
École Polytechnique Fédérale de Lausanne

A Comparative Evaluation of Decentralized Learning
Algorithms using Realistic Real-world Traces

by Lubor Budaj

Master Thesis

Approved by the Examining Committee:

prof. Anne-Marie Kermarrec

Thesis Advisor

Erwan Le Merrer

External Expert

Martijn de Vos

Rishi Sharma

Sayan Biswas

Thesis Supervisors

EPFL IC IINFCOM SaCS

Scalable Computing Systems

BC Building, Station 14

CH-1015 Lausanne

July 8, 2024

Acknowledgments

Firstly, I want to thank my supervisors Martijn de Vos, Rishi Sharma and Sayan Biswas for their

support and dedication to the project. During our weekly meetings, they were able to nudge me

towards the right direction for the project and were up to help when I needed it.

Secondly, I am grateful to the SaCS laboratory as a whole for providing me with the computational

resources necessary for the completion of the project.

In addition, I used the thesis template1 made by HexHive laboratory.

Lausanne, July 8, 2024 Lubor Budaj

1https://github.com/HexHive/thesis_template

2

https://github.com/HexHive/thesis_template
https://github.com/HexHive/thesis_template

Abstract

With machine learning (ML) models consisting of billions of parameters and being trained with

data spread across multiple machines, there is a need to train the models in a distributed way.

Decentralized Learning (DL) offers a scalable solution to this problem which avoids a singular point

of failure in terms of a central server. Each participating node incorporates received models into its

model, trains it and shares it with other nodes according to a selected DL algorithm while avoiding

sharing its private data with any other node. Although the performance of the DL algorithms was

previously studied, it was either done in a theoretical setting where each participant is of equal, or

similar, performance or the evaluation compares the algorithms only to common baselines such as

FedAvg and D-PSGD. However, in a real-life scenario, there can be significant differences in terms of

computing or network capabilities of different participating nodes, especially when concerning DL

on mobile devices.

We use traces collected from mobile devices, which capture their computing and networking

speeds, to emulate a realistic setting of DL. We evaluate the DL algorithms in terms of achieved

model quality, convergence speed, and computation and communication efficiencies in a DL simu-

lator. The simulator provides an equal ground for comparison while giving us more control over the

execution. We evaluate and explain the performance of the DL algorithms in two common ML tasks

in three different settings. We show that in a heterogeneous environment, asynchronous algorithm

outperforms their synchronous counterparts. However, there is no one-fit-all algorithm - in differ-

ent tasks, different algorithms excel. In addition, we present a new asynchronous DL algorithm,

Heterogeneous Gossip Learning (HGL), which incorporates node heterogeneity into its decision

process. We find that HGL converges to the best model while achieving the highest communication

efficiency from all evaluated DL algorithms in the recommendation on the MovieLens data set.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 6

2 Background 9

2.1 Decentralized Learning . 9

3 Simulator 11

3.1 Overview . 11

3.2 Simulation . 11

3.2.1 Events . 12

3.2.2 Tasks . 12

3.2.3 Bandwidth scheduler . 13

3.3 Execution . 14

3.3.1 Coordinator . 14

3.3.2 Brokers . 14

3.4 Traces . 14

3.5 Contributions . 15

3.5.1 Features . 16

3.5.2 Bug fixes . 17

4 Algorithms 18

4.1 Decentralized Parallel Stochastic Gradient Descent . 18

4.2 Epidemic Learning . 19

4.3 Asynchronous Decentralized Parallel Stochastic Gradient Descent 20

4.4 Gossip Learning . 22

4.5 Super Gossip Learning . 23

5 Evaluation 25

5.1 Hardware . 25

5.2 Experiment design . 26

4

5.3 Image classification on IID CIFAR-10 . 28

5.4 Image classification on non-IID CIFAR-10 . 31

5.5 Recommendation on MovieLens . 33

5.6 Discussion . 36

6 Heterogeneous Gossip Learning 39

6.1 Motivation . 39

6.2 Algorithm . 39

6.3 Evaluation . 41

7 Conclusion and Future Work 42

7.1 Future Work . 42

Bibliography 44

5

Chapter 1

Introduction

Ever since the popularization of deep learning [11], it has been used for a myriad of tasks. Applica-

tions such as text generation use large language models, which can consist of billions of parameters.

For example, the largest version of Llama 2 [18] contains seventy billion parameters and it took

almost two million GPU hours to train it. It is infeasible to train such large models on a singular

machine, thus it is necessary to distribute the workload.

On another note, machine learning (ML) models are not only trained in the server setting. Data

from the source, such as smartphones or various Internet of Things accessories, can be directly used

to train the global model on the device. Federated Learning [16] (FL) has been a popular approach

for training across multiple participating mobile devices. Each participating node has its own private

data and contributes to the global model. It receives a model from the central server, performs a

gradient update on the model and sends back the updated model without ever sharing its data with

the server.

However, this approach suffers from the common problems of centralized architectures. Firstly,

it is susceptible to a single point of failure. If the central server were to fail, no training would be

possible as the participants would not receive the global model. Secondly, this approach is not

scalable beyond the number of nodes the central server can handle. This can be caused either

by insufficient network or computing capabilities of the central server. Lastly, there is a privacy

concern because a central entity monitors the entire operation. It is shown that the private data of a

participating node can leak just through its gradient updates [21].

For these reasons, Decentralized Learning (DL) emerged as an alternative to FL. In DL, there is

no central server. Each participating node receives models from its peers and merges them with

its own model. Then it performs one or several training steps and shares its new model with other

nodes. At any time, whether the node is supposed to share its model, aggregate it with an incoming

model or perform a training step is decided by rules, which constitute a DL algorithm.

6

There are two types of DL algorithms - synchronous and asynchronous ones. The synchronous

algorithms wait for all other nodes to finish the training round before proceeding to the next one.

On the other hand, the asynchronous algorithms have no concept of rounds. The nodes do not wait

for other nodes to finish their training. Instead, they proceed with execution based on the given DL

algorithm.

Although the performance of different DL algorithms was previously studied, they are often

evaluated only in comparisons with baselines such as FedAvg [16] and D-PSGD [14], but not with

each other. For example, based on the existing results, we expect both EL [2] and AD-PSGD [15] to

perform better than D-PSGD, but we do not know how they compare to each other. Furthermore, the

experiments were often done in a rather theoretical setting where each participant has an equal or

similar computing and networking performance. The evaluation being performed on heterogeneous

mobile devices was previously rarely considered.

It is not necessary to conduct such an evaluation on mobile devices. Instead, we can utilize

standard computer hardware by using traces, which capture the computing and networking speed

of different participating mobile devices. For this purpose, SaCS lab developed a Decentralized

Learning Simulator [1]. The simulator allows us to conduct a fair evaluation in an equal setting

for each algorithm. Furthermore, by utilizing traces the evaluation emulates a real-life scenario.

Although there are existing frameworks that serve a similar purpose such as DecentralizePy [3] and

FedScale [12], they either do not support the inclusion of traces, or they support only FL algorithms

In this project, we implement different DL algorithms in the DL simulator. We emulate a real-life

scenario using traces collected from mobile devices [8, 9]. We evaluate algorithms’ performance in

two different ML tasks in three settings. Firstly, we examine image classification using the CIFAR-

10 [10] data set. We consider both IID and non-IID data distributions among the participating nodes.

Secondly, we evaluate a recommendation task on the Movielens [4] data set. Using the algorithms’

singularities, we explain the differences in their performances in terms of achieved testing loss or

accuracy over time and computing and communication efficiencies.

We will show that the best-performing algorithm in image classification on CIFAR-10 is AD-PSGD

in both IID and non-IID settings. It converges fast while avoiding over-fitting thanks to distributing

the nodes into active and passive groups. However, in a task where it is easier to find convergence,

such as in the recommendation task on the MovieLens data set, it performs poorly due to over-fitting.

Moreover, we will show that asynchrony is worthy. There is an asynchronous algorithm, Gossip

Learning, which outperforms all synchronous algorithms in every tested scenario. Overall, we will

show that there is no one-fit-all algorithm and each algorithm excels in different tasks.

In addition, we present a new asynchronous algorithm, Heterogeneous Gossip Learning (HGL),

which compared to the other algorithms utilizes differences in computing speeds among participat-

ing nodes. In HGL, the probability of a node receiving a model depends on its computing speed,

such that on average each node receives a single model per training step. In the recommendation

7

task on the MovieLens data set, its resulting models achieve the smallest average testing loss across

all the algorithms.

Overall, we make the following contributions:

• We implement the DL algorithms in a common framework - the DL simulator, which provides

an equal ground for their evaluation.

• Utilizing the traces, we evaluate the algorithms in a realistic setting of DL on mobile devices in

three different experiments.

• We introduce a new asynchronous DL algorithm HGL, which is designed to consider nodes’

heterogeneity. It is the best-performing algorithm in the recommendation task on the Movie-

Lens data set.

We divide this work into seven chapters. We start by summarizing Decentralized Learning

in chapter 2. In chapter 3 we introduce the simulator which we used to run the algorithms. Here we

also describe the traces we used. In chapter 4 we introduce the existing DL algorithms. We introduce

our evaluation setup, evaluate the algorithms, and discuss the results in chapter 5. We propose and

evaluate HGL in chapter 6. Lastly, we conclude our findings and suggest future work in chapter 7.

8

Chapter 2

Background

In this chapter, we describe the necessary background to understand this work, namely Decen-

tralized Learning. We assume the reader already has a basic understanding of machine learning

(ML).

2.1 Decentralized Learning

Decentralized Learning (DL) is a collaboration of nodes in the training of ML model without sharing

their private data. Compared to Federated Learning [16] (FL), DL removes the need for a central

server. Furthermore, in DL each node has its own model, which it can share with other nodes. There

are several advantages to this approach. Firstly, it increases fault tolerance. The learning process

in FL depends on the central server, which coordinates the training. If the central server were to

fail, the nodes would not be able to continue training without it. On the other hand, if a node fails

in the DL setting, the other nodes can continue training without it. Similarly, the central server is

a bottleneck of the whole operation. By the nature of its task, the central server has to send and

receive models from all participating nodes. When training large models consisting of billions of

parameters, the transfers can take a significant amount of time, possibly causing congestion on

the central server. In contrast, DL spreads out the communication volume over the participating

nodes. No single node needs to communicate with all others at any particular time, removing the

bottleneck and making the learning more scalable. Lastly, with the removal of the central server,

we also remove the central monitoring point. There is no node in DL with information on all traffic

exchanged during the learning process. This has a positive effect on privacy.

More formally, there are n nodes. Each node i has its private data set Di . The loss of a model

x on a data sample ξ is denoted by f (x,ξ). DL aims to find an assignment of values to model x to

minimize the objective function:

9

min
x∈Rd

1

n

n∑
i=1

Eξ∼Di

[
f (x,ξ)

]

A node in DL can either train its model, aggregate the received model with its own or send its

model to other nodes. The exact procedure is determined by the DL algorithm used for the learning.

There are two types of DL algorithms - synchronous and asynchronous ones.

The synchronous DL algorithms are characterized by a reoccurring synchronization phase after

each round of training. If a node finishes the round before others, it waits for all other nodes before

proceeding to the next round. The benefit of this approach is that each node will perform an equal

number of training rounds, hence its potential contribution to the model is also equal. However, the

faster nodes will have to wait for the slower ones, which can be a significant setback in the presence

of nodes with highly varied performance. Decentralized Parallel Stochastic Gradient Descent [14]

(D-PSGD) is a staple of synchronous algorithms and DL in general. D-PSGD utilizes a static topology,

where each node in every round trains and exchanges its model with its neighbours. Afterwards, it

averages its own model with the received ones to create its new model for the next round. Epidemic

Learning [2] improves on this concept by making the topology dynamic - the topology changes after

every round. This helps to spread the model updates faster and increases the convergence speed.

In contrast, the asynchronous DL algorithms do not have a concept of rounds and consequent

synchronization steps. In the case of nodes of heterogeneous performance, asynchrony can lead

to significantly higher resource utilization by letting the faster nodes perform more training steps

instead of waiting. However, the resulting model does not necessarily have to be of higher quality

than the one trained using a synchronous algorithm, especially in the context of non-IID data

distribution over the nodes. Asynchronous Decentralized Parallel Stochastic Gradient Descent [15]

(AD-PSGD) is an asynchronous algorithm, where nodes train, exchange and average their models at

the rate independent of other nodes. In Gossip Learning [5, 6] (GL), nodes periodically send their

models to a random other node. Whenever a node receives a model, it aggregates the model into its

own and performs a training step.

10

Chapter 3

Simulator

The core component in our project is the Decentralized Learning Simulator [1]1, which has been

developed in SaCS lab to evaluate the DL algorithms. In this chapter, we explain the operation of the

simulator in two stages - simulation and execution. In addition, we describe the traces we use with

the simulation. Lastly, we list our contribution to the simulator project.

3.1 Overview

The main purpose of the simulator is to emulate a DL network consisting of multiple participating

nodes. The simulator provides the algorithms with an equal ground, on which we can fairly evaluate

them. Its key feature is the support for traces, which determine the computing and networking

speeds of the participating nodes, enabling us to simulate a real-life scenario. The simulation gives

us more control over the execution, allowing us to perform the execution on hardware independent

of the mobile devices from which the traces were collected. The execution of the training is imple-

mented in PyTorch [17] and can run on both CPU and Cuda and on one or multiple machines. We

can divide the operation of the simulator into two parts - simulation and execution.

3.2 Simulation

The first stage is the simulation, which is computationally less demanding. Its responsibility is to

create a dependence graph containing all tasks, which are going to be executed later.

1https://github.com/sacs-epfl/decentralized-learning-simulator

11

https://github.com/sacs-epfl/decentralized-learning-simulator

3.2.1 Events

The algorithmic logic is conveyed through an event-based system. Each event is assigned a node,

a function, data and time. When a node generates an event, the simulator puts the event into the

event queue based on the event’s time. The simulator executes events in order. When it is time to

execute the given event, the event’s function is called with the data contained in the event. The

function call can itself result in the scheduling of new events. In this way, the simulator continues to

execute events, which generate new events, until the stopping condition, either the time elapsed or

the number of rounds, is reached and new events are no longer scheduled. The simulator currently

supports the following events: initialization, start of a training step, training finish, start of a data

transfer, finish of an outgoing data transfer, incoming model, aggregation, dissemination of a model,

performance testing of a current model and starting of a round. However, not all algorithms make

use of all event types.

3.2.2 Tasks

The aim of the events is not only to schedule other events but also the tasks. Each task has a function,

data, inputs tasks and outputs tasks. The role of the simulator is to put a task into a directed acyclic

graph, such that the task follows its input tasks. For instance, in Gossip Learning, when a node

receives a model, it will aggregate the incoming model with its own. Aggregation is the merging of

two or more models using linear combination, where the weights of the models are determined

based on the specific algorithm and sum up to one. We call this process averaging in case of equal

weights. In that case, the node will generate an aggregation task with two input models - the node’s

own model and the received one. These two models have to be the results of some other tasks,

which would be put by the simulator as inputs of the newly generated aggregation task. We can see

aggregations tasks put in the graph in Figure 3.1. We observe that each aggregation has two input

tasks - the received model and the node’s current model. Whenever a task is put into the graph, its

output tasks have not yet been generated. There are five types of tasks: training, aggregation, testing,

gradient computation and gradient update, but most algorithms make use of only the first three.

Each of the tasks will call its respective function during the execution phase.

Each event is scheduled at a particular time determined before the scheduling. Consider the start

of a training step event. In the most general case, it will create a training task with input being the

current model and pass it to the simulator. Then, it will schedule a training finish event. Depending

on the algorithm, the start of a training step event can have other side effects. Supposing the current

time is t0 and training takes t1 time units, the training finish event will be scheduled at time t0 + t1.

The training time is calculated using several factors. Firstly, there is an underlying speed of the node

executing the event, which is taken from the traces. Other factors influencing the length of training

are batch size and the number of local steps performed during a single training step. On the other

hand, we assume that some events, such as aggregation, run in an instant. We reason that the time it

12

train
aggregate
test

Figure 3.1: Compute graph of gossip learning simulated on 16 nodes. The filled circles represent the
tasks. The y coordinate of a task determines the node. The x-axis represents the order. An arrow
from a task B to the task A shows that the task B depends on the result of the task A.

would take to make a linear combination is negligible compared to the gradient computation during

the training.

3.2.3 Bandwidth scheduler

During an event call, each node can communicate and exchange models with the other nodes.

When exchanging models, the total transfer time is determined using a bandwidth scheduler. The

bandwidth scheduler tracks incoming and outgoing transfers from the given node. Whenever there

is a request for a transfer, based on the available bandwidth of the two nodes involved in the transfer,

the bandwidth scheduler determines the maximum possible transfer speed. The overall length

of the transfer depends on the transfer speed and model size. On the other hand, if there is no

bandwidth available, a transfer request waits in a queue. We assume the nodes have knowledge of

the bandwidth capabilities of other nodes and do not attempt to transfer using more bandwidth

13

than necessary.

3.3 Execution

During the execution phase, the simulator executes all the accumulated tasks. This usually takes

significantly longer than the initial simulation. We have already introduced the behaviour of the

aggregation task in subsection 3.2.2. The training task calls a function which performs one or several

local steps on the node’s model. The gradient is computed in a stochastic way from the node’s data.

The responsibility of a testing task is to call a function to measure the loss and accuracy of the node’s

model at the given time on the testing data set. In addition, during this phase, we measure different

performance-oriented metrics such as memory and CPU usage to help us optimize the execution.

3.3.1 Coordinator

The coordinator is the same entity as the simulator, but in this phase, we will refer to it as the

coordinator. The coordinator aims to distribute the workload across the brokers. Once the simula-

tion is over, the coordinator waits for all brokers to connect. Afterwards, the coordinator assigns

nodes to brokers and sends them the task graph. The coordinator then determines the starting

tasks - the tasks without any inputs - and schedules them on the responsible brokers. Subsequently,

the coordinator waits to receive all sink tasks - tasks without any output. When this happens, the

coordinator sends a shutdown signal to all brokers and the execution is over.

3.3.2 Brokers

The responsibility of a broker is to schedule tasks on workers. When the coordinator initializes a

broker, it spawns one or multiple workers, each representing a single thread running in parallel.

Whenever a worker finishes a task, the result of the task is passed to whichever broker needs it. This

is determined based on the node the task belongs to. Additionally, if there is a task with all of its

inputs already computed, the broker will schedule it on a worker.

3.4 Traces

The key feature of the simulator is the support of traces, which allows us to simulate a real-life

scenario of different devices participating in decentralized learning. Each node is assigned a sample

from the distribution containing computing and network capabilities. In total, the distribution

14

20 40 60 80
training_time

0

20000

40000

60000

80000

100000

120000

Co
un

t

0.0 0.5 1.0 1.5 2.0 2.5
transfer_time

0

10000

20000

30000

40000

50000

60000

70000

Distribution of training and transfer times in seconds

Figure 3.2: Distributions of training and transfer times in seconds for training of GN-LeNet model
on CIFAR-10 data set. A single training includes 5 local training steps with a batch size of 32.

contains 500000 samples. We use the traces from FedScale [12], the simulator for Federated Learn-

ing. The traces related to the computing efficiency of the mobile devices for the training of deep

learning models were collected for AI benchmark [9], and the network transfer speeds by MobiPerf

measurements [8].

We can see the distribution of computing and transfer times for the GN-Lenet model on CIFAR-

10 data set in Figure 3.2. We see that the capabilities of the mobile devices are vastly different.

Especially in the case of the training times, the overall distribution seems to be made of two separate

distributions, one for the fast and one for the slow devices. There are very few devices with training

speeds in between these two distributions. On the other hand, the distribution of network traces

seems to be more stable, but there are still significant differences between the devices. When

comparing the two distributions, we notice that the duration of the training seems to be much

longer. We expect it to have a larger effect on total execution time.

3.5 Contributions

As part of this project, we have made numerous contributions to the simulator. We first list the

added features and then the bug fixes.

15

3.5.1 Features

• Our main contribution is the implementation of 5 decentralized learning algorithms within

the simulator. This includes client and simulation classes. In addition, we also made unit tests

for all of these algorithms. We note that our implementation of Epidemic Learning is heavily

based on the already existing implementation of D-PSGD in the simulator.

• We implemented abstract asynchronous client and simulation classes, which will make it

easier to implement other asynchronous algorithms in future.

• We added elapsed time as a stopping condition and made periodic testing based on the time

elapsed. The periodic testing is implemented using a new testing event.

• We introduced a disseminate event, which periodically sends a model to a random other node.

• We added the capability of plotting the compute graph and the resulting loss and accuracy

after the execution.

• We implemented an option for aggregation to use custom weights.

• We added tasks and implemented functions to compute the gradient and perform a gradient

update. Before, both of these tasks were united within a training task. Now there is an option

to separate them if the algorithm requires it.

• We added logging of various measurements, such as the proportion of time spent computing,

number of transfers between each two nodes, etc., which are then saved to files. These logs

can be utilized later for analysis.

• We introduced an option to use stragglers. Stragglers are the slowest nodes which are further

handicapped in their computing speed. We can utilize stragglers to observe the behaviour of

an algorithm in presence of extremely slow nodes.

• We made the execution of the coordinator more efficient when receiving a result for a task.

• We added support for the MovieLens data set. We note that our implementation is heavily

based on the existing implementation in DecentralizePy [3]. We only made the changes

necessary for the class to work in the simulator.

• In addition we made the simulator generate and execute tasks in batches. Instead of the long

simulation and execution phase, as described earlier in this section, the simulation stops

when a certain amount of tasks generated is reached. Then, these tasks are executed and the

simulation phase continues again. The two stages follow each other until there are no tasks

to generate. This approach increases memory efficiency for long simulations when there are

millions of tasks. We note that this feature is still experimental 2 and has not yet been pushed

to the main repository.
2https://github.com/fondefjobn/decentralized-learning-simulator/tree/batch_simulator

16

https://github.com/fondefjobn/decentralized-learning-simulator/tree/batch_simulator

3.5.2 Bug fixes

• We now make a copy of a model when testing. Otherwise, there was a possibility of a crash on

some platforms.

• Before, the name of the task was a hash. Two different tasks could receive the same hash,

which would cause the tasks to be incorrectly assigned input and output tasks. We fixed this

issue by numbering the tasks instead.

• We now catch a rare concurrency error which can happen when training on a GPU. Otherwise,

the exception would result in a crash. We note that this bug was not caused by the simulator

but by the other library.

• We fixed a rare race condition in the existing implementation of D-PSGD algorithm, which

occurred if a node received a model from the next round at the same microsecond as it

performed aggregation in the current round.

• We make sure that the simulator properly exits the execution in a dry run setting. During the

dry run, only the simulation part runs without computing the results of the tasks.

• We fixed the partitioners not properly using seed and alpha parameters.

• Brokers now create a dictionary to save the measurements if it does not exist. This would

cause a crash if the broker was run from a different directory than the coordinator.

• We fixed the broker sometimes sending an incorrect IP address in its hello message. This error

was not caused by the simulator but by the library responsible for fetching the IP address of

the network device connected to the internet. We opted to use another library instead.

• We fixed a race condition when multiple brokers attempted to write metrics to the same file.

Now there is a separate file for each node. When all tasks are computed, the coordinator

merges the files into a single metrics file.

• We fixed momentum not being used in successive training tasks.

17

Chapter 4

Algorithms

In this chapter, we describe the existing DL algorithms we used in our evaluation. Often, the exact

implementation is not clear solely based on the algorithm. This is especially true when a node

executes multiple local steps in a row. Hence, where deemed necessary, we provide and explain our

implementation decisions of the algorithm in question. Furthermore, we mostly stay true to the

original algorithm, however, we make small performance improvements where appropriate. We will

first introduce synchronous DL algorithms and then move towards asynchronous ones. In addition

to the existing DL algorithms, we introduce Super Gossip Learning, which was previously developed

at the SaCS lab.

4.1 Decentralized Parallel Stochastic Gradient Descent

Decentralized Parallel Stochastic Gradient Descent [14] (D-PSGD) is a prime example of a syn-

chronous DL algorithm. In each round. the algorithm performs the two repeating steps. At first,

each node updates its local model. Then it averages the updated model with the model of its

neighbours from the same round. The complete algorithm can be seen in Figure 4.1.

In our implementation, we assume that the underlying topology is log2 N regular, where N is

the number of nodes. As the stopping criterion, compared to the pseudo-code in Figure 4.1, we do

not use the number of rounds passed but elapsed simulated time. This helps us compare D-PSGD

to the asynchronous algorithms, which have no concept of rounds. Nevertheless, it is important to

note that our implementation still uses a concept of rounds for variable assignments, e.g. a node in

the given round will accept for aggregation only the models from the current round.

The biggest difference in our implementation compared to the original algorithm [14] is that we

swapped the gradient update and aggregation steps. The reason for this switch is that in our setup

18

Algorithm 1: D-PSGD on ith node

Input: initial model xi ,0, local data set ξi , number of rounds K , learning rate γ,
nodes are placed in an underlying connected topology, where Ni is the set of
neighbours of i

1 for each round k from 0 to K −1 do
2 Sample a batch ξi ,k from ξi ;
3 Compute the gradient gi ,k =∇F (xi ,k ,ξi ,k);
4 Update the model xi ,k+ 1

2
= xi ,k −γ · gi ,k ;

5 Send the model xi ,k+ 1
2

to all neighbours n ∈ Ni ;

6 Wait to receive model xn,k+ 1
2

from all neighbours n ∈ Ni ;

7 Average the models from the neighbouring nodes
xi ,k+1 = 1

|Ni |+1 (
∑

n∈Ni
xn,k+ 1

2
+xi ,k+ 1

2
);

Figure 4.1: D-PSGD algorithm

we perform multiple local steps, meaning that in a single round, we update the model multiple times,

but perform only a single aggregation. For each of the multiple model updates, we first calculate the

gradient, therefore these two steps have to follow each other. Another trick is that a node does not

have to wait for all other nodes if it wants to proceed to the next round. It is enough to wait only

for all of its neighbours, allowing the node to proceed with aggregation and reach the next round.

However, in practice, this method results only in a small performance benefit, where the fast nodes,

depending on the topology, can be a few rounds ahead. In the case of log2 N regular topology, it is at

most one or two rounds.

4.2 Epidemic Learning

In principle, Epidemic Learning [2] (EL) functions similarly to D-PSGD. The twist is that the underly-

ing topology is not static but changes each round. As the nodes communicate with different nodes in

every round, the model updates are spread faster, which leads to theoretically faster convergence [2].

The complete algorithm can be seen in Figure 4.2. There are two ways of generating a new topology -

EL-Oracle and EL-Local.

EL-Oracle generates a s-regular topology, where s is a hyperparameter. As suggested in the origi-

nal paper [2], we set s = log2 N . This is the same approach we used in our D-PSGD implementation,

but EL-Oracle repeats the topology generation every round.

On the other hand, in EL-Local each node, each round independently samples s other nodes,

which will receive its model. Hence, different nodes can receive a different number of models in the

same round or even no models at all. It is shown that this approach has the same convergence speed

19

Algorithm 2: EL on ith node

Input: initial model xi ,0, local data set ξi , number of rounds K , learning rate γ, set of
all nodes S, sample size s

1 for each round k from 0 to K −1 do
2 Sample a batch ξi ,k from ξi ;
3 Compute the gradient gi ,k =∇F (xi ,k ,ξi ,k);
4 Update the model xi ,k+ 1

2
= xi ,k −γ · gi ,k ;

5 Sample s nodes from S \ {i } according to EL-Oracle or EL-Local;
6 Send xi ,k+ 1

2
to all sampled nodes;

7 Wait to receive |Ni ,k | models xn,k+ 1
2

, where Ni ,k is a set of nodes sending its

model to i at round k;
8 Average the received models xi ,k+1 = 1

|Ni ,k |+1 (
∑

n∈Ni ,k
xn,k+ 1

2
+xi ,k+ 1

2
);

Figure 4.2: Epidemic Learning algorithm

as EL-Oracle [2]. There are two main ways to implement EL-Local. Either, a node knows in each

round how many models it will receive, e.g. thanks to a common seed, and it will wait to receive

all the expected models, before proceeding with the aggregation. Alternatively, there is a specified

time limit of how long the node will wait to receive the models. Afterwards, the node will aggregate

regardless of whether there is some other node still sending its model to the node in the given round.

We opted for the first approach, which is better suited for our evaluation scenario with highly variant

traces and no assumed failures.

4.3 Asynchronous Decentralized Parallel Stochastic Gradient Descent

As the first asynchronous algorithm, we introduce Asynchronous Decentralized Parallel Stochastic

Gradient Descent [15] (AD-PSGD). The distinctive feature of the algorithm is that whenever a node

receives a model, it replies with its own model. After the subsequent averaging, the two nodes

participating in the exchange will have the same model. The complete algorithm can be found

in Figure 4.3.

Whenever a node initiates the model exchange, it waits until it receives a reply. However, if all

nodes were to initiate the exchange at the same time, it would cause a deadlock with all the nodes

stuck waiting to receive a model from the other party. Therefore, AD-PSGD avoids the deadlock by

dividing the nodes into two groups - the active and the passive nodes. The active nodes initiate the

communication and can send their model only to a passive node. A passive node cannot initiate

the communication. When a passive node receives the model, it immediately replies with its own

model and averages the received model with its own. The division effectively creates a bipartite

20

Algorithm 3: AD-PSGD on ith active node

Input: initial model xi , local data set ξi , learning rate γ, set of all passive nodes S
1 repeat
2 Sample a batch ξ̂i from ξi ;

3 Compute the gradient gi =∇F (xi , ξ̂i);
4 Update the model xi = xi −γ · gi ;
5 Sample a node j from S;
6 Send xi to node j ;
7 Wait to receive x j from j ;

8 Average the received model xi = xi+x j

2 ;
9 until the running time elapses;

Algorithm 4: AD-PSGD on jth passive node

Input: initial model xi , local data set ξi , learning rate γ
1 repeat
2 Sample a batch ξ̂ j from ξ j ;

3 Compute the gradient g j =∇F (x j , ξ̂ j);
4 Update the model x j = x̂ j −γ · g j Note that x̂ j might be different than x j ;
5 Wait to receive xi from any active node i ;
6 Send x j to node i ;

7 Average the received model x j = xi+x j

2 ;
8 until the running time elapses;

Figure 4.3: AD-PSGD algorithm

communication topology.

Compared to the algorithm in Figure 4.3, the implementation of AD-PSGD is more nuanced.

Due to the waiting steps of both the active and the passive nodes, there could be a significant

waiting period, hindering the benefits of asynchrony. The authors of AD-PSGD solve this problem by

making the passive peer reply back and average immediately when it receives the model. However,

this causes another problem. What if the passive node receives a model at the same time as it

is computing the gradient to update its model? In such a case, the node continues to compute

the gradient. At the same time, it averages the received model with its own and puts the result to

x̂ j . Once the gradient computation is finished, it will apply the gradient update to the averaged

model x̂ j . To implement this behaviour we created new types of tasks in the simulator - gradient

computation and gradient update. This is the only algorithm that utilizes them.

The last thing to solve is the waiting behaviour of the passive nodes. Since a passive node replies

and averages whenever it receives a model, the waiting and averaging could be removed from the

main execution loop. However, in such a case the node could perform many training steps, without

21

ever receiving a model, which is not the intention of the algorithm. We opted for a hybrid approach.

Whenever a passive node receives a model, it increments its training budget. Contrarily, when it

trains, it decrements the budget. If a node has already used up its budget, it will wait with training

until it receives a model. Otherwise, it will continue to the next iteration without waiting.

4.4 Gossip Learning

Another asynchronous algorithm is Gossip Learning [5, 6] (GL), which adopts the gossip protocol to

decentralized learning. The nodes spread their model by periodic gossiping to a random other node.

The basic idea of the algorithm is simple - each node periodically sends its model to a random other

node. Whenever it receives a model, it aggregates it with its own and performs one training step.

You can observe the complete algorithm in Figure 4.4.

GL uses an aged-based aggregation function. The function assigns weights to the aggregated

models based on the nodes’ ages. When a node aggregates, its new age is set to the maximum

age of the two nodes involved. Furthermore, when a node trains, it increments its age. In this

way, the models that are the results of many training steps will have a higher weight during future

aggregations. This should result in faster convergence by avoiding outdated models from the nodes,

which have models not updated as many times.

The algorithm for GL neglects an important implementation detail - what should happen when

a node receives a model when it has just received another one and is currently in training? It

would not make sense to start another training when one is already running. We could store every

received model and aggregate them all when the training finishes, but that is the idea behind the

Super Gossip Learning algorithm, which we will introduce later. However, completely ignoring the

received models would be a very wasteful option. We chose a middle-ground approach. We save the

received model for later, but at any time keep at most one model waiting for the end of the current

training. We found that this small improvement results in much higher resource utilization of GL.

During our testing, we encountered another problem. If two nodes were to send their model

to the same node, the receiving node would always aggregate the one it received first, depending

on the possible transfer speeds. Then, the node would be busy with training and not aggregate the

second model. We thought this would be an unfair treatment for one of the nodes, therefore we

added a random delay between 0 and α second to each node before it starts its periodic sending. In

this way, the sending period of every node has a different shift and on average each node’s model

has an equal chance to be aggregated when sent to another node. Another problem is that the

algorithm has a hyperparameter α, which has to be tuned. Since our primary focus is to maximize

the performance given the available resources, we set α to the smallest period, the networks of the

nodes can handle. As we will see in chapter 5, this results in poor communication efficiency of GL.

However, the higher values of α would result in poor computing utilization and therefore slower

22

Algorithm 5: GL on ith active node

Input: initial model xi , local data set ξi , learning rate γ, set of all nodes S, period α

1 repeat
2 Wait α seconds;
3 Sample a node j from S \ {i };
4 Send xi to node j ;
5 until the running time elapses;

6 Procedure OnReceiveModel(x j):
7 Aggregate xi and x j and put the result into xi ;

8 Sample a batch ξ̂i from ξi ;

9 Compute the gradient gi =∇F (xi , ξ̂i);
10 Update the model xi = xi −γ · gi ;

11 Procedure Aggregate(xi , ai , x j , a j):
12 c = x j

xi+x j
;

13 a = max(ai , a j)+1;
14 xi = (1− c) · xi + c · x j ;

Figure 4.4: Gossip Learning algorithm

convergence. Another problem with this hyperparameter is that if the network conditions were to

change during the execution, the selected value of α might no longer be suitable.

4.5 Super Gossip Learning

Super Gossip Learning [19] (Super GL) is an asynchronous algorithm, which was previously internally

developed in the SaCS lab. It aims to correct the deficiencies of GL. Super GL removes the periodic

sending and the hyperparameter connected to it. Instead, the sending is performed in the main

loop. Super GL introduces the concept of a queue into GL. Whenever a node receives a model, it

puts it into the queue. When it is time for aggregation, all models from the queue will be aggregated

with the local model and the queue is cleared. Super GL uses the same aged-based aggregation

scheme as GL. The complete algorithm can be seen in Figure 4.5.

Super GL introduces a set of implementation questions of its own. Firstly, a node may receive a

newer model from the node, which has already put its older model in the queue. In that case, the

newer model essentially makes the previous one redundant, therefore we replace the old one with

the newer one in the queue. Another issue is in the main loop. If it is time to aggregate and a node

has not received any model after the previous aggregation, its queue is empty. In such a case, it is

23

Algorithm 6: Super GL on ith active node

Input: initial model xi , local data set ξi , learning rate γ, set of all nodes S, an empty
queue qi

1 repeat
2 Sample a batch ξ̂i from ξi ;

3 Compute the gradient gi =∇F (xi , ξ̂i);
4 Update the model xi = xi −γ · gi ;
5 Aggregate xi with all models in the queue qi ;
6 Sample a node j from S \ {i };
7 Send xi to node j ;
8 until the running time elapses;

9 Procedure OnReceiveModel(x j):
10 put x j into the queue qi ;

11 Procedure Aggregate(xi , ai , x j , a j):
12 c = x j

xi+x j
;

13 a = max(ai , a j)+1;
14 xi = (1− c) · xi + c · x j ;

Figure 4.5: Super Gossip Learning algorithm

not clear whether the node should wait to receive a model or continue without any aggregation.

We tested both approaches. The results with the waiting option were significantly worse. The

waiting approach results in the algorithm barely performing any learning, therefore we opted for the

non-waiting implementation. The cause of this issue is that the model sharing is conducted in the

main loop. However, waiting for aggregation would also happen in the main loop. Therefore, if a

node is waiting, it cannot share its model with other nodes. Eventually, only one node can compute,

while all others are waiting for the node to send them a model. However, the node can send the

model only to one of the waiting nodes before it is waiting itself.

24

Chapter 5

Evaluation

In this chapter, we evaluate the five existing algorithms introduced in chapter 4. To avoid plot

repetition, the plots in this chapter also include the results related to Heterogeneous Gossip Learning,

but we will discuss them only in chapter 6. In total, we evaluated the algorithms in three different

experiments involving two common ML tasks. At first, we consider an image classification task on

the CIFAR-10 [10] data set. We consider both IID and non-IID class distributions over the nodes.

Secondly, we evaluate the algorithms in the recommendation task on the MovieLens [4] data set. In

this chapter, we first describe our evaluation setup in terms of hardware and the experiment design.

Then we show the results of our evaluation.

5.1 Hardware

We conducted the experiments on several machines. Firstly, there are six servers, which were

assigned to us by the SaCS lab. Five of them are equipped with 64GB of memory and Intel Xeon

E-2288G. The remaining one has 128GB of memory and Intel Xeon CPU E5-2630 v3. Each of these

CPU consist of eight cores. As explained in the chapter 3, the simulation would run only on a single

machine, which runs the coordinator. All other machines would run a broker, which connects

to the coordinator and executes the tasks. During our experiments, we found that to maximize

the performance it is not beneficial to utilize all the available threads. Since there could be other

processes running on the server, we do not spawn as many workers as there are threads available on

the CPU. Instead, we delegate only six threads for this purpose. If we were to spawn more workers,

there would be too much context switching, hindering the performance. Despite us conducting the

experiments on six servers, the training of large neural networks still took a significant amount of

time. The reason is that the training was done only on a CPU since the servers were not equipped

with a GPU.

25

One of the biggest challenges we encountered was the significant running time of the experi-

ments. We used two additional laptops equipped with GPUs Nvidia GeForce RTX 3060 and RTX 4060

to speed up the execution. The first of the two was used only semi-regularly because it served us as

our primary development device. The usage of GPUs significantly shortened the running time of the

experiments. In the end, the laptop with RTX 4060 was responsible for the majority of experiments,

despite having the same running time as the servers.

5.2 Experiment design

When designing the experiments, we aimed to capture different scenarios where DL can be used.

We initially planned to conduct experiments with over a hundred participating nodes, however,

due to the limitations in computing power, we scaled it down to 32 participating nodes. To reduce

frequent communication between the nodes, each node performs five local steps whenever it trains.

Moreover, to speed up the convergence we use a momentum of 0.9. We optimize the models using

stochastic gradient descent with a batch size of 32 data points. In total, we try six different learning

rates, namely 0.001, 0.005, 0.01, 0.05, 0.1 and 0.25 and for each experiment and algorithm we show

the best-performing one. We run the experiments with two different seeds and report the average.

However, we did not advance the learning rates, which performed very poorly with the first seed,

into the experiment with a second seed.

We evaluated the algorithms on two data sets - CIFAR 10 [10] and MovieLens [4]. We engage in an

image classification task in the experiment involving the CIFAR-10 data set, CIFAR-10 contains sixty

thousand tiny colour images of size 32x32. Images are divided into ten classes, each class having

6000 samples. 50000 images are reserved for the training set and 10000 for the test set.

During the execution, we allocate the images to the nodes using two different distributions.

Firstly, there is the IID distribution, where a node has in its data set each image with equal probability.

With this distribution, each node has the same number of images. Secondly, in the non-IID case,

the samples are distributed according to the Dirichlet distribution with α= 0.1. This simulates a

real-life scenario, where different nodes specialize in different classes. The distribution according to

one seed is shown in Figure 5.1. We can see that most nodes contain significantly more samples

of one or two classes than the images of other classes. Due to the nature of the distribution, there

is a large variety of number of images per node. For instance, in Figure 5.1 node 9 has only 96

images, while node 24 over 5000. As the model, we use GN-LeNet [7], which is inspired by the

original LeNet [13] network. GN-LeNet uses group normalization layers [20] to tackle the problems

of other normalization techniques when facing a non-IID class distribution. Since we engage in a

classification task, as the loss function we use cross-entropy. We simulate the execution of each

algorithm for over 80 hours.

Secondly, we run a recommendation task with the MovieLens data set. The MovieLens data

26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
nodes

0

1

2

3

4

5

6

7

8

9

cla
ss

es

Dirichlet distribution of data classes across nodes with alpha=0.1

0 500 1000 1500 2000 2500 3000
number of samples

Figure 5.1: Dirichlet distribution of data classes of CIFAR-10 data set across thirty-two nodes with
α= 0.1.

set consists of 100000 ratings of movies on a scale from 0.5 to 5. In total, there are 610 users, who

rated 9724 movies. We distribute the users across the nodes. Each node is responsible for an equal

amount of users but some nodes may have an extra user due to a reminder. Since different users

rated a different number of movies, the number of ratings is not equal across the nodes. However,

the differences are not as extreme as in the case of non-IID distribution for CIFAR-10. For each

user, we allocate 30% of its ratings as the test set. In this experiment, as a model, we use a matrix

factorization and mean squared error as the loss function. We run the recommendation task for

almost 140 simulated hours.

In our evaluation we aim to answer the following research questions:

• Do the asynchronous algorithms perform better than the synchronous ones in the setting

with unequally performing nodes?

• Which algorithms perform well at which setting? Is there an algorithm performing the best in

every setting or are different algorithms suitable for different tasks? Why?

• Are the algorithms with the best performance also the most efficient in resource utilization?

27

5.3 Image classification on IID CIFAR-10

We will first evaluate the algorithms’ performance and then the efficiency. In Figure 5.2 there is

testing accuracy over time of different algorithms. We observe that initially, Super GL converges the

fastest, but at approximately 15 hours mark Super GL is overtaken by AD-PSGD, which keeps the

lead until the end. We explain the initial fast convergence of Super GL using the heterogeneity of

traces. We have seen in Figure 3.2 that both the computing and networking performance of different

nodes can be vastly different. In Super GL, the faster nodes send more models to other nodes than

the slow ones. This is a direct result of the Super GL algorithm, where the number of sent models is

directly related to the number of times a node trains, which depends on its computing speed. We

can see a visualization of this behaviour in Figure 5.11. The heatmaps show the number of times a

node utilizes a model from other nodes in its aggregations. In the Super GL heatmap, we observe a

horizontal pattern, which indicates that a model of a node has an equal probability of being utilized

by any other node. However, different colours of the rows show that models from nodes are utilized

at different rates. As a result, the slow nodes converge faster because they receive on average more

models from faster nodes, which were trained more times. Although there is a faster convergence,

this behaviour has a detrimental effect. The consequence is over-fitting towards the data held by the

faster nodes.

The worst performers are synchronous algorithms D-PSGD and EL-oracle. This is not a surprise.

Due to heterogeneity in computing and network speeds, faster nodes have to wait a significant

amount of time for the slow ones. More significantly, the speed of the slowest node determines the

speed of the entire learning. All other nodes have to wait for the slowest one to finish training before

progressing to the next round. Hence, if even slower nodes were present, these algorithms would

perform even worse.

GL converges slower than Super GL, but over time it manages to equal it. In GL, every node

sends models at an equal rate, therefore GL does not suffer from the same type of over-fitting as

Super GL. This can again be seen in Figure 5.11. The aggregation heatmap of GL has a vertical

pattern, which indicates that for any node, the probability of aggregating a model from another

node is uniform across all present nodes. However, different nodes perform a different number of

aggregations, which is determined by their computing speed. This is more desirable behaviour.

Choosing a single best-performing learning rate can be difficult when we consider multiple opti-

mization criteria, namely the convergence speed and the best-achieved testing accuracy. Therefore,

we measure the time required to reach a certain testing accuracy target. For each target, we show

the earliest time the target is reached with any learning rate. Therefore, different learning rates may

be used to reach different targets, even when considering the same algorithm. We chose four target

testing accuracies between 70% and 82%.

In Figure 5.3 we see the results. All asynchronous algorithms reach at least a testing accuracy of

80%, while the synchronous one can reach only the 75% target. We note that the algorithms could

28

0 10 20 30 40 50 60 70 80
hours

45

50

55

60

65

70

75

80

ac
cu

ra
cy

algorithm: learning rate
AD-PSGD: 0.01
D-PSGD: 0.01
EL-oracle: 0.01
GL: 0.01
HGL: 0.01
HGL*: 0.005
Super GL: 0.01

Figure 5.2: Testing accuracy reached over the elapsed simulated time in image classification on
the CIFAR-10 data set with IID class distribution on 32 nodes. The error area marks the standard
deviation of the testing accuracy of different nodes. For each algorithm, we selected the best-
performing learning rate.

reach even higher targets if they were left to run for a longer amount of time. Interestingly, the time

to reach 75% target is approximately double the time to reach 70%, while the time to reach 80%

is approximately triple the time to reach 75% for all algorithms except Super GL. As we explained

earlier Super GL initially converges very fast, but then slows down due to over-fitting. As the only

algorithm, AD-PSGD manages to reach the 82% target.

We believe AD-PSGD performs the best due to the way it tackles node-performance hetero-

geneity. As we already mentioned, Super GL favours fast nodes. The fast nodes send more models

than the slow nodes, which will eventually lead to over-fitting. On the other hand, in GL every node

sends an equal amount of models, but the utilization of received models depends on the node’s

computing speed. This leads to a slower convergence as even the nodes who trained their model

only a few times have an equal chance of participating in other nodes’ models. AD-PSGD mixes

these two approaches thanks to its division of the nodes into active and passive groups. Similarly

to Super-GL, the model sending rate of an active node depends on its performance capabilities.

Assume a fast node is the active group. Thanks to the faster computing and transfer speeds, it will

send more models than the slow active nodes. This helps AD-PSGD converge faster because the

nodes with models trained more times have a higher sending rate. On the other, if a fast node is

29

AD-PSGD D-PSGD EL-oracle GL HGL HGL* Super GL
algorithm

70

75

80

82

ta
rg

et
 a

cc
ur

ac
y

5.6 19 17 8.3 11 8.3 5.6

11 33 33 14 22 17 8.3

31 44 69 47 33

72

Time to reach the target accuracy

10

20

30

40

50

60

70

ho
ur

s

Figure 5.3: Time required in hours to reach the mean target testing accuracy in image classification
on the CIFAR-10 data set with IID class distribution on 32 nodes. The missing values indicate that
the accuracy was not reached in the given time frame. For each combination of algorithm and target,
we selected the best-performing learning rate.

passive, it will spread its model at an equal rate to the other passive nodes. A passive node sends

its model to another node only when it receives a model and the probability of any passive node

receiving a model is equal for all passive nodes. Unlike in Super GL, a passive node’s sending rate is

not dependent on its performance capabilities. This helps to limit the effect of over-fitting due to

the fast nodes spreading more models while keeping the benefit of a faster convergence.

We can see the model utilization heatmap of AD-PSGD in Figure 5.11. We can observe multiple

patterns. Firstly, the heatmap is reflected along the x = y axis (note that the y axis goes from top to

bottom). This is caused by the passive nodes only sending their models as a reply to the received

one. Secondly, we see that not all nodes communicate with all the other nodes. In AD-PSGD, only

communication between an active and passive node is possible. Lastly, we can observe that some

nodes have a vertical pattern but others have a horizontal one. The type of the pattern depends on

whether a node is active or passive. Active ones have a horizontal pattern because they send at a

rate, which depends on their computing and network speeds, similar to Super GL. Passive nodes

have a vertical pattern - they receive at an equal rate no matter their performance.

Although our primary objective is to study the algorithms’ performance given the available

resources, we also examine the efficiency in resource utilization. In Figure 5.4 we see the testing

accuracy over the computation and communication cost. Observing the computing efficiency

curves, perhaps the most surprising result is that the synchronous algorithms are less efficient,

despite computing for roughly only 30% of the total time. The computing efficiency curve of AD-

30

0 20 40 60 80
computing hours

45

50

55

60

65

70

75

80

ac
cu

ra
cy

0 5 10 15 20
communication volume in GB

45

50

55

60

65

70

75

80

ac
cu

ra
cy

algorithm: learning rate
AD-PSGD: 0.01
D-PSGD: 0.01
EL-oracle: 0.01
GL: 0.01
HGL: 0.01
HGL*: 0.005
Super GL: 0.01

Figure 5.4: In the left plot, there is testing accuracy reached over the hours spent computing In the
right plot, there is testing accuracy over the communication volume in GB. The plots are the result
of image classification on the CIFAR-10 data set with IID class distribution on 32 nodes. The error
area marks the standard deviation of the testing accuracy of different nodes. For each algorithm, we
selected the best-performing learning rate.

PSGD shows not only that it is the most efficient but also that it computes only for approximately

85% of the time. Other asynchronous algorithms compute at all times. This makes the performance

results of AD-PSGD even more impressive.

Observing the communication efficiency curves we notice that GL is very inefficient. As we

mentioned earlier, this is caused by our tuning of the hyperparameter α to the smallest value the

network could handle. This leads to higher performance, which we primarily optimized, but at the

cost of heavy communication. This time we expect the synchronous algorithm to be less efficient

because a node sends its model to multiple other nodes in each round. In this metric, AD-PSGD is

again the most efficient algorithm.

5.4 Image classification on non-IID CIFAR-10

The setting of the non-IID experiment is identical to the IID version, except for the data distribution.

We describe the data distribution in section 5.2.

In Figure 5.5, we observe similar trends compared to the IID setting. Super GL performs the

best early on but is eventually overtaken by AD-PSGD, which achieves the highest testing accuracy.

Secondly, again the synchronous algorithms perform the worst. We can justify these claims with

the same reasoning as in the case of IID distribution. GL also perform similarly relative to the other

algorithms.

31

0 10 20 30 40 50 60 70 80
hours

20

30

40

50

60

ac
cu

ra
cy

algorithm: learning rate
AD-PSGD: 0.005
D-PSGD: 0.005
EL-oracle: 0.005
GL: 0.05
HGL: 0.005
HGL*: 0.01
Super GL: 0.01

Figure 5.5: Testing accuracy reached over the elapsed simulated time in image classification on the
CIFAR-10 data set with non-IID data distribution on 32 nodes. The error area marks the standard
deviation of the testing accuracy of different nodes. For each algorithm, we selected the best-
performing learning rate.

However, with non-IID data distribution, the models of different nodes are significantly different.

This is shown by the large error bars in achieved testing accuracy. Furthermore, the convergence is

less stable and the testing accuracy reached is much smaller. There are frequent observable peaks

and floors in the testing accuracy curves for all the algorithms.

We use a similar target scheme as in the previous section to evaluate the algorithms’ perfor-

mance with many learning rates in a single plot. However, we use smaller targets reflective of the

performance in the non-IID case. The results can be seen in Figure 5.6. Firstly, we notice improved

performance of EL-Oracle compared to DP-SGD. It indicates that changing the topology every round

pays off in the case of non-IID data distribution. The reason is that different nodes not only have dif-

ferent data but also quite different models. We can see the effect in more detail in Figure 5.11. A node

in El-Oracle receives models from other nodes at an equal rate but in D-PSGD it communicates only

with its neighbours. Furthermore, based on this metric, AD-PSGD and Super GL perform similarly

for targets smaller or equal to 60%, but Super-GL cannot reach higher targets due to over-fitting.

AD-PSGD, as the only algorithm, achieves a 65% target. However, in Figure 5.5, AD-PSGD did not

reach a testing accuracy of 65% at any time. Our explanation is two-fold. We use multiple seeds and

the convergence is not stable. Therefore, AD-PSGD never crossed the line of 65% because the two

different seeds did not reach it at the same time stamp. The first one reached it at some timestamp

32

AD-PSGD D-PSGD EL-oracle GL HGL HGL* Super GL
algorithm

45

50

55

60

65

ta
rg

et
 a

cc
ur

ac
y

11 75 47 11 31 17 5.6

14 72 17 50 28 11

19 31 42 19

42 61 42

72

Time to reach the target accuracy

10

20

30

40

50

60

70

ho
ur

s

Figure 5.6: Time required in hours to reach the mean target testing accuracy in image classification
on the CIFAR-10 data set with non-IID data distribution on 32 nodes. The missing values indicate
that the accuracy was not reached in the given time frame. For each combination of algorithm and
target, we selected the best-performing learning rate.

but then dropped down. The second reached it too, but at a different time. However, from the

perspective of the target metric, both seeds managed to reach the target testing accuracy.

There are computing and communication efficiency plots in Figure 5.7. Regarding efficiency,

the algorithms compare to each other similarly to the IID case. In communication efficiency, GL

managed to reach the efficiency of synchronous algorithms, but those three are still the least efficient.

Again, AD-PSGD is the most efficient in both computation and communication.

5.5 Recommendation on MovieLens

We use a similar setting and metrics to evaluate the algorithms on the recommendation task on the

MovieLens data set.

In Figure 5.8 there is an average testing loss reached over hours of simulated training for different

algorithms. When using the MovieLens data set, we plot the loss instead of accuracy, there is no

concept of distinct classes, unlike in the case of classification. We selected the best-performing

learning rates for each algorithm. However, it is even more difficult than in the previous experiments

to select a single best-performing learning rate representing each algorithm. Some learning rates

converge faster but do not reach as small loss, while others converge to a slightly smaller optimum,

but take significantly longer. For this reason, we will focus our discussion on the target metric, which

uses the best-performing learning rate for each target separately.

33

0 20 40 60 80
computing hours

20

30

40

50

60

ac
cu

ra
cy

0 5 10 15 20
communication volume in GB

20

30

40

50

60

ac
cu

ra
cy

algorithm: learning rate
AD-PSGD: 0.005
D-PSGD: 0.005
EL-oracle: 0.005
GL: 0.05
HGL: 0.005
HGL*: 0.01
Super GL: 0.01

Figure 5.7: In the left plot, there is testing accuracy reached over the hours spent computing In the
right plot, there is testing accuracy over the communication volume in GB. The plots are the result of
image classification on the CIFAR-10 data set with non-IID class distribution on 32 nodes. The error
area marks the standard deviation of the testing accuracy of different nodes. For each algorithm, we
selected the best-performing learning rate.

0 20 40 60 80 100 120 140
hours

1.0

1.5

2.0

2.5

3.0

3.5

lo
ss

algorithm: learning rate
AD-PSGD: 0.01
D-PSGD: 0.05
EL-oracle: 0.05
GL: 0.05
HGL: 0.05
Super GL: 0.01

Figure 5.8: Testing loss reached over the elapsed simulated time in a recommendation task on the
MovieLens data set on 32 nodes. The error area marks the standard deviation of the testing loss of
different nodes. For each algorithm, we selected the best-performing learning rate.

34

AD-PSGD D-PSGD EL-oracle GL HGL Super GL
algorithm

1.2

1.15

1.11

1.1

ta
rg

et
 lo

ss
5.56 13.9 13.9 8.33 8.33 8.33

13.9 19.4 16.7 11.1 11.1

52.8 33.3 30.6 103

125

Time to reach the target accuracy

20

40

60

80

100

120

ho
ur

s

Figure 5.9: Time required in hours to reach the mean target testing loss in a recommendation task on
the MovieLens data set on 32 nodes. The missing values indicate that the loss was not reached in the
given time frame. For each combination of algorithm and target, we selected the best-performing
learning rate.

In Figure 5.9 we see the times in hours required to reach the given mean target loss. The results

are quite different compared to image classification on the CIFAR-10 data set. In the previous

experiments, we saw that AD-PSGD and Super GL were two of the best-performing algorithms,

however, this is not the case for the recommendation on the MovieLens data set. They initially

converge fast but are not able to reach smaller testing loss targets. We attribute this to the sending rate

of the fast nodes, who in the early stages possess better models and help speed up the convergence.

However, in the MovieLens experiments, it is easier for all the algorithms to converge to a good

solution. Therefore the benefit of a higher sending rate of fast nodes is unneeded and only results in

eventual over-fitting.

In contrast to AD-PSGD and Super GL, the synchronous algorithms D-PSGD and EL-Oracle

converge slower but can reach better targets. Similarly to the classification on the non-IID CIFAR-10

date set, EL-Oracle converges faster than D-PSGD. The best-performing algorithm is GL, which

can reach the solution equivalent in testing loss to the synchronous algorithms but at a faster pace.

Thanks to a high computing utilization, it is faster than the synchronous algorithms but at the same

does not over-fit as other asynchronous algorithms due to its equal sending rate.

There are efficiency metrics in Figure 5.10. In terms of computing efficiency, GL and the syn-

chronous algorithms are the most efficient. Super GL and AD-PSGD are the least efficient. They

compute for the entire duration but do not reach a good solution. Synchronous algorithms are also

the most efficient in communication. As we mentioned earlier, GL is not as efficient in communica-

tion due to its frequent model sending. However, its performance in this metric is not as bad as in

the case of the image classification experiments on CIFAR-10.

35

0 20 40 60 80 100 120 140
computing hours

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

lo
ss

0 5 10 15 20
communication volume in GB

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

lo
ss

algorithm: learning rate
AD-PSGD: 0.01
D-PSGD: 0.05
EL-oracle: 0.05
GL: 0.05
HGL: 0.05
Super GL: 0.01

Figure 5.10: In the left plot, there is testing loss reached over the hours spent computing In the
right plot, there is testing loss over the communication volume in GB. The plots are the result of a
recommendation task on the MovieLens data set on 32 nodes. The error area marks the standard
deviation of the testing loss of different nodes. For each algorithm, we selected the best-performing
learning rate.

5.6 Discussion

We have seen the evaluation of the performance and efficiency of the DL algorithms in three different

scenarios. Overall, no algorithm is the best in every setting. Depending on the task, different

algorithms perform better than others.

In image classification on both CIFAR-10 data distributions, the best performer is AD-PSGD. It

reaches the highest mean testing accuracy and is the most efficient in both efficiency metrics. We

attribute this to the split of nodes into two groups. The active fast nodes help the model to converge

faster, while the fast passive nodes are curtailed to limit over-fitting compared to Super GL. However,

its performance is not as great in the recommendation task on the MovieLens data set, where it is

easier for the models to converge and other nodes do not need help from the fast-sending nodes.

In the MovieLens recommendation, the best performer is GL. It reaches the smallest testing

loss target in the shortest amount of time. It achieves almost full computing utilization, while not

over-fitting as other asynchronous algorithms. However, because of the small value we set for the

hyperparameter α, the communication is more costly compared to the other algorithms. With a

higher value of α it would be more communication-efficient but at the cost of slower convergence.

Lastly, we have shown that asynchrony is useful in scenarios of nodes with heterogeneous

performance. In such a scenario, asynchronous algorithms can achieve much higher resource

utilization. GL achieves better performance in all three experiments than both D-PSGD and EL-

36

Oracle. Even though GL results in a higher communication volume than the synchronous algorithms,

the burden is manageable for the nodes’ networks in our experiments.

37

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

AD-PSGD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

D-PSGD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

EL-oracle

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

GL

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

HGL

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Super GL

102

103

102

103

102

103

102

103

nu
m

be
r o

f a
gg

re
ga

tio
ns

102

103

102

103

to

fro
m

Figure 5.11: Heatmaps showing the number of models utilized from other nodes in the CIFAR-10
experiment.

38

Chapter 6

Heterogeneous Gossip Learning

In this chapter, we introduce a new asynchronous DL algorithm Heterogeneous Gossip Learning

(HGL). The idea to create a new algorithm came to our minds when we were examining the behaviour

of the other DL algorithms in the presence of nodes of heterogeneous performance. We are going to

state our motivation behind the algorithm, then present the algorithm itself and at last evaluate it.

6.1 Motivation

We set our goal to design an algorithm which would perform great in a setting with nodes of highly

varied performance and non-IID data. We want all nodes to compute as often as possible, therefore

we choose an asynchronous design. However, at the same time, we would like to avoid over-

fitting coming from the side of faster nodes. In a way, GL satisfies these design goals, however, it

suffers from a different problem. There is a hyperparameter α, which determines how often a node

shares its model. If α is relatively small, there will be high computing utilization, but also a high

communication volume. This is not suitable for a setting with slow networks. On the other hand, if

we set α to a relatively large value, the computing utilization will drop significantly. Therefore, we

would like to design an algorithm that behaves similarly to GL, but has no hyperparameter and has

a communication cost in line with the other algorithms.

6.2 Algorithm

Based on our design goals we came up with the following algorithm that can be seen in Figure 6.1.

First of all, we use a similar main loop to Super GL. All nodes compute at all times. Each node has a

queue where it puts the models waiting to be aggregated. In this way, the received models cannot

39

Algorithm 7: HGL on ith active node

Input: initial model xi , local data set ξi , learning rate γ, an empty queue qi , set of
computing speeds of different nodes S, where s j is a training speed of j

1 Run Disseminate() in a new thread;
2 repeat
3 Sample a batch ξ̂i from ξi ;

4 Compute the gradient gi =∇F (xi , ξ̂i);
5 Update the model xi = xi −γ · gi ;
6 Aggregate xi with all models in the queue qi ;
7 until the running time elapses;

8 Procedure Disseminate():
9 Initialize distribution σi , such that the probability of choosing node j is

proportional to its speed p j = s j∑
s∈S\{si } ;

10 Sample a node j from the distribution σi ;
11 Send xi to node j ;
12 Wait mean(S \ {si }) seconds;

13 Procedure OnReceiveModel(x j):
14 put x j into the queue qi ;

Figure 6.1: Heterogeneous Gossip Learning Algorithm

be overwritten if the node is not yet ready to aggregate, unlike in GL. However, compared to Super

GL, the sending of models is not handled in the main loop, but in a separate thread. We made this

change because the connection of computing speed with the sending rate is the main reason behind

the over-fitting of Super GL.

With model sending, we employ a similar strategy to GL with two changes. Firstly, each node

sends the model to others at an equal rate but the receiving node is not sampled uniformly. Instead,

the sampling distribution is based on the computing speed of the receiver, favouring the faster

nodes. Therefore, the faster nodes are more likely to be sampled and receive the model. Our idea

is that if faster nodes are left unconstrained, in the same amount of time they will compute many

more training steps than the slow nodes and over-fit their model to their data. If they receive

more models, they will aggregate them into their model, limiting the impact of over-fitting. On the

other hand, the slow nodes will receive on average a smaller amount of models. Their models will

aggregate with other models less often, meaning they can converge towards the model partly based

on their data, instead of being forced to another direction by aggregating an influx of other models.

However, this will result in slower convergence of the slow nodes. Secondly, we remove difficult-to-

set hyperparameter α and instead use a mean training time as a waiting period in sending. These

two changes mean that all nodes will on average receive a single model per training step. In this way,

40

every node will have an equal chance to contribute to the models of others.

To implement HGL we need to know the computing speeds of all the participating nodes. In

our implementation, we assume an oracle with this knowledge. In practice, when the oracle is not

available, the nodes can share their computing speeds with other nodes, e.g. as meta-data when

sharing models. An advantage of this approach is that if the node’s computing speed changes during

the execution, e.g. the mobile device’s user starts engaging in another activity, the algorithm can

adapt to the new setting on the go.

6.3 Evaluation

We evaluate HGL in the same three scenarios as other DL algorithms in chapter 5. HGL does not

perform very well in image classification on the CIFAR-10 data set. As we have explained earlier,

these two experiments favour the algorithms that can converge faster using the higher sending rate

of the fast nodes. To mitigate this issue we develop an alternative version of the algorithm - HGL*,

where the receiving node is uniformly sampled. This brought some performance benefits. HGL*

performs similarly to GL in the case of IID data distribution, as seen in Figure 5.3. However, in the

non-IID data distribution, both HGL and HGL* lag behind all other asynchronous algorithms, but

they still perform better than the synchronous algorithms, as seen in Figure 5.6.

On the other hand, HGL performs very well in the recommendation task on the MovieLens data

set. In fact, it is the best-performing algorithm. As the only algorithm, it could reach the smallest

loss target (see Figure 5.9), but only after a significant amount of time. Furthermore, it is the most

efficient algorithm in communication and one of the most efficient in computation cost, as shown

by Figure 5.10.

The algorithm fulfils our expectation of performing similarly to GL. For the tasks where GL does

not perform that well, such as in image classification on CIFAR-10, HGL performs even worse. On

the other hand, in the recommendation task on the MovieLens data set where GL shines, HGL can

converge to the models with an even smaller testing loss. In every case, it removes the need to tune

the hyperparameter and HGL is much more communication-efficient than GL.

41

Chapter 7

Conclusion and Future Work

We have evaluated different decentralized learning algorithms in a realistic heterogeneous setting in

three experiments on two data sets. We have shown that in the classification task on the CIFAR-10

data set, AD-PSGD reaches the highest testing accuracy in the given time frame in both IID and

non-IID settings, while being the most efficient in both computation and communication. We have

attributed this to its distribution of the nodes into two groups, which allows for fast convergence

and avoids significant over-fitting. On the other hand, in the recommendation task on the Movie-

Lens data set, Gossip Learning has shown the best performance from the existing algorithms. It

reaches the same mean target testing loss as the synchronous algorithms at the cost of significant

communication volume. We conclude that there is no one-fit-all algorithm. In different scenarios,

different algorithms perform the best. However, we have shown the benefits of asynchrony in the

presence of nodes of varied computing and networking performance. In every examined scenario

there is an asynchronous algorithm, namely Gossip Learning, that over-performs the synchronous

ones.

Furthermore, we have introduced a new decentralized learning algorithm HGL, which considers

the differences in computing speeds of the participating nodes. The algorithm performs similarly to

Gossip Learning while being more communication-efficient and removing the hyperparameter of

GL. In the recommendation task on the MovieLens data set, HGL reaches the smallest testing loss,

while being efficient in both computation and communication.

7.1 Future Work

There is a plethora of possibilities for future work. The first option is a direct extension of this work,

evaluating scenarios with a greater number of participating nodes in more types of ML tasks on

different data sets. This would provide an even more comprehensive evaluation of the performance

42

of decentralized learning algorithms. Another option is to include different types of scenarios, e.g.

a node or network failure during the run or the presence of extremely slow nodes. The simulator

currently does not support all of these scenarios, which would have to be implemented.

In the case of AD-PSGD, in the presence of heterogeneous nodes, on average there is the same

proportion of the fast computing nodes in both active and passive groups. Using this fact we

explained its great performance in the image classification on the CIFAR-10 data set. It would be

interesting to see how the node assignment to the two groups impacts the performance.

Regarding HGL, theoretical justification, such as a convergence proof, can be shown. Secondly,

the algorithm could also be expanded to depend on nodes’ network capabilities. Based on the

traces we used, the main limit factor was the computing speed, therefore we did not include it in the

algorithm.

Lastly, there are possible improvements in the simulator itself. Although we have implemented

computation of tasks in batches, our implementation is not the most memory efficient and not

bug-free when multiple brokers are employed. The simulator currently struggles with network

congestion, causing the simulation to become very slow. Although this was not a limit factor in

our scenarios, the algorithms in the bandwidth scheduler should be improved to better deal with a

high volume of traffic. Furthermore, we suggest splitting the simulation class into two classes, one

responsible for simulation and one for coordination, to increase the clarity of each class. Another

useful feature would be to add an option to send partial models.

43

Bibliography

[1] Martijn De Vos. Decentralized Learning Simulator. https://github.com/sacs-epfl/
decentralized-learning-simulator. 2024.

[2] Martijn De Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-Marie Kermarrec, Rafael Pires,

and Rishi Sharma. “Epidemic Learning: Boosting Decentralized Learning with Randomized

Communication”. In: Advances in Neural Information Processing Systems 36 (2024).

[3] Akash Dhasade, Anne-Marie Kermarrec, Rafael Pires, Rishi Sharma, and Milos Vujasinovic.

“Decentralized learning made easy with DecentralizePy”. In: Proceedings of the 3rd Workshop

on Machine Learning and Systems. 2023, pp. 34–41.

[4] F Maxwell Harper and Joseph A Konstan. “The movielens datasets: History and context”. In:

Acm transactions on interactive intelligent systems (tiis) 5.4 (2015), pp. 1–19.

[5] István Hegedűs, Gábor Danner, and Márk Jelasity. “Decentralized learning works: An em-

pirical comparison of gossip learning and federated learning”. In: Journal of Parallel and

Distributed Computing 148 (2021), pp. 109–124.

[6] István Hegedűs, Gábor Danner, and Márk Jelasity. “Gossip learning as a decentralized alterna-

tive to federated learning”. In: Distributed Applications and Interoperable Systems: 19th IFIP

WG 6.1 International Conference, DAIS 2019, Held as Part of the 14th International Federated

Conference on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark,

June 17–21, 2019, Proceedings 19. Springer. 2019, pp. 74–90.

[7] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. “The non-iid data quag-

mire of decentralized machine learning”. In: International Conference on Machine Learning.

PMLR. 2020, pp. 4387–4398.

[8] Junxian Huang, Cheng Chen, Yutong Pei, Zhaoguang Wang, Zhiyun Qian, Feng Qian, Birjodh

Tiwana, Qiang Xu, Z Mao, Ming Zhang, et al. “Mobiperf: Mobile network measurement

system”. In: Technical Report. University of Michigan and Microsoft Research (2011).

[9] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix Baum, Max Wu,

Lirong Xu, and Luc Van Gool. “Ai benchmark: All about deep learning on smartphones in

2019”. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

IEEE. 2019, pp. 3617–3635.

44

https://github.com/sacs-epfl/decentralized-learning-simulator
https://github.com/sacs-epfl/decentralized-learning-simulator

[10] Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. “The CIFAR-10 dataset”. In: online:

http://www.cs.toronto.edu/ kriz/cifar.html 55.5 (2014), p. 2.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification with deep

convolutional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84–90.

[12] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha,

and Mosharaf Chowdhury. “Fedscale: Benchmarking model and system performance of

federated learning at scale”. In: International conference on machine learning. PMLR. 2022,

pp. 11814–11827.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning

applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[14] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. “Can decentral-

ized algorithms outperform centralized algorithms? a case study for decentralized parallel

stochastic gradient descent”. In: Advances in neural information processing systems 30 (2017).

[15] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. “Asynchronous decentralized parallel stochas-

tic gradient descent”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 3043–3052.

[16] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

“Communication-efficient learning of deep networks from decentralized data”. In: Artificial

intelligence and statistics. PMLR. 2017, pp. 1273–1282.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative

style, high-performance deep learning library”. In: Advances in neural information processing

systems 32 (2019).

[18] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. “Llama 2: Open

foundation and fine-tuned chat models”. In: arXiv preprint arXiv:2307.09288 (2023).

[19] Katerina Vitsaxaki. Asynchronous algorithms for Decentralized Learning. https://github.
com/sacs-epfl/async-dl. 2023.

[20] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the European conference

on computer vision (ECCV). 2018, pp. 3–19.

[21] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep leakage from gradients”. In: Advances in neural

information processing systems 32 (2019).

45

https://github.com/sacs-epfl/async-dl
https://github.com/sacs-epfl/async-dl

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Decentralized Learning

	Simulator
	Overview
	Simulation
	Events
	Tasks
	Bandwidth scheduler

	Execution
	Coordinator
	Brokers

	Traces
	Contributions
	Features
	Bug fixes

	Algorithms
	Decentralized Parallel Stochastic Gradient Descent
	Epidemic Learning
	Asynchronous Decentralized Parallel Stochastic Gradient Descent
	Gossip Learning
	Super Gossip Learning

	Evaluation
	Hardware
	Experiment design
	Image classification on IID CIFAR-10
	Image classification on non-IID CIFAR-10
	Recommendation on MovieLens
	Discussion

	Heterogeneous Gossip Learning
	Motivation
	Algorithm
	Evaluation

	Conclusion and Future Work
	Future Work

	Bibliography

