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Abstract

Decentralized learning (DL) is an emerging approach in which nodes, each possessing unique data,

collaboratively train models without coordination by a central server. This approach is relevant in

diverse application domains, where datasets across nodes may follow similar or distinct distributions,

necessitating personalized models to address the varying needs of these communities. These varying

data distributions can lead to the formation of clusters of nodes with similar data patterns within the

network. Existing DL approaches have a very limited focus on enhancing the fairness of the different

clusters that emerge in the population. The models often display discrepancies in performance

between clusters, harming the minority groups with fewer nodes. To address this, we introduce

FAir Clustered And Decentralized lEarning (FA C A D E), a personalized learning algorithm specifically

designed for fair model training with clustered data. We consider a setting where clusters of nodes

in the network have similar learning objectives, but individuals a-priori do not know the identity of

the cluster they belong to. FA C A D E (1) assigns nodes to their appropriate cluster over time, and (2)

have nodes train a specialized model for each cluster in a decentralized manner. Unlike other DL

approaches, each node in FA C A D E maintains one core model and several personalized model heads,

forming multiple distinct models. In each round, a node trains one of these models and shares it

with randomly selected neighbors. In the end, each learned head becomes specialized at treating

data from the distribution of a specific cluster. In this work, we implement FA C A D E in a realistic

environment and compare it against the three state-of-the-art baselines. We also introduce a new

metric, which balances achieving high accuracy with minimizing disparities between groups. Our

experimental results highlight our approach’s superiority in achieving model accuracy and fairness,

ensuring that every node has a model tailored for the data distribution of its cluster.
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Chapter 1

Introduction

Decentralized learning (DL) is a collaborative learning approach that allows nodes to train a global

machine learning (ML) model without sharing their private datasets with other entities [31]. Ac-

cording to a given communication topology, the nodes in DL directly communicate their models

with other nodes, called neighbors (i.e., the other users involved). In each round, nodes locally train

their model with their private datasets. Updated local models are exchanged with neighbors in

the communication graph and aggregated on each node. The aggregated model is then used as

the starting point for the next round, and the process repeats until model convergence is reached.

Popular DL algorithms include Decentralized parallel stochastic gradient descent (D-PSGD) [31],

Gossip learning (GL) [42], and Epidemic learning (EL) [9]. Furthermore, DL has been employed in

various application domains such as healthcare [24, 34, 50] and Internet-of-Things (IoT) [14, 32].

A particular challenge in DL is that different nodes are likely to own data with differing char-

acteristics [4]. It has been shown that this data heterogeneity can significantly slow down model

convergence and attainable accuracy of DL [19, 22, 36, 48, 57].

This non-uniformity can be present at different levels [27, 36]: nodes might have different

quantities of data, as well as different labels or features distributions. Feature heterogeneity is

particularly present in healthcare, as different institutions have different data available, depending

on acquisition differences, type of the medical device, or local demographics [41, 45]. In this work,

we will only consider scenarios with nodes having heterogeneous feature distributions.

When there are similarities between nodes, a clustered distribution emerges, where data charac-

teristics of different nodes form distinct groups. This means that the network can be clustered into

subgroups containing nodes with similar data distributions [39, 48]. This setup commonly occurs in

real-world applications, such as recommendation systems [46] and medical datasets [20].

Standard DL approaches, such as D-PSGD or EL, optimize the model towards the average data

distribution. This negatively affects the fairness of the trained model in heterogeneous settings,
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Figure 1.1: Model trained with D-PSGD results in lower accuracy for the 2 nodes in the minority
cluster.

especially when dealing with minority groups in the data. Furthermore, as decision systems gain

more trust, it has been shown that many of them have biases based on gender or race that affect

minority groups [2], highlighting the importance of measuring fairness and addressing this problem.

For instance, consider a network of hospitals aiming to develop a powerful model for tumor

detection through decentralized learning. If there are two brands of scanners in the market, each

hospital would possess and use either brand A or B. Assuming slight differences in the acquisition

process, the resulting feature distributions of the scans will differ between hospitals, creating data

with clustered feature distribution skew. For example, features such as the contrast between the

tumor and surrounding tissue or the level of image sharpness might vary significantly between the

brands of scanners. Consider a scenario where scanners from brand A are much more widespread

than those from brand B. In this context, a consensus-based model like D-PSGD would exhibit a

strong bias towards the scan distribution of brand A. Ensuring fairness in such situations is essential,

as having data with different a feature distribution should not negatively impact the prediction

quality for nodes having equally contributed to the learning process.

To illustrate this example further, we conducted a small experiment where we trained a simple

image classifier model (LeNet [26]) using D-PSGD in a 32-node network. We created two clusters:

one with 30 nodes (the majority cluster) and one with 2 nodes (the minority cluster). We used the

CIFAR10 dataset [25] for both clusters, with the only difference being that the images were turned
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upside down for the two minority nodes, creating a feature distribution shift. Figure 1.1 shows the

averaged test accuracy for nodes in the minority and majority clusters. We observe a significant

accuracy gap of more than 30% between the two clusters, demonstrating that the model produced

by D-PSGD is less suitable for nodes in the minority cluster. Moreover, this gap is often hidden in

the results when the global average is reported, as this metric is biased towards the majority due to

their larger representation.

This example highlights the need for personalized models to ensure fairness for minority groups.

In the context of DL, personalization techniques adjust the trained model to the unique characteris-

tics of each node’s dataset, promoting fair and equitable treatment across different communities.

Existing approaches include learnable communication graph weights [28, 55], personalized model

masks [8], or variations in sharing procedures [53]. However, many of these methods focus on

individual nodes and do not leverage data similarity when handling networks with clustered non

independent and identically distributed (non-IID) data.

In this paper, we present FA C A D E1 (FAir Clustered and Decentralized lEarning), a personalized

learning algorithm designed specifically for clustered non-IID data. Our approach ensures fair

predictions across all nodes after model training, effectively managing features from heterogeneous

data sources.

The main idea behind FA C A D E is to integrate a single model core with multiple specialized

model heads at each node in the network. The shared core is trained collaboratively among all nodes

using a method similar to D-PSGD, ensuring a strong and generalized representation of the overall

data. Each node also maintains several heads, which can be independently trained and shared to

address specific data characteristics. We implemented a mechanism that encourages nodes to train

and share the head most suitable for their data distribution. As the training progresses, nodes with

similar data distributions will converge towards the same head, allowing it to specialize in their

particular type of data. This process ensures that each head becomes highly proficient in handling a

specific distribution, resulting in more accurate and fair predictions across the network. Moreover,

the clustering is implicit, as each node simply chooses the model that suits it best and does not need

to know the cluster identity of the other nodes.

In this work, we also introduce a metric designed to quantify the fairness of algorithms by

considering their overall performance, an aspect often neglected in current fairness measurements.

In summary, the contributions of our work are as follows:

1. We introduce a novel DL algorithm, named FA C A D E, designed to address the clustered non-

IID data issue in a personalized and decentralized manner (Chapter 3). It specifically ensures

1We chose for the name FA C A D E because it represents the algorithm’s ability to present a fair learning process on the
outside, while managing the diverse data distributions internally, ensuring fair treatment for all nodes.
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fairness by training a personalized model for each cluster.

2. We propose a new metric for measuring fairness, the Fair Accuracy (Chapter 3). Unlike

traditional metrics, Fair Accuracy evaluates models based on their performance and fairness,

ensuring that models achieve good results while minimizing disparities between groups.

3. Finally, we implement FA C A D E and provide a comprehensive analysis of its accuracy and

fairness, comparing it against various baselines (Chapter 4). Our results demonstrate that our

approach results in high model utility for all clusters and excels at maintaining fairness, even

for highly imbalanced scenarios where one group significantly outweighs the other.
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Chapter 2

Preliminaries and related works

2.1 Problem Formulation

We consider a set N of n nodes that can communicate to participate in the collaborative training of a

personalized model. In particular, for i = 1, . . . ,n, let Ni ∈N denote the i -th node. Correspondingly,

let Zi denote the local dataset of Ni for i ∈ [n].

We assume that non independent and identically distributed (non-IID) data locally held by the

nodes in N are partitioned into k different distributions, D1, ...,Dk and let us denote the set of

nodes whose data follow distribution D j to be in set S j for j = 1, . . . ,k. Thus, N is partitioned into k

disjoint clusters denoted by S1, ...,Sk such that S j = {Ni ∈N : Zi ∼D j } for every i ∈ [n] and j ∈ [k].

In this work, we consider a setting with two clusters, where one cluster typically outnumbers the

other, forming groups that represent the majority and the minority of the population. While our

study focuses on this two-cluster setup, the algorithm we propose is versatile and can be effectively

applied to configurations involving more than two clusters, as shown in Section 4.3. We experiment

with configurations where the majority-to-minority ratio varies from 1 to 15.

At the beginning of the training, each node is unaware of its cluster identity. For each node, we

assume |Zi | to be finite, with each sample in Zi drawn independently from the data distribution of

its respective cluster, i.e., z ∼D j ,∀z ∈ Zi if i ∈ S j . Each sample z consists of a label y and feature x.

Let L : Θ 7→ R≥0 be the loss function associated with a sample z where Θ ⊆ RP represents the

parameter space of the model we wish to train. Hence, the objective of the training process is to

minimize each cluster’s population error function:

F j (θ) = Ez∼D j [L (θ, z)] ∀ j ∈ [k] (2.1)
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In particular, we aim to find the optimal model for the j -th cluster θ∗j ∈Θ given by:

θ∗j = argminθ∈ΘF j (θ) ∀ j ∈ [k] (2.2)

In practice, having finite datasets for each node, we write L (θ j , Ẑi ) = 1
|Ẑi |

∑
z∈Ẑi

L (θ j , z) to

denote the empirical loss evaluated by node Ni using Ẑi ⊆ Zi for the model θ j , where Ẑi is a subset

of the data points held by Ni (e.g., the training dataset used by Ni ) for every i ∈ [n].

2.2 Decentralized learning

In environments where reliance on a trustworthy orchestrator is impractical, decentralized learning

(DL) [31] emerges as a viable alternative. Unlike traditional federated learning (FL) frameworks [40],

DL operates within a distributed architecture, allowing each node to collaborate with its neighbors

autonomously. This decentralized approach offers resilience against single points of failure and

features greater scalability.

One notable aspect of DL is its ability to converge toward a consensus model through iterative

peer-to-peer communication. In D-PSGD [31], a standard DL algorithm , each node Ni updates

its model by performing τ Stochastic gradient descent (SGD) updates, sampling batches from its

local dataset Zi . The model weights θ are then shared with its neighbors, as defined by the static

communication graph. Finally, each node aggregates the received models using a weighted average.

This procedure is repeated for T communication rounds until the model converges, indicating that

no further learning is occurring.

EL [9] follows a similar procedure, with the key difference being that the communication graph

dynamically evolves. New neighbors are sampled at each round, which improves performance and

convergence rates. We introduce EL to lay the groundwork for our approach, which also utilize

random communication.

2.3 Fairness

Group fairness was introduced to quantify inequality between two groups, the privileged group

and the unprivileged group [13]. As we want to quantify our algorithms’ effectiveness on a setup

with clusters of different sizes, the majority and minority, we will use two standard group fairness

metrics: demographic parity (DP) and equalized odds (EO).

Demographic parity (DP) ensures that the two groups have the same likelihood of receiving a

positive treatment, regardless of their demographic characteristics. In the following definitions, Y is
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the ground truth label, Ŷ the prediction, C the set of existing labels, and S the cluster membership.

S = 0 means that the node is part of the privileged group. In our case, it is the cluster with the

majority of nodes. DP is formally defined as follows:

P(Ŷ = y |S = 1) =P(Ŷ = y |S = 0) ∀y ∈C (2.3)

DP was initially utilized as a strict constraint. However, it is usually easier to measure fairness by

considering the absolute difference between the two groups,

|P(Ŷ = y |S = 1)−P(Ŷ = y |S = 0)| ∀y ∈C (2.4)

To assess the global DP over all classes y , the average is taken across all y ∈C .

Relaxation of this metric, equalized odds (EO), was later introduced [16]. Unlike DP, it allows Ŷ

to depend on S but only through the target variable Y . This encourages the use of features directly

related to Y and not to S. We directly formulate EO using the absolute difference.

|P(Ŷ = y |Y = y ,S = 1)−P(Ŷ = y |Y = y ,S = 0)| ∀y ∈C (2.5)

A third common fairness metric, equal opportunity [16], measures a similar concept but focuses

solely on the positive class (y = 1). This weaker formulation is essentially meaningful only for binary

classification cases and, therefore, will not be used in our study.

2.4 Personalized learning

Personalizing a model involves modifying it to better fit the data. This becomes necessary when

dealing with non-IID data, where personalization can maintain fairness and accuracy across various

subsets [27, 36, 49].

Personalization has initially been explored in FL, with early approaches maintaining one central

model and trying to find the best compromise between the nodes’ heterogeneous data distribu-

tions [23, 30, 37, 52].

With these approaches, the trade-off between global consensus and local personalization is

inevitable. Keeping this in mind, other techniques rely on personalization of the model at the node

level, with each node maintaining a personal model, in addition to training the central one [21,

29, 39, 56]. An interesting technique features nodes sharing only the core of their model, while the

personalized head is kept and learns to fit the local data. [5, 6, 15]. When the nodes’ data naturally

form clusters, certain FL techniques group the nodes accordingly before learning a separate model

for each of them [11, 35, 47]. Alternatively, some approaches prefer an iterative method, alternating

between clustering steps and training phases [15, 39].
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In DL, early work on personalized learning required the communication network to reflect

a notion of similarity between nodes [1, 51]. However, these approaches rely on having prior

knowledge of the network’s similarity matrix, which is typically not easily accessible. In DL, where

privacy is a big concern, the data needed to determine the similarity between nodes can’t typically

be shared. Latter methods propose to adopt a dynamic network to enhance personalization, with

learnable communication graphs [28, 55]. To reduce the communication cost, a method proposes to

sparsify the model weights [8], learning a personalised mask for each node. Building on FedRep [6],

DePRL features a shareable model core and a personalized local head for each node [53]. This

approach gives the best accuracy and is the current state of the art for personalized decentralized

learning for non-IID data.

However, many of these methods focus on personalization at the node level and fail to leverage

similarities when dealing with clustered data. Additionally, these algorithms often lack a fairness

analysis in the presence of minority groups within the data. To address these issues, we present a

new decentralized personalized algorithm.

13



Chapter 3

The F A C A D E Algorithm

In this section, we first introduce our algorithm by providing an overview of its design. We then

formally describe each step in detail, and conclude by discussing the importance of analyzing

fairness in the presence of data with skewed feature distribution.

3.1 Design

We now present the FA C A D E algorithm and formalize the actions that each node takes. We aim to

maintain the random communication procedure while achieving personalization without increasing

communication costs. Unlike most personalized decentralized methods [8, 28, 53, 55], our algorithm

maintains k models per node, one for each cluster. Specifically, each model is split into a core,

common to all models, and a personalized head. This means that each node stores k versions of the

same head with different parameters, as opposed to other DL methods that only keep one model in

memory.

To the best of our knowledge, IFCA [15] pioneered the concept of maintaining multiple models per

node to design a personalized federated learning framework. In contrast, we extend this notion to

the decentralized context and reduce the memory cost by only duplicating the heads. This design

choice was driven by the fact that, while the global task remains the same for all nodes, each cluster

presents slight differences. Therefore, learning a common core with all available data is ideal for

achieving the best data representation. The heads can then effectively capture the unique variations

within each cluster. Moreover, this design allows for varying the head size for a given model, with

a general rule that the greater the differences between clusters, the larger the head size should be

(hence, the smaller the common core).

As with many other clustering algorithms [38, 44], the number of clusters (k) is a hyperparameter

which should be estimated by the system designer beforehand. This value heavily depends on the

application domain and characteristics of individual datasets. We experimentally show in Section 4.3

14
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that our algorithm performs well even if this number is poorly estimated.

The full algorithm is detailed in algorithm 1 and illustrated in Figure 3.1. FA C A D E starts by

initializing k models for each node, where each model consists of a unique head h j and a common

core φ. For instance, the common core might consist of three convolutional layers, and each

head could be a different feed forward layer. We denote the j -th model of node Ni at the t-th

communication round as θ(t )
i , j . Formally, this model is the composition of the head and the core:

θ(t )
i , j = h(t )

i , j ◦φ(t )
i . Each node then selects one of the models, trains it, and shares it with its neighbors.

The choice is made by evaluating all models on the trainset and picking the one giving the smallest

loss (step 1 on figure 3.1, line 3 in algorithm 1). In practice, we discovered that evaluating each

model on a subset of the dataset, rather than the entire dataset, was enough to make the right

decision, speeding up the process. This chosen model is then trained with SGD for a few steps (step

2, line 4) before being broadcast to d selected neighbors (step 3, line 6). A node also receives trained

models from its neighbors and aggregates them (step 4, lines 7-11). The cores are all aggregated

together, while the heads are aggregated among models with the same index, i.e. for the node Ni ,

h(t+1)
i , j = 1

C j+1 (h(t )
i , j +

∑
Np∈V (t )

i
h(t )

p δp, j ) for j ∈ [k], with δp, j the Kronecker delta function that equals

1 if the node Np sent the model θ(t )
p, j this round, 0 otherwise. C j represents the count of heads of

index j received by all neighbors and h(t )
p the head sent by node Np . We use V (t )

i to refer to the set of

the d neighbors of node Ni , that have been randomly sampled at round t .

We adopt a dynamic topology approach, similar to that used in EL. First, it has been demon-

strated that altering random communication topologies leads to faster model convergence com-

pared to traditional DL approaches that maintain a static, fixed topology throughout training [9].

Second, in the context of FA C A D E, dynamic topologies also prevent nodes in a cluster from becom-

ing isolated due to initial neighbors from other clusters. By sampling random neighbors each round,

an isolated node will eventually exchange models with nodes that have similar data distributions

with a high probability.
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Algorithm 1: Fair, Clustered and Decentralized learning (FA C A D E)

Data: T ;τ;k;N ;L ; learning rate η; initialize θ(0)
i , j =φ(t )

i ◦h(t )
i , j ∀ j ∈ [k] and i ∈ [n]; datasets Ẑi ∀i ∈ [n]

(z ∼D j ,∀z ∈ Ẑi if i ∈ S j ); neighbors sets V (t )
i ∀i ∈ [n],∀t ∈ [T ]

1 for t = 0,1, ...,T −1 do
2 for node Ni ∈N in parallel do

3 record cluster identity estimation j (t )
i ← argmin j∈[k] L (θ(t )

i , j , Ẑi )

4 θ(t+1/2)

i , j (t )
i

← L O C A L _ T R A I N I N G(θ(t )

i , j (t )
i

, Ẑi )

// keep the other heads h(t+1/2)
i , j ← h(t )

i , j ∀ j ̸= j (t )
i

5 for neighbor Np ∈ V (t )
i do

6 Send to Np the cluster identity estimation j (t )
i and the trained model θ(t+1/2)

i , j (t )
i

7 Receive from Np its cluster identity estimation j (t )
p and trained model θ(t+1/2)

p = h(t+1/2)
p ◦φ(t+1/2)

p

8 update core φ(t+1)
i ← 1

|V (t )
i |+1

(φ(t+1/2)
i +∑

Np∈V (t )
i

φ(t+1/2)
p )

9 for head j = 1, ...,k do
10 count of head j received C j ←

∑
Np∈V (t )

i
δ

j , j (t )
p

11 update head h(t+1)
i , j ← 1

C j +1 (h(t+1/2)
i , j +∑

Np∈V (t )
i

h(t+1/2)
p δ

j , j (t )
p

)

12 L O C A L _ T R A I N I N G(θ, Ẑi ):
13 for e = 0, ...,τ−1 do
14 (mini-batched)-stochastic gradient descent θ+ ← θ−η∇̂L (θ, Ẑi )

15 return θ+

The essence of FA C A D E is that no explicit clustering is required: nodes are not assigned to

specific clusters. Instead, nodes that select the same model can be viewed as implicitly clustered.

This allows the clustering to be dynamically evolving and nodes to detect similarities with others as

the models get more accurate. What happens is that nodes simply exchange models and aggregate

them according to their respective indices. If these models share the same index, the nodes likely

belong to the same community, making the aggregation beneficial. If the models do not share the

same index, they are not aggregated together, ensuring that the best model of the node remains

unaffected by the incoming model.

3.2 F A C A D E and fairness

It is worth mentioning that FA C A D E was specifically designed to ensure fairness in networks where

nodes hold non-IID data clustered across different distributions. After training, each head specializes

in treating features from a specific cluster, ensuring that each node benefits from a model tailored to

its unique data characteristics.

However, when dealing with other non-IID data scenarios, such as label-skewed distributions [27,

36], the concept of fairness as introduced in section 2.3 does not apply. To illustrate this, consider
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a label-skewed distribution with data labeled as A or B. In a cluster where most data is labeled A

and only a few instances are labeled B, the model should perform better on the majority label A.

Conversely, in another cluster where label B is more common, the model should focus on label B.

Enforcing fairness in such scenarios would require models to perform equally well on each label in

both clusters, which is undesirable as it would decrease the accuracy for both groups and ultimately

harm the performance for every node.

FA C A D E is a personalized learning technique that leverages cluster differences to enhance the

overall performance. It promotes fairness when diversity lies in features by identifying these differ-

ences and training personalized models. When feature distributions vary but labels are consistent,

the fairness metrics from formulas 2.4 and 2.5 can be effectively applied.

3.3 Fair accuracy

While analyzing the fairness of our algorithm, we observed that the fairness metrics introduced

in section 2.3 were only measuring if a quantity was the same across privileged and unprivileged

groups. This lack of consideration for performance is problematic, as a model that performs equally

poorly on both groups would still receive a favorable fairness measurement. To illustrate, a random

model achieving 10% accuracy on a ten-class dataset would exhibit the highest possible fairness

under these metrics, simply because there would be no performance disparity between the groups.

Consequently, these fairness metrics alone are inadequate for evaluating the overall quality and

effectiveness of a model.

Building on the idea that a fairness metric should also reflect the overall algorithm performance,

we introduce the fair accuracy. This metric balances the goal of achieving high overall performance

while minimizing the performance difference between groups.

A C C F A I R = α

|C |
∑
c∈C

A C Cc + (1−α)(1− (max
c∈C

A C Cc −min
c∈C

A C Cc)) (3.1)

where C is the set of all data clusters in the network.

The goal of this metric is to ensure that the model performs well across all clusters, like standard

accuracy, while penalizing disparities between the most and least accurate groups. Fair accuracy

reaches its maximum value of 1 when the accuracy for both the majority and minority groups is

perfect.

In this paper, we focus on an environment where two data distributions prevail in the network.

Specifically, we consider the case where the nodes form a majority and a minority group concerning

their data distributions. In this two-group context, the Fair Accuracy metric simplifies to:

A C C F A I R =α
A C Cmaj + A C Cmin

2
+ (1−α)(1−|A C Cmaj − A C Cmin|) (3.2)
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where A C Cmaj and A C Cmin represent the accuracy in the majority and minority groups, respectively.

In our experiments, we used α= 2/3, as it slightly favors well-performing models while still giving

significant weight to penalizing large discrepancies. We chose not to use a more intuitive value

like α= 1/2 because we wanted to more strongly penalize models that do not leverage the cluster

structure to gain insights about the data.
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Chapter 4

Evaluation

We implemented FA C A D E in Python and we now conduct an extensive experimental evaluation of it

to demonstrate its efficiency against state-of-the-art personalized DL algorithms. Our results show

that FA C A D E not only outperforms other approaches in terms of fairness but also achieves better

accuracy.

Our experiments focus on supervised image classification as a universal task setting. However,

FA C A D E is model-agnostic, allowing it to adapt to any model choice. We implemented our algorithm

and the baselines using the DecentralizePy framework [12], which supports realistic, real-time

threads for each node.

To encourage reproducibility, our code is available on our GitHub repository 1.

4.1 Experimental setup

4.1.1 Datasets and model:

We conduct our experiments on Cifar-10 [25], Flickr-Mammals [19] and Imagenette [18], a subset of

ten easy-to-classify classes from Imagenet [10].

To create an environment with clustered non-IID data, we chose to partition those real-world

datasets into several smaller subsets following standard practice [27, 40]. The initial split of the

dataset will determine the size of each cluster. As explained in section 3.2, the heterogeneity must

be reflected in the feature composition of each cluster. Importantly, this split must ensure that the

label distribution remains consistent across clusters, avoiding strategies like Dirichlet distribution

split or k-shards method, which might alter this uniformity.

1https://github.com/TicaGit/decentralizepy
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We then randomly apply different rotations to the images of each cluster [15, 33], ensuring that no

two clusters share the same rotation. This approach maintains the same label distribution across

clusters while introducing recognizable differences in features. In this scenario, referred to as feature

distribution skew, the distribution of image features, P(xi ), varies among clusters, whereas the

distribution of labels given the features, P(yi | xi ), remains consistent across them [36], [27].

To further partition the data within the clsuter, we use a standard split, randomly allocating the same

amount of data to each node. Alternative partitioning strategies can be employed if one wishes to

introduce additional layers of heterogeneity at the node level. Additionally, all nodes within the same

cluster share a common test set with the same rotation as their training set, ensuring consistency in

evaluation.

The model we use to experiment on Cifar-10 is a slightly modified version of LeNet [26]. It has

about 120k parameters, consisting of three convolution layers followed by one feed-forward layer.

When training models with FA C A D E, we designate the last fully connected layer as the head and

retain the rest of the model as the common core. We emphasize that our goal here is not to obtain

the best accuracy but to investigate the effects of our algorithm on a model with the right capacity

given the available data.

For Imagenette, the model remains almost the same as for Cifar-10, with minor adjustments made

to accommodate the image sizes. The resulting number of parameters of the model is about 250k.

Finally, as the Flickr-Mammals dataset has much more data from 41 classes, we modified ResNet8 [17]

to achieve a size of about 310k parameters. For this more challenging dataset, when training with

FA C A D E, we enlarge the head size of ResNet8 and include the last two Basic Blocks in the head, along

with the final fully connected layer.

Table 4.1: Summary of datasets used to evaluate FA C A D E and DL baselines.

D A T A S E T N O D E S M O D E L M O D E L PA R A M S .
L E A R N I N G R A T E S

EL DAC DePRL FA C A D E

Cifar-10 [25] 32 CNN (LeNet [26]) 120k η= 0.05 η= 0.005 η= 0.01 η= 0.01
Imagenette [18] 24 CNN (LeNet [26]) 250k η= 0.001 η= 0.001 η= 0.0005 η= 0.0003

Flickr-Mammals [19] 16 ResNet8 [17] 310k η= 0.1 η= 0.3 η= 0.1 η= 0.3

4.1.2 Baselines:

We compared against a variety of personalized decentralized learning techniques: EL [9], DePRL

[53], and DAC [55]. EL, similar to D-PSGD, is one of the most simple baselines to compare against,

and we chose it since FA C A D E also relies on communication with random nodes.

To our knowledge, DePRL is the state-of-the-art for personalized decentralized learning. It addresses

the challenge of decentralized learning by allowing each node to optimize its model head locally

while ensuring the overall network performance by sharing the core model through periodic com-
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munication and aggregation steps. However, the setting researchers used to test this algorithm

featured nodes, all having data coming from different distributions. In contrast, our approach

assumes that some nodes come from the same distribution, hence forming clusters in the network.

We investigated whether our method could benefit from this specific data structure.

We also chose to compare against DAC, which, as far as we know, is the most recent and best-

performing approach for personalized decentralized learning on clustered non-IID data. DAC

utilizes a dynamic communication topology and has been tested in environments with clusters sim-

ilar to our configuration. This approach adapts the communication weights between nodes based

on their data distributions, enhancing learning efficiency and performance in clustered settings.

4.1.3 Experiment settings:

To assess the fairness of our algorithm, we designed experiments with two clusters having varying

proportions. Specifically, we keep the total number of nodes constant while adjusting the propor-

tions of nodes in each cluster. This ensures that each node has the same amount of data, making

the learning comparable between experiments. We demonstrate that, even when the unprivileged

group is heavily outnumbered by the privileged group, FA C A D E maintains a high accuracy for both

groups, indicating a good fairness measurement.

For Cifar-10, we consider three different configurations, each with k = 2 clusters and 32 nodes,

with majority-to-minority ratios of 16:16, 24:8, and 30:2. For instance, in the experiment with a ratio

of 24:8, 24 nodes have 3/4 of the dataset Cifar-10, while the remaining 8 nodes share the rest of the

dataset, but rotated 180°. In all experiments, cluster 0 is the privileged group (the cluster with the

most nodes). To produce each results, we run a total of T = 1200 communication rounds, averaged

over four seeds. Each local training round features τ= 10 local steps of batch size B = 8. For each

baseline, we use an SGD optimizer, and the learning rate was independently fine-tuned with a grid

search. Table 4.1 summarizes the parameters used for each dataset and baselines. Additionally, to

enhance performance whenever feasible, we implemented a final all-reduce step [43], where all

nodes share their models and perform a final aggregation.

To evaluate the algorithms, we measure the accuracy on the test set every 80 rounds. We also record

the final performances of the algorithm on the entire test set and compute the fairness of the models

with equations 2.4 and 2.5.

For Imagenette, we utilize a similar setup with rotations, featuring 24 nodes and ratios of 12:12,

18:6, and 20:4. Again, we perform a grid search for each algorithm to tune the learning rate and run

800 communications steps. As the Flickr-Mammals dataset is much bigger, we decrease the number

of nodes to 16, and only consider two setups, 8:8 and 14:2. Resnet8 being a more complex model,

we increase the local steps to τ= 40 and let the training run for 1200 communication rounds.
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4.2 Results

We now discuss the results of our experiments on Cifar-10. We tested all the baselines in the two-

cluster configurations detailed above. Our goal is to analyze how FA C A D E behaves in an environment

where the minority group is increasingly outnumbered. Complementary plots for Cifar-10 and all

results for Imagenette and Flickr-Mammals are provided in the Appendix. We also detailed any

differences FA C A D E encountered with these other datasets.

4.2.1 Accuracy:

In Figure 4.1, the accuracy of the model is reported for all configurations and is detailed for each

cluster, the majority on the left and the minority on the right. We can see that FA C A D E outperforms

other decentralized methods. When considering the minority cluster (right), we note that FA C A D E

is much better than other methods at giving the unprivileged groups a good treatment.

When the number of nodes in each cluster is balanced (top row), FA C A D E shows a slight performance

advantage thanks to its multiple heads, which provide greater capacity to adapt to variations within

each cluster (A C C≈70%). However, other methods also perform reasonably well, with accuracies

around 63%, as there is enough data to find a good compromise model that suits both clusters.

In the scenario in which one cluster massively outnumbers the other (bottom row), we observe

that the performance of most methods is similar for the majority cluster(A C C≈72%). This is due

to consensus-based methods like EL, being influenced by the data distribution of the dominant

group. However, our algorithm excels when examining the minority (down-right). Specifically,

FA C A D E outperforms DePRL by approximately 7 percentage points and EL by 20 percentage points,

demonstrating greater fairness to the minority group. This improvement is due to a head being

exclusively used by the minority group. This allows the head to remain unaffected by the majority’s

data distribution and to adapt specifically to the data distribution of the unprivileged group. The

difference in accuracy of FA C A D E between the majority and the minority is solely due to the majority

group having more nodes, leading to more training data and better generalization.

Similar plots for Imagenette and Flickr-Mammals are provided in the Appendix. Overall, we ob-

serve similar trends, with FA C A D E outperforming baselines, and shining especially for the minority.

22



0 500 10000

20

40

60

80

Ac
cu

ra
cy

16:16, majority

0 500 10000

20

40

60

80 16:16, minority

0 500 10000

20

40

60

80

Ac
cu

ra
cy

24:8, majority

0 500 10000

20

40

60

80 24:8, minority

0 500 1000
Communication rounds

0

20

40

60

80

Ac
cu

ra
cy

30:2, majority

0 500 1000
Communication rounds

0

20

40

60

80 30:2, minority

Mean accuracy for each cluster
CIFAR, 32 nodes

DEPRL DAC EL FACADE (ours)

Figure 4.1: Average accuracy (↑ is better) for the nodes in the majority cluster (left) and those in the
minority (right) obtained on CIFAR-10. Each row represents the results of one experiment.
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Table 4.2: Performance comparison of all algorithm on Cifar-10. The metrics evaluated are, in this
order: the averaged accuracy of all nodes in the majority group, the minority group, and across the
entire network; followed by demographic parity, equalized odds, and finally, fair accuracy.

C O N F I G A L G O R I T H M A C C M A J↑ A C C M I N ↑ A C C A L L ↑ D E M O . PA R . ↓ E Q U . O D D S ↓ A C C F A I R ↑

16
:1

6

EL 64.03±0.54 63.80±0.42 63.91±0.43 0.0032±0.0007 0.0204±0.0038 75.87
DAC 63.82±1.34 63.79±1.43 63.81±0.31 0.0065±0.0008 0.0402±0.0057 75.86
DePRL 55.51±0.34 55.50±0.29 55.50±0.26 0.0020±0.0004 0.0099±0.0026 70.33
FACADE 69.50±0.32 69.61±0.20 69.55±0.25 0.0060±0.0015 0.0267±0.0079 79.67

24
:8

EL 69.13±0.45 54.76±0.59 65.53±0.31 0.0103±0.0012 0.1596±0.0097 69.84
DAC 69.88±0.28 51.30±1.31 65.24±0.19 0.0131±0.0015 0.2067±0.0175 67.53
DePRL 57.40±0.13 54.21±0.24 56.60±0.15 0.0030±0.0003 0.0361±0.0013 69.48
FACADE 71.61±0.27 66.81±0.34 70.41±0.29 0.0079±0.0025 0.0582±0.0033 77.87

30
:2

EL 71.99±0.70 38.77±0.62 69.91±0.67 0.0306±0.0014 0.3693±0.0081 59.18
DAC 72.21±0.24 34.94±0.72 69.88±0.25 0.0340±0.0027 0.4143±0.0075 56.63
DePRL 58.47±0.59 52.56±0.78 58.10±0.57 0.0047±0.0013 0.0684±0.0072 68.37
FACADE 73.32±0.15 59.96±0.72 72.48±0.19 0.0086±0.0026 0.1491±0.0059 73.31

4.2.2 Fairness:

The fairness of FA C A D E becomes even clearer when considering the analysis presented in figure 4.2.

We measure the demographic parity 2.4 and the equalized odds 2.5 on the final model of each

experiment. Our algorithm significantly outperforms others in ensuring fairness between the two

groups.

The only baseline that seems to outperform FA C A D E is DePRL, which exhibits lower demographic

parity and equalized odds. However, the accuracy for all nodes, regardless of cluster membership,

is quite poor (Figure 4.1), which is misleadingly defined as having good fairness. We noticed that

the head of the model in DePRL overfits significantly because it is never shared with other nodes.

Consequently, the algorithm cannot leverage the similar data distribution of other nodes and

struggles to generalize on the test set. This results in DePRL having similar accuracy across all nodes,

regardless of whether they belong to the minority or majority group. As this uniformity aligns with

what the two fairness metrics measure, DePRL appears to have the best results in Figure 4.2 and is

supposedly the fairest algorithm.

However, this uniformity is not truly beneficial. As seen in the accuracy plot, FA C A D E outperforms

DePRL for both the majority and minority groups. The behavior of DePRL is undesirable because

achieving low global accuracy without differences between groups is not advantageous.

This example perfectly justifies the introduction of the Fair Accuracy, detailed in section 3.3. Under

this new metric, both model performance and fairness are considered, penalizing models that

disproportionately benefit the privileged group. The table 4.2 summarizes all results obtained

for CIFAR-10 and evaluates the fair accuracy of all algorithms in the last column. These results

demonstrate that our method achieves the highest Fair Accuracy, indicating superior performance

and fairness across both majority and minority groups.
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Figure 4.2: Demographic parity (↓ is better) and equalized odds (↓ is better) obtained for on Cifar-10.
FA C A D E is fairer than all the baselines except DePRL.
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Figure 4.3: Accuracy vs. total data transfered (↑ is better) obtained on CIFAR-10.

We provide two similar tables in the Appendix. In these, we again observe that the model head

of DePRL tends to overfit, resulting in good standard fairness measurements. This effect is especially

pronounced for Imagenette, given its smaller training set compared to the other datasets. However,

when our new metric is applied, which accounts for global performance, DePRL performs worse

than all other algorithms.

4.2.3 Communication cost:

As mentioned earlier, the communication cost of FA C A D E is almost the same as EL or D-PSGD. Each

node still sends only one model, with the addition of the model index for our approach. Figure 4.3

illustrates the global accuracy of each method relative to the total data transferred by each node to

any neighbors. The accuracy is averaged across all nodes, regardless of which cluster they belong

to. We took as an example the configuration 30:2, but all of them have the same communication

cost. We observe that all four methods have similar communication costs, but FA C A D E achieves the

highest accuracy per byte transferred.
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Table 4.3: Performances of FA C A D E with an incorrect number of heads as a hyperparameter. There
were three clusters, with 20, 10, and 2 nodes. The average accuracies achieved by all nodes within
each cluster are reported.

Models A C C 2 0 ↑ A C C 1 0 ↑ A C C 2 ↑ A C C F A I R↑
EL 66.13 58.50 39.54 60.95
1 head 68.02 59.41 40.75 61.62
2 heads 69.60 65.04 46.11 65.67
3 heads 69.13 66.45 58.90 73.14
4 heads 69.53 66.09 58.08 72.56
5 heads 68.48 65.52 58.80 72.95

4.3 Sensitivity to hyperparameters

To evaluate the sensitivity of FA C A D E to variations in the number of cluster hyperparameters, we

conduct a detailed experiment. Building on our previous setup with CIFAR-10, we create three

clusters with 20, 10, and 2 nodes. Each cluster has images rotated 0°, 90°, and 180°, respectively. This

setup also demonstrates the capacity of FA C A D E to handle more than two clusters.

We intentionally vary the number of heads used by FA C A D E from one to five, with the ideal number

being three, which corresponds to the actual number of clusters. The results are presented in

Table 4.3, where we report the accuracy of each cluster A C C 2 0 , A C C 1 0 and A C C 2 .

When only one head is used, FA C A D E essentially replicated the behavior of EL, delivering similar

performance. With two heads, the two smallest clusters have to share a head, while the largest cluster

has a head specialized for its data distribution. Three heads demonstrate the best performance,

as they match the number of clusters. However, even with four and five heads, the results are

remarkably close to those obtained with the optimal number of heads. The dynamics reveal that

multiple heads tend to specialize in the same cluster, often the largest one. In other clusters, each

has at least one model head specialized in their specific data distribution. The only drawback is

that nodes waste training rounds by selecting different heads, resulting in slightly lower accuracy

compared to consistently training with the same head.

This experiment highlights the robustness of our algorithm to variations in the hyperparameter

k. The system as a whole maintains a performance level close to the optimum, showcasing its

resilience.

4.4 Settlement analysis

In this section, we provide insights into the concept of settlement in our algorithm. In FA C A D E, a

scenario can arise where one or more heads consistently outperform the others across all nodes.
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When this happens, only the superior heads are selected, causing the other heads never to be trained

again. This situation is referred to as the algorithm not settling. Reusing the previous setup, figure 4.4

illustrates this behavior, with an example where FA C A D E settled and another where it did not.

The risk of not settling is higher when there is a large majority-to-minority ratio among the nodes

with different data distributions. When the algorithm does not settle, it cannot fully exploit its

potential. However, it is important to note that not settling is not a catastrophic issue. In such cases,

performance merely drops to the level of EL, and a simple change of seeds is usually enough to

achieve settlement.

To mitigate the risk of not settling, we employ several strategies. First, with careful selection of

model hyperparameters, we can reduce the likelihood of this occurrence. Another effective strategy

is to initiate the training with a few rounds of EL, where all heads share the same weights before

transitioning to independent parameters for each head. This initial shared training phase is partic-

ularly crucial during the early stages of the algorithm when the models are still largely predicting

randomly. During this phase, one head can easily capture a better data representation and quickly

outperform the others. By beginning with shared training, the core and heads develop a solid data

representation foundation. When the heads eventually train independently, it becomes easier for

each to specialize in a specific cluster’s data distribution, thus stabilizing the training process.

Although we are no longer using it, we also experimented with an exploration technique. Instead

of always choosing the model with the smallest loss, we allowed each node a small probability

of selecting and training a random model. This exploration phase ensured that all models had

opportunities to learn and improve, reducing the chances of one model prematurely dominating

the training process.

These techniques proved effective in stabilizing the training process and enhancing the overall

performance of FA C A D E. By incorporating initial shared training, we significantly reduced the likeli-

hood of the algorithm failing to settle, thereby maximizing its potential.
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Figure 4.4: Training loss evolution (↓ is better) of the three models, averaged across nodes within the
same cluster (unknown to the algorithm). The top plot illustrates a case where FA C A D E successfully
settled, meaning all nodes within the same cluster favor the same model, and no nodes of another
cluster picked it. The bottom plot shows a case where the algorithm did not settle, resulting in all
nodes from clusters 1 and 2 selecting and training the same model (model 0). We observe that model
1 is not selected at iteration 80, indicating it will no longer be chosen, as it will not be trained and
thus will not improve on any distribution.
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Chapter 5

Discussion

In this section, I will explain the work conducted during my master’s thesis that was not presented in

the other sections of the paper. Throughout the project, I maintained a Google Slide1 as a progress

journal to keep track of my advancements.

5.1 I D C A, the first version of F A C A D E

Initially, we designed FA C A D E without the core-head split. This first version was called IDCA, and

each node maintained k fully independent models instead of only duplicating the heads. However,

the rest of the algorithm, including the model selection step, sharing, and aggregation, remained as

presented in Algorithm 1. The old version of the algorithm could be replicated by setting the head

to be the total model and the core to be empty. Our inspiration was an algorithm called IFCA [15],

which essentially implements this idea of model duplication in the centralized federated setting.

5.1.1 MNIST dataset:

The first experiments with this algorithm were conducted on the MNIST dataset, which is why it

is implemented in the code. We quickly discovered that the task was too easy and decided to use

Cifar-10 as the baseline dataset instead. Consequently, the compatibility of the code with MNIST

was not maintained and is not up to date.

1https://docs.google.com/presentation/d/1xRalq0L-uQjW7EbqG59NDVKHcUpyaf8JuvAj8CsxSBg/edit?
usp=sharing
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5.1.2 Settlement plots:

One of our goals was to analyze the settlement of FA C A D E, as described in section 4.4, and we

produced plots to quickly detect if the algorithm did settle or not. The plots in 5.1 use the same

setup presented for the settlement analysis 4.4. These plots track the head chosen by each node in

each cluster over time and assess the final head selection to determine if FA C A D E has settled. In the

upper plot, we tracked the number of nodes within the same cluster that select each different head.

After a fuzzy phase, we observe that all nodes in the same cluster converge to the same head. This

is confirmed by the lower plot, which counts the final head of each index chosen by all the nodes

within a cluster. These plots were generated using our latest version of FA C A D E with the core-head

split. However, the initial version of our algorithm operated similarly, it just utilized full models

instead of heads.

5.1.3 Privacy:

Next, we spent a few weeks focusing on privacy. We implemented membership inference attacks

(MIA) [54] on FA C A D E and used Muffliato as a defense [7]. However, we quickly abandoned this line

of work, not because it wasn’t interesting, but because we wanted to concentrate on the fairness

aspect of our research.

5.2 Enhancing F A C A D E with various methods

Having a clear direction in mind, we then focused on improving FA C A D E. Before implementing the

head-core split, we explored several ideas to enhance the performance of our algorithm.

5.2.1 Model leaking and exploration:

Inspired by the relationship between soft k-means [3] and k-means [38], we developed a softer

assignment of models to nodes. The idea was that if training losses at the assignment step were

similar, indicating that no model was a perfect fit for the node’s data, a mix of multiple models

could be aggregated and used for training. We named this the model leaking strategy, but it did not

improve the results.

We also explored the idea of enhancing performance through exploration ( Section 4.4). By allowing

nodes to pick their model randomly, we hoped to expose models to data from other clusters, thus
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promoting better generalization. However, this method consistently worsened results because it

prevented the models from specializing in a cluster’s distribution.

5.2.2 Custom losses:

Later, still without the core-head split, we attempted to use custom loss functions to encourage

fairness and enhance results. The idea was to add a regularization term that would minimize the

difference between two quantities that depend on all models, thereby indirectly influenced by all

data distributions. We tried this approach with demographic parity, equalized odds, accuracy, and

loss computed on the training set. We also designed a loss that penalized models that were too

different. Initially, we computed the difference between the parameters of the entire models, and

then we focused on a subset of the weights, specifically those now part of the core. A final attempt

involved penalizing the difference between the feature representations of the data after passing

through all models, aiming to make them learn similar data representations.

5.2.3 Final algorithm:

After these attempts, we realized that none of these techniques were more effective than the core-

head split, a technique already used in IFCA to improve the settlement. We decided to make

this technique the heart of our algorithm, as it consistently improved results over simpler model

duplication. The final version of the algorithm now consists of a single core and multiple heads. It is

the one presented in the other sections of this paper and tested during our experiments.
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plots, we can assess that FA C A D E converge.
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Chapter 6

Conclusion

In this paper, we addressed the clustered non-IID data issue by presenting a decentralized algorithm

designed for secure and scalable environments. FA C A D E features the innovative idea of maintaining

multiple model heads in each node, enabling the learning of personalized models for each cluster.

This decentralized process ensures fairness, allowing even minority groups to achieve high accuracy.

The design of FA C A D E keeps the communication cost comparable to simpler algorithms like D-PSGD

or EL, effectively ensuring fairness without additional communication overhead.

Additionally, we introduced a new metric that balances fairness and performance, providing a

comprehensive evaluation of our algorithm’s effectiveness. We experimentally verified our approach,

demonstrating its stability and superior performance compared to baseline methods in the clustered

non-IID data setting.

In conclusion, FA C A D E offers a robust solution to the clustered non-IID data problem, combin-

ing scalability, decentralization, and fairness. Our experimental results highlight the potential of

FA C A D E to significantly improve the performance of decentralized learning systems, making it a

valuable contribution to the field.
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Appendix A

Appendix: Supplementary material

In this section, we provide an additional plot for Cifar-10 and all plots and tables for the datasets

Imagenette and Flickr-Mammals

A.1 Supplementary plots for Cifar-10

We provide the plot showing the evolution of the Fair Accuracy for all the algorithms on Cifar-10 A.1.

It allows to compare the convergence of FA C A D E and the baselines.

A.2 Imagenette dataset

We present here the results and insight obtained with the Imagenette dataset [18]. Figure A.2 presents

the accuracy separated for the majority (right) and minority (left). FA C A D E again outperforms all

other baselines. We also provide the plots for the demographic parity A.3a, equalized odds A.3b

and fair accuracy A.4. The problem of DePRL overfitting is even more important, as the trainset of

Imagenette is much smaller than CIFAR’s. This again leads to misleadingly good fairness metrics,

which supports the need for the fair accuracy. All results obtained for Imagenette are summarized

in Table A.1

A.3 Flickr-Mammals dataset

We also reported in A.2 the results obtained on the Flickr-Mammals dataset. As the dataset contained

much more images we let the training run for only 1200 communication rounds, with 40 local steps.

After this time, all algorithms could still improve, as the training loss did not reach a plateau. However,
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it is clear from the results that FA C A D E again outperforms the baselines. We did not include the

plots, as the table should be sufficient to judge the performance of the algorithms.

Table A.1: Performance comparison of all algorithm on Imagenette. The metrics evaluated are, in
this order: the averaged accuracy of all nodes in the majority group, the minority group, and across
the entire network; followed by demographic parity, equalized odds, and finally, fair accuracy.

C O N F I G A L G O R I T H M A C C M A J↑ A C C M I N ↑ A C C A L L ↑ D E M O . PA R . ↓ E Q U . O D D S ↓ A C C F A I R ↑

12
:1

2

EL 66.43±0.56 66.85±0.67 66.64±0.59 0.0033±0.0008 0.0208±0.0035 77.62
DAC 65.73±0.73 64.45±0.54 65.09±0.47 0.0054±0.0004 0.0286±0.0036 76.30
DePRL 43.14±1.00 43.49±1.20 43.31±1.07 0.0078±0.0016 0.0319±0.0039 62.10
FACADE 68.18±0.35 68.59±0.34 68.39±0.27 0.0050±0.0010 0.0239±0.0035 78.78

16
:8

EL 69.69±0.27 60.21±0.44 67.32±0.29 0.0121±0.0008 0.1061±0.0050 73.48
DAC 68.55±0.62 56.92±1.32 65.64±0.57 0.0136±0.0019 0.1299±0.0176 71.28
DePRL 43.40±0.79 43.09±1.22 43.33±0.89 0.0096±0.0025 0.0361±0.0060 62.06
FACADE 69.61±0.37 66.44±0.19 68.82±0.30 0.0054±0.0011 0.0397±0.0014 77.63

20
:4

EL 70.17±0.28 56.06±0.56 67.81±0.33 0.0186±0.0006 0.1566±0.0026 70.71
DAC 69.05±0.74 50.93±1.65 66.03±0.45 0.0226±0.0039 0.2009±0.0249 67.29
DePRL 43.67±1.01 42.64±1.16 43.50±1.02 0.0090±0.0024 0.0388±0.0078 61.76
FACADE 69.61±0.46 64.15±0.39 68.70±0.42 0.0064±0.0015 0.0630±0.0057 76.10

Table A.2: Performance comparison of all algorithm on Flickr-Mammals. The metrics evaluated
are, in this order: the averaged accuracy of all nodes in the majority group, the minority group, and
across the entire network; followed by demographic parity, equalized odds, and finally, fair accuracy.

C O N F I G A L G O R I T H M A C C M A J↑ A C C M I N ↑ A C C A L L ↑ D E M O . PA R . ↓ E Q U . O D D S ↓ A C C F A I R ↑

8:
8

EL 59.97±0.23 59.92±0.22 59.94±0.19 0.0006±0.0001 0.0094±0.0014 73.28
DAC 60.56±0.60 59.94±0.32 60.25±0.33 0.0016±0.0002 0.0203±0.0012 73.29
DePRL 44.92±0.61 45.61±1.23 45.26±0.85 0.0047±0.0004 0.0373±0.0039 63.28
FACADE 65.50±0.55 64.92±0.41 65.21±0.47 0.0035±0.0001 0.0467±0.0018 76.62

14
:2

EL 64.92±0.21 49.71±0.20 63.02±0.17 0.0057±0.0002 0.1349±0.0034 66.47
DAC 66.11±0.46 46.70±4.75 63.68±0.63 0.0067±0.0010 0.1836±0.0409 64.47
DePRL 45.69±0.82 45.91±0.79 45.72±0.81 0.0072±0.0005 0.0644±0.0027 63.80
FACADE 67.63±0.49 59.55±1.06 66.62±0.56 0.0058±0.0004 0.1077±0.0109 73.03
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Figure A.1: Fair Accuracy (↑ is better) obtained on CIFAR-10.
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Figure A.2: Average accuracy (↑ is better) for the majority cluster (left) and the minority (right)
obtained on Imagenette.

43



12:12 16:8 20:4
Ratio of majority to minority (clusters 0:1)     

0.005

0.010

0.015

0.020

0.025

De
m

og
ra

ph
ic 

pa
rit

y
Demographic parity by experiment    
DEPRL
DAC
EL
FACADE (ours)

(a) Demographic parity

12:12 16:8 20:4
Ratio of majority to minority (clusters 0:1)     

0.05

0.10

0.15

0.20

Eq
ua

liz
ed

 o
dd

s

Equalized odds by experiment    
DEPRL
DAC
EL
FACADE (ours)

(b) Equalized odds
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on Imagenette. FA C A D E is fairer than all the baselines (if we exclude DePRL)
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