000 data points,
separated into global training (60 000) and global testing
(10 000) sets. To establish the label-skew environment, we
employ the same partitioning scheme described in section
3.3, with the only difference being that each node is given 4
shards of data.

Metrics. In order to assess the quality of reconstructed
images, we leverage Peak signal-to-noise ratio (PSNR)
metric, defined as:

PSNR(x,x") = 10log;y, MSE(x.x)
where x and x* are the reconstructed and ground-truth
images, MAX; is the maximum possible pixel value, and
MSE(.,-) is the mean squared error.

Note that the PSNR metric is inversely proportional to
MSE, hence higher values denote better reconstruction and
greater privacy vulnerability.

(6)

3Note here that sets of neighbours in static and dynamic settings for fully-
connected graph topologies are always the same.
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Gradient approximation. Recall that in the averaging
step of D-PSGD (algorithm 1), nodes share model weights,
not model updates (i.e., gradients). Hence, the gradients have
to be approximated.

Remark: It is important to note that due to data hetero-
geneity, during the learning process, local models become
more and more distant in space [11]. In particular, gradient
descent updates are calculated using the skewed local data
distribution, thus the steps may lead to a different direction
for each node. If the learning algorithm, instead of model
parameters, shares model updates (i.e., gradients) in the av-
eraging step, these updates may cancel each other out. Thus,
in a non-1ID setting, the decentralized learning algorithm
should not share model updates.

The update step of the vanilla SGD optimizer * is per-
formed as follows:

Ors1 = 0; — 1 % VoLo(x,y) (7)

where 0; are the model parameters at time-step i, and VgLg(x, y)

are the gradients calculated on a mini-batch of samples (x,y).
Later, the gradients are extracted as:

0,-0
VoLo(x,y) = T ®)

It is trivial to obtain the model parameters 6, since the tar-
get node shares its model weights in the averaging step. The
tricky part is to obtain model weights 6;. We tried two ap-
proaches. The first, and the most intuitive approach (referred
to as COMMUNICATION) is to preserve the model weights
shared by the victim in the #* communication round. How-
ever, the weight-sharing step is the first part of the averaging
phase in D-PSGD. In the second part, the actual averaging
is performed, and the resulting model is used as the initial
point for the next iteration. Thus, the gradients VgLg(x, y)
are calculated with respect to the model obtained after the
averaging. To address this condition, in the second approach
(referred to as POSTSTEP), as 6;, we use the parameters
of the local attacker’s model after the averaging phase. The
motivation for this approach is that after the averaging, the
influence of local overfit is reduced. In other words, neigbour-
ing models in the averaging phase move in space towards
the same point (i.e., the joint-likelihood maximization of pos-
terior distributions), instead of moving to different directions
during the local training phase (i.e., maximization of likeli-
hood with respect to local training dataset). Additionally, if
the victim and the attacker have similar sets of neighbors,
we expect that the local models obtained after the averaging
step are close enough for this attack to be successful.

“The simplicity of the update step is the main reason for choosing the
vanilla SGD optimizer. It is important to note that with optimizers including
momentum or adaptive learning rates (e.g., ADAM [15], AdaGRAD [5]),
the approximation of gradients is much more difficult but still feasible.
However, we wanted to marginalize this dimension of the problem, since it
is irrelevant in our study.
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Remark: Another benefit of the POSTSTEP approach is
that it gives us insights in effectiveness of the secure aggre-
gation [2] against gradient inversion attacks.

4.4 Static topology - Results and Discussion

Firstly, we perform experiments in the static graph topology.
The results are depicted in Figure 5. We conclude that:

e The POSTSTEP approach provides better gradi-
ent approximation than the COMMUNICATION
approach.

These results act in accordance with the motivation described
in section 4.3.

e The average-case vulnerability decreases over time.

Before the training begins, nodes have the same initial
parameters of local models (recall from algorithm 1). This re-
sults in better gradient approximation, thus better sample re-
constructions and greater vulnerability in the earliest stages
of decentralized learning, with perfectly reconstructed gradi-
ents in the first communication round. The study [25], argues
that the gradients are perfectly approximated whenever the
consensus distance (i.e., the average, pairwise discrepancy
among local models at the observed time-step) of the system
is equal to 0, meaning that all nodes have the same local
models. During decentralized learning, in an IID environ-
ment, the system reaches a state with consensus distance
equal to 0 twice: (i) in the beginning, when nodes have the
same initial model weights, and (ii) at the end of the training,
when the consensus is reached. In the non-IID setting, as
shown in Figure 6 and table 1, the consensus distance has not
reached 0 for the second time in 4-Regular and 10-Regular
graph topologies.

Howver, even if the system reaches the consensus state for
the second time (as illustrated for the fully-connected graph
topolgies in Figure 6 and table 1), we found that the training
state, as a completely orthogonal dimension, influences the
PNSR metric. More precisely, during the training, the char-
acteristic features of specific classes are being emphasized in
the reconstructed samples as the learning progresses. In ad-
dition, the features are observed in the reconstructions even
if they were not present in the ground truth samples. This
behaviour is illustrated in A.1. This has detrimental effects
on PSNR metric since it is calculated using the MSE function
where the difference in every pixel matters. This behavior
is aligned with findings in the original paper [10]. However,
in this case, the reduced PNSR metric does not imply that
privacy is not breached. In order to better understand this
phenomenon, more research needs to be done.

e Dense graph topologies amplify the average-case
vulnerability.

We observed that (Figure 7) with the increase in node de-
gree of regular graph topologies, the quality of reconstructed
images increases as well. More precisely, the node degree
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Figure 5. Comparison of the POSTSTEP and COMMUNICA-
TION approaches in static graph topologies with 36 nodes.
Here, we present the moving average for PSNR metric with
window size equal to 10.
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Figure 6. Euclidean distances between final models of the
attacker and victim in static d-Regular graphs with 36 nodes.
The node degree equal to 36 indicates the fully-connected
graph.

specifies how many neighbouring models are going to be
included in the averaging phase. If the aggregation is per-
formed among more models, we expect that the consensus
distance in the system is going to be smaller, i.e., models in
the system are expected to be closer in space. Similar be-
haviour is illustrated in Figure 6, which depicts the decrease
in Euclidian distance between the final attacker’s and vic-
tim’s models (i.e., models obtained after the completion of
the training) with the increase in node degree of regular
graph topologies. Henceforth, in systems with higher node
degree, the quality of approximated gradients is better and
average-case vulnerability increased.

4.5 Dynamic topology - Results and Discussion

In order to examine whether randomness could mitigate this
type of privacy threat, we compared the maximum levels of
vulnerability across several consecutive iterations in static
and dynamic topology experiments.

Table 1. Euclidian distances of the attacker’s and victim’s
final local models for a 4-regular graph with 36 nodes (Static
vs. Dynamic topologies).

Topology Distance
Fully-Connected le-6
Static 0.13
Dynamic 0.21

The results are portrayed in Figure 8. Note that the peaks
on the plot indicate more successful attacks. We observe sig-
nificant differences in the distributions of peaks in static and
dynamic cases. More precisely, recall that, in order to mount
the gradient inversion attack, we had to approximate the
gradients (section 4.3). The COMMUNICATION approach
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Figure 7. Average-case PSNR metric comparison for static 4-Regular, 10-Regular and fully-connected graphs in: (a) COMMU-
NICATION and (b) POSTSTEP approach. Figure depicts the moving-average for PSNR metric with window size equal to 10.
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Figure 8. Worst-case PSNR metric comparison for static 4-Regular, dynamic 4-Regular and fully-connected graph topologies in:
(a) COMMUNICATION and (b) POSTSTEP approaches. Figure portrays the moving-maximum for PSNR metric with window

size equal to 10.

relies on the fact that in two consecutive iterations, the at-
tacker and the victim are neighbors. However, if the set of
neighbors for each node is changed at each communication
round, the probability of the attacker and victim being the
neighbors in two consecutive (or nearby) iterations is small.
On the other hand, the POSTSTEP approach assumes that the
local models of the attacker and victim, as a consequence of
joint likelihood maximization, have moved towards the same

point in the space. In static topology, this is always the case,
since the averaging step always performs the aggregation of
the same set of models. However, in dynamic topology, the
models are averaged with different sets of neighbouring mod-
els in each round, thus move in different directions in space.
The distances of the attacker’s and victim’s models obtained
after the completion of the training process (table 1) show
that the dynamic topology models tend to be more distant
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in space. This reduces the quality of approximated gradients.
Hence, we conclude that the randomness could be used
to mitigate the effectiveness of the gradient inversion
attacks.

5 Related Work

In this section, we disclose related work on the topics of
privacy evaluation and data heterogeneity in decentralized
learning.

Privacy evaluation. The privacy guarantees are one of
the biggest reasons why decentralized learning (and collab-
orative learning in general) is gaining importance. A large
body of empirical studies has been performed to evaluate the
privacy guarantees of collaborative learning. However, the
vast majority of the studies is based on the topic of Federated
ML [3, 9, 10, 14, 19, 24, 31].

Initial steps towards addressing the privacy issues in De-
centralized ML were made by Cheng et al. [4]. In their work,
Cheng et al. proposed the Leader-Follower Elastic Averaging
Stochastic Gradient Descent (LEASGD) algorithm, a novel
solution for achieving differential privacy [6] in a fully decen-
tralized environment while maintaining good convergence
rate and low communication cost. Unfortunately, this work
does not provide actual privacy evaluation.

The first in-depth evaluation of privacy in decentralized
machine learning was performed by Pasquini et al. [25]. In
their work, Pasquini et al. showed that the Decentralized ML
grants more capabilities for (active and passive) adversaries
than the Federated ML. They showed that in assumed passive
threat model exist an intrinsic trade-off that limits the achiev-
able level of privacy in Decentralized ML. In particular, they
argued that in order to mitigate the vulnerability towards the
membership inference attacks (i.e., to mitigate the harmful
effect of local generalization), the nodes in the system should
increase the number of neighbours. On the other hand, in-
crease in the number of neighbours maximizes the chances
of efficient execution of gradient inversion attack (i.e., am-
plifies the risks caused by the system knowledge capability).
Although provides the first comprehensive understanding
of privacy issues in decentralized machine learning setups,
this study assumed only the IID environment. Moreover, in
section 3.4, we saw that this may not address the privacy
issues in real-world scenarios.

Data heterogeneity. It has been shown that the data
heterogeneity has detrimental effects on trained model qual-
ity [11], thus it became a fundamental problem of a decen-
tralized learning. Recent works aim to address these issues
by relaxing bounded variance conditions for convergence
of learning algorithm [28], cross-gradient aggregations [8]
or designing sparse topologies [1]. However, to the best of
our knowledge, no work has been performed to evaluate the
impact of heterogeneity on users privacy in Decentralized
ML.

Anonymous authors

In summary, it is not well understood what are the privacy
guarantees of decentralized machine learning in non-IID
environments. In this paper we have performed the analysis
of passive attacks in such a setting, and shown how the risks
could be mitigated by employing dynamic graph topologies.
However, this is a relatively new and unexplored area that
necessitates a lot of further research.

6 Future Work

During our study, we encountered several questions that
require further research.

The first question arose in the study of gradient inversion
attacks (section 4), where we encountered the influence of
the training state on PSNR metric. Thus, future work should
investigate how the current training state correlates with the
level of privacy breach caused by the gradient inversion attack.

Second question arose from the nature of our experiments.
To be more precise, in our experiments, we used regular
graphs with fixed sizes (i.e., number of nodes) and node
degrees. Henceforth, the question that naturally arose should
investigate how privacy guarantees of the non-IID system
change when we vary the total number of nodes and node
degrees in regular graphs, or use different graph topologies
(e.g.,, small-world, ring).

Finally, we observed that a subset of nodes extremely fast
overfit to local dataset in a label-skewed environment, which
directly enhances the effectiveness of membership inference
attacks. The last question should address this issue and per-
form more research on how to mitigate the overfit in non-IID
setting. One approach could be to adjust the hyperparame-
ters for each node to fit the properties of the local datasets.
However, it is not clear how it would affect the system con-
vergence.

7 Conclusion

In this paper, we performed, to the best of our knowledge,
the first privacy analysis of decentralized machine learn-
ing in non-IID environment, and presented how dynamic
topologies could be leveraged in mitigating the privacy risks.

In assumed passive threat model, we evaluated privacy
vulnerabilities towards membership inference and gradient
inversion attacks. In the first analysis, we observed that, in
the label-skewed setting, models overfit extremely fast on
the local datasets, which directly influences the vulnerability
towards the family of MIA. In particular, we observed that the
average MIA vulnerability in the system decreases over time,
and argued that this is due to the fact that models generalize
to the global data distribution mainly due to transfer learning
performed in the averaging steps. Moreover, we have shown
that the regular changes in graph topology induce better
generalization, thus mitigate the average MIA vulnerability.
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Second analysis evaluated the effectiveness of gradient
inversion attacks. We explained two approaches for the gra-
dient approximation and concluded that the vulnerability
is the greatest in the initial communication rounds of the
training. Lastly, we described how the regular changes in sets
of neighbors for each node could be leveraged as a defense
mechanism to mitigate the impact of the gradient inversion
attack.
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A Gradient inversion attack

A.1 Examples of the reconstructed images
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(b) Reconstruction from the 477" iteration.

Figure 9. The plot depicts image reconstructions from the
(a) 2" and (a) 477""iteration.

The influence of the training state on PSNR is the most
evident on the last reconstruction from the 477" iteration,
where we observe that the yellow color (as a characteristic

feature of the class shirt) is highly reflected in the
reconstructed, while not being represented in the original
image.
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