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Abstract

Decentralized Learning (DL) is a collaborative machine learning approach allowing multiple nodes

to train a global model without sharing private data. However, data heterogeneity across nodes in

Non-Independent and Identically Distributed (Non-IID) settings presents significant challenges,

leading to suboptimal model performance. This work introduces the Distance Based Communi-

cation Algorithm (DBCA), which optimizes node communication based on model similarity. By

adjusting the probability of communication between nodes with dissimilar data distributions, DBCA

improves accuracy in decentralized learning environments.

We explore both clustered and non-clustered data settings to analyze the effectiveness of DBCA.

Results indicate that communication between nodes with dissimilar models enhances performance,

particularly in moderately heterogeneous environments. Conversely, in highly heterogeneous or

homogeneous settings, DBCA’s advantages diminish. The algorithm shows good performance,

outperforming baselines like Epidemic Learning and Decentralized Adaptive Clustering (DAC). Our

findings demonstrate the potential of DBCA to generalize across diverse tasks while offering new

insights into optimizing communication strategies in decentralized systems.
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Chapter 1

Introduction

Decentralized Learning (DL) [8] has emerged as a powerful approach in collaborative machine

learning (ML), enabling multiple nodes to train a global model without the need to share their

private datasets and a central entity. This method leverages a communication topology where nodes

exchange their locally trained models with neighboring nodes and other participants in the network

without revealing their underlying data. In each training round, nodes update their models based on

their private datasets, share these updates with neighbors, and aggregate the received models. This

aggregated model then serves as the foundation for subsequent training rounds, with the process

continuing until the model reaches convergence. Popular DL algorithms such as Decentralized

Parallel Stochastic Gradient Descent (D-PSGD) [7] and Epidemic Learning (EL) [9] have been widely

tested and used across various fields.

A significant challenge in DL arises from data heterogeneity among nodes[1]. This heterogeneity

can manifest in different forms, such as variations in data quantity, label distributions, or feature

distributions across nodes. Such diversity exists in multiple domains like animal detection, health-

care or weather, where institutions may collect data using different devices, methodologies, or

from data sources with varying diversity. In this work, we focus on scenarios where nodes exhibit

heterogeneous feature distributions.

In cases where nodes share similar data characteristics, a clustered distribution often emerges,

grouping nodes into distinct subclusters [12]. This phenomenon is common in real-world applica-

tions, for instance depending on the geographical distribution of the nodes and thus the underlying

data. However, standard DL approaches like D-PSGD or EL typically optimize the model towards

the average data distribution across all nodes. This approach can lead to performance issues,

particularly for nodes whose data characteristics are very isolated or differ significantly.

For instance, decentralized learning offers clear advantages in tasks like animal detection from

images. Consider two nodes: one representing Australia, having a good performance at recognizing
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kangaroos, and another representing Europe, better at identifying deer. When the European node

encounters a kangaroo, it may misidentify it due to limited exposure. However, by sharing infor-

mation, both nodes can enhance their detection capabilities, allowing Europe to correctly identify

the kangaroo. This illustrates how decentralized learning improves overall accuracy and knowledge

through collaboration.

This example highlights the facts that nodes can aim for different training objectives, models

in decentralized learning will then likely be very different from node to node in the network. This

personalization approach, adjusts the trained model to account for the unique characteristics of

each node’s dataset.

In a non-identically independently distributed (non-IID) setting, nodes are distinguished by

their diverse data distributions. Each node, therefore, pursues a personalized objective, aiming to

enhance its accuracy on local test data that mirrors its specific data distribution. This leads to an

important question: can inter-node communication be structured in a way that collectively improves

overall performance? Specifically, does selective node communication, such as prioritizing certain

nodes over others yield better results in a non-IID environment where label distribution shifts are

present? We will explore this matter through the scope of altering the communication topology of

the distributed system, by introducing a probabilistic model of communication based on similarity

criteria between nodes data.

To achieve this, in this work we present the Distance Based Communication Algorithm (DBCA),

a probabilistic approach to node communication in the non-IDD setting that relies on model

similarity to exchange information. This project successfully implemented the described algorithm

and showed that it outperforms the state-of-the-art methods for a given data distribution among

the nodes.

In summary, the primary contributions of this project include:

1. Showing that communication between nodes with dissimilar models enhances accuracy.

2. Comparing performance in this setting to a clustered environment, where nodes within each

cluster share highly similar data, as often observed in real-world scenarios

3. Implementing the DBCA algorithm which is responsible for the probabilistic method to this

research approach
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Chapter 2

Preliminaries and related work

In this chapter, we first introduce the problem setting, for the non-cluster and cluster data scenarios,

then review related work in the domain of personalized learning and decentralized learning.

2.0.1 Problem Formulation

Decentralized Learning (DL) has emerged as a powerful approach in collaborative machine learning

(ML), enabling multiple nodes to train a global model without the need to share their private datasets

and a central entity. This method leverages a communication topology where nodes exchange their

locally trained models with neighboring nodes. A key element in this setup is the gossip matrix, a

matrix that dictates how information is shared between nodes. Each element in the matrix represents

the weight assigned to a node’s model during the aggregation process, ensuring that each node’s

update is a weighted average of its neighbors’ models. This matrix plays a crucial role in achieving

consensus among the nodes by controlling how much influence each neighbor has during the

update phase, and it helps in the efficient distribution of information across the entire network.
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Figure 2.1: Plot from the perspective of node 2 in Decentralized Learning. After the local training,

based on a probability matrix [0.2,0.2,0.3,0.3] (a row of the gossip matrix) the node shares the model

weights θ to other nodes in the network without going through a central server

In this project, we examined two main types of settings. The first case, which corresponds to

each node having its local dataset sampled from the chosen global dataset. Secondly, the case

where we form clusters, and then derive nodes with distributions similar to the clusters, such that

intra-cluster similarity is high, but outside-cluster similarity is low. These two settings provide a solid

layer to investigate the main question of our work, which is to research if it is better to communicate

with more similar or not nodes, we will show through our analysis afterwards, that one of the two

possibilities is indeed better than the other.

We note here, that we are presented with a personalization problem, as each node ni looks

forward to improving their loss on their unique test dataset Ti .

Notations

Consider a set N of n nodes that can communicate to improve the local model for their personalized

task. Consider ni ∈N , for i = 1, ...,n correspond to the i -th node.

In the non-cluster case, for each node, define Si as the local training dataset and Ti as the local

test dataset for node i ∈ [n].

For the cluster case, we define C as a set of clusters, that each has a different distribution

sampled from the original dataset. Then, we derive nodes to the cluster, by sampling their own data

distributions from their assigned cluster, define Si c as the local training dataset and Ti c as the local

test dataset, for node i ∈ [n] and cluster c ∈ [c].
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Let L : Θ→ R be the loss function associated with a sample z where Θ ⊆ RP represents the

parameter space of the model we wish to train.

2.0.2 Non-cluster case

In the first problem setting, we explore the non-IID data issue, specifically, label shift distributions,

where each node has a dataset sampled from the global distribution.

This means that the distribution of labels among the nodes is skewed. The objective of each

node ni is to minimize each own data error function F i :

F i (θ) = Ez∼Si [L(θ, z)]

In particular, we aim to find the optimal model for each node such that:

θ∗i = ar g mi nθ∈ΘF i (θ),∀i ∈ [n]

A graphical overview is shown in 2.2, we observe that the nodes are spread out over the 2 principal

components of a PCA decomposition in a case of heavy heterogeneity. Therefore, each will have a

different objective to optimize for in the network. In the case described afterward, the nodes will be

quite closer, such as forming clusters in this decomposition.

Figure 2.2: Projection of the nodes over the two principal components of a PCA done over the label

distribution in a setting of high heterogeneity
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2.0.3 Cluster case

In the second problem setting, clusters are sampled from the global distribution, and then nodes

from clusters.

The objective of each node ni is to minimize each own data error function F i c :

F i c (θ) = Ez∼Si c [L(θ, z)]

In particular, we aim to find the optimal model for each node such that:

θ∗i c = ar g mi nθ∈ΘF i c (θ),∀i ∈ [n]

2.0.4 Personalized learning

Customizing a machine learning model involves adapting it to better align with the specific data

it will be applied to. This is especially important when working with non-i.i.d. (independent and

identically distributed) data, as personalization helps maintain the model’s performance across

different clients or nodes [10]. Early work on personalization within federated learning (FL) [2]

focused on maintaining a single central model, aiming to strike a balance between the diverse

data distributions of the nodes involved. However, this created a challenge of balancing global

consistency with the need for local adaptation.

Some approaches address this by enabling each node to have its own personalized model, while

still contributing to the training of a shared global model. When nodes’ data naturally forms clusters,

certain FL techniques group similar nodes together to take advantage of these commonalities [14].

In DL, initial efforts to personalize models relied on communication networks that represented

the similarity between nodes, often requiring a predefined similarity matrix [3]. However, obtaining

such a matrix can be difficult, and in privacy-sensitive environments, sharing data to establish these

similarities is usually not possible [5].

Recent approaches have shifted towards using dynamic networks with adaptable communica-

tion structures to improve personalization. This work follows that trend, first focusing on personal-

izing models at the node level, and then exploring how similarities among nodes can be utilized

when dealing with clustered data.
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2.0.5 Related work in Decentralized Learning

Decentralized learning (DL) in non-IID settings introduces challenges, particularly in optimizing

collaboration among nodes with varying data distributions. When nodes possess skewed or non-IID

data, this heterogeneity can degrade model performance, making communication strategies critical.

Hsieh et al. [4] highlight how skewed label distributions across nodes negatively affect DL

accuracy. They propose SkewScout, which adapts communication based on accuracy loss, a strategy

similar to our goal of improving communication between nodes based on data characteristics.

Unlike their optimization approach, DBCA algorithm does not consider communication costs and

implements a dynamic approach to communication.

Other approaches, like Smart Sampling by Wang et al. [11], dynamically sample data to improve

communication efficiency in large-scale DL. Our work expands on this concept by introducing

probabilistic communication based on model similarity, which reduces communication overhead

while enhancing accuracy. Additionally, we explore whether nodes should communicate with similar

or dissimilar models, a question not directly addressed in Smart Sampling.

The Decentralized Adaptive Clustering (DAC) algorithm by Zec et al. [13] forms soft clusters of

nodes with similar data. While DAC dynamically adjusts communication between similar nodes, our

DBCA algorithm explores a more different approach, focusing on the label skewness wether than

feature heterogeneity, also considering both intra- and inter-cluster communication. By allowing

nodes to communicate with either similar or dissimilar models, our method generalizes beyond

clustering.

Li et al.’s L2C framework [6], which learns collaboration strategies dynamically, further aligns

with our goal of improving communication patterns. However, while L2C optimizes collaboration

weights, DBCA introduces a probabilistic mechanism based on model similarity to drive commu-

nication, providing an alternative method for improving node-to-node collaboration in non-IID

environments.

Through these methods, we aim to answer a fundamental question in decentralized learning: can

optimizing communication based on model similarity (or dissimilarity) yield better performance in

non-IID settings? Our DBCA algorithm builds on these previous studies by systematically adjusting

communication probabilities and demonstrating that prioritizing certain node interactions leads to

a better accuracy.
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Chapter 3

The DBCA Algorithm

In this section, we begin by presenting an overview of our algorithm’s design. After, I provide a

detailed, formal description of each step. Then, I present how I achieved the result and finally how I

modified the algorithm to adapt it in the clustered setting.

3.0.1 Design

In the Distance Based Communication Algorithm (DBCA), we aim at increasing the accuracy of the

nodes in a distributed settings in the presence of non-IID. In the network of nodes, each node has a

probability of communicating with another node. At each communication round, which happens

in a directed graph setting, each node knows to whom it is sending the current local model but is

not aware from whom it will receive information. The idea behind this approach is to strategically

control which nodes communicate and how frequently they exchange information, based on a

notion of "distance", it also takes into account the notion of asymmetry, as in real-world scenarios.

Let’s define P (ni ,n j ) the probability to send a model from node i to node j in a given commu-

nication round. This probability is defined to be proportional to the distance between the model

parameters of the two nodes:

P (ni ,n j )α
1

||θt
i −θt

j
′ ||p

Our implementation computes the distance to the last received model, therefore, in order to

achieves this efficiently, each nodes keeps in memory the last model version of each node it has

received from. Once, we have computed all the probabilities, we normalize our matrix for the sum

to be 1.
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P (ni ,n j ) = P (ni ,n j )

ΣN
n=0,n!=i P (ni ,nn)

,∀ j , s.t , j ! = i

For the first iteration, we start with the unbiased case, where each node has an equal probability

to communicate with any other node. After, for the following rounds, for nodes that have not yet

received a model from every node, they average all other probabilities as a proxy for missing node

models.

As observed, the communication between nodes is decided by how we decide to choose the

distance metric and the implementation of the proportionality factor.

• First of all, the distance metrics usually tried are the L1 (Manhattan distance) and L2 (euclidean

distance) distances, corresponding to p=1 and p=2, in our formula. With L1 distance, models

will be closer overall, and with the L2, models further apart will be more distant. Though,

in our experiences, we find out that this distance, did not had a significant impact on our

accuracy improvement.

• Secondly, when we set our probability to be inversely proportional to the distance of the

models, it implies that the more the models are similar, the more the probability will be higher.

And, inversely, when we set our probability to be proportional to the distance of the models,

it implies that the more the models are dissimilar, the more the probability will be higher.

Therefore, this a means of choosing if we would like to optimize for nodes that are more or

less similar to the local node.
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Figure 3.1: A communication round after the local training from the point of view of a node ni . In

DBCA, each node maintains a probability matrix containing the probabilities to communicate with

some node at each round. When the training is finished, the local node ni sends its local model to

the chosen nodes in the network, after that the node updates its local probability matrix if it receives

new models

Algorithm 1 DBCA Algorithm from point of view of node ni

1: Parameters: number of communication rounds T; outdegree k; number of nodes N; learning

rate η; model parameters θ; probability vector γ; distance parameter p; weighting factor wf

2: for t in 0,1, ...,T communication rounds do

3: θt+1
i ← g r adi ent_descent (θ̂t

i ,η), in local training

4: send θt+1
i to k sampled nodes chosen with respect to γt+1 probabilities

5: receive θt+1
r ecei ved from nodes that chose ni as target for this round t and update local received

models

6: for j in 0,1, ..., N nodes, j ! = i do

7: di j ←||θt+1
i −θt

j ||p
8: γi j ← e−w f ∗di j

9: end for

10: γt+1 ← nor mali ze(γt+1)

11: θ̂t+1
i ← aver ag e_model s(θt+1

i , [θt+1
r ecei ved1

,θt+1
r ecei ved2

...])

12: end for

3.0.2 Achieving node convergence

One of the important parts of the research in the setting was to find an innovative way to make the

nodes converge to some neighbors. Indeed, in our first implementations we spend quite some time

researching methods to improve the accuracy of the nodes with the previous settings, but we were

unable to make any significant progress. One of the main drivers for that inability of improvement,

was that the nodes communicated like the epidemic learning algorithm, they randomly sent their

local model to all the nodes, instead of a selected subgroup, the probability matrix had more or less

an equal weighting for all nodes. But, if the node setting would like to learn from other nodes that

are significantly similar or dissimilar and not be submerged by the noise of unwanted models, they

need to be able in the end, to have a sort of sub-network by sending models to the selected nodes, as

they are different or similar they will or not increase the probability to communicate back. However,

by only computing the probabilities as we did in the beginning by plainly making them proportional

to the distance, as mentioned, no significant result was achieved.

Nevertheless, if we add an exponential to our computed distance, we find that nodes will tend to

converge to a subgroup of the nodes, equivalent to the outdegree of each node. The probabilities

are then written as:
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P (Ni , N j )α
1

e ||θ
t
i −θt

j
′ ||p

In 3.2, the plot shows how a node will gradually only communicate with a subgroup of the

network, in the beginning, the node communicates with everyone, such that it sends its local model

to all the nodes in the network, though, over time it will only send the local model to some nodes in

the network as observed by only having 5 different bars.

Figure 3.2: Plot from the perspective of a node showing the percentage of models sent to each node
in the network over buckets of 100 communication rounds. Each chunk of the bar represents the
percentage of models sent to some node, 20% meaning that 20% of the models sent in the 100
rounds communication bucket were sent to the same node.

3.0.3 Cluster Design

Another part of the research was to adapt the network such that it could be divided by clusters. We

form clusters of nodes where the data distributions are very different from cluster to cluster, but

relatively similar for nodes inside of a cluster.

The algorithm that is described here is a choice among other possible ones, as they yield similar

results. In this adaption of DBCA to the cluster case, we note an important change, in some commu-

nication rounds, the node will communicate only within the cluster and in others with nodes outside

the cluster. The implementation choice made here, is to communicate with the outside nodes every

predefined number of communication rounds. To choose the nodes to communicate within the

cluster, the node uses the DBCA in the cluster, and to choose the outside nodes, it randomly chooses
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nodes outside the cluster similarly to Epidemic Learning.

Figure 3.3: A communication round after the local training from the point of view of a node ni

belonging to cluster c . In DBCA cluster setting, each node maintains a probability matrix containing

the probabilities of communication with every node inside the cluster at each round, to commu-

nicate outside the cluster, the local node chooses a foreign node randomly. The node then sends

its local model to the chosen nodes in the network and updates the local model storage in case it

receives new ones

Algorithm 2 DBCA Algorithm from point of view of node ni in the cluster setting

1: Parameters: number of communication rounds T; outdegree k; number of nodes N; learning rate

η; model parameters θ; probability vector inside the cluster γ; distance parameter p; weighting

factor wf; cluster c; communication modulo m

2: for t in 0,1, ...,T communication rounds do

3: θt+1
i ← g r adi ent_descent (θ̂t

i ,η), in local training

4: if t%m == 0 then

5: send θt+1
i to k sampled nodes chosen nodes outside the cluster c

6: receive θt+1 from nodes that chose ni as target for this round t

7: else

8: send θt+1
i to k sampled nodes chosen with respect to γt+1

9: receive θt+1
r ecei ved from nodes that chose ni as target for this round t and update local received

models

10: for j in 0,1, ..., N nodes inside the cluster c do

11: di j ←||θt+1
i −θt

j ||p
12: γi j ← e−w f ∗di j

13: end for

14: γt+1 ← nor mali ze(γt+1)

15: end if

16: θ̂t+1
i ← aver ag e_model s(θt+1

i , [θt+1
r ecei ved1

,θt+1
r ecei ved2

...])

17: end for

An observation that we can mention, is that the non-clustered case is just a specific case of the

clustered case, where each node is its own cluster. Therefore, the cluster case is a generalization of

our methodology.

Note that other approaches were also explored, such as having a proxy node to imitate the label

distribution inside the cluster, but the underlying results were similar, so we omit their description

as they yield the same conclusion as the chosen algorithm for the cluster communication setting.
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Chapter 4

Evaluation

4.1 Experimental setup

4.1.1 Datasets and model

The CIFAR-10 dataset is a widely-used benchmark in computer vision, consisting of 60,000 color

images across 10 mutually exclusive classes (e.g., airplane, automobile, bird). Each image is 32x32

pixels in size. The dataset is evenly divided into 50,000 training and 10,000 test images. It is com-

monly used to evaluate image classification models, particularly in deep learning, due to its diverse

and balanced classes, making it a standard choice for model benchmarking and educational pur-

poses. The CIFAR-100 dataset, similar to CIFAR-10, is another popular benchmark in computer

vision but with a larger number of classes, therefore offering a more complex task.

LeNet is a pioneering convolutional neural network (CNN) architecture developed by Yann Le-

Cun and colleagues in the late 1980s. Originally designed for handwritten digit recognition in the

MNIST dataset, LeNet consists of a series of convolutional and subsampling (pooling) layers, fol-

lowed by fully connected layers leading to a softmax classifier. The architecture is relatively simple,

with seven layers (including convolutional, pooling, and fully connected layers) and demonstrates

the power of CNNs in extracting spatial hierarchies from images. LeNet laid the foundation for

modern deep learning architectures and remains influential in the development of more complex

CNNs.

4.1.2 Baselines

We chose to compare against two main baselines:
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• DAC, which, to the best of our knowledge, is one the latest and top-performing approach for

personalized decentralized learning on clustered non-IID data. DAC employs a dynamic com-

munication topology and has been evaluated in environments with clusters resembling our

setup. This approach adjusts communication weights between nodes according to their data

distributions, thereby improving learning efficiency and performance in clustered scenarios.

• Epidemic learning approach, which is recognized as an effective method for decentralized

learning, particularly in large-scale, distributed environments. This approach is particularly

well-suited for non-IID data scenarios, as it facilitates robust information sharing across

nodes, ensuring that diverse data distributions are adequately captured. Its adaptability and

efficiency make it a strong benchmark for evaluating decentralized learning methods.

4.1.3 Experiment settings

The principal research is about cluster and non-cluster accuracy in a non-IID setting. The main

research we have done was realized with the following parameters: 32 Nodes, 1600 communication

rounds and outdegree of 5 (log of the number of nodes) for the non-cluster case, outdegree of 3 for

the cluster communication (log of the size of the cluster). Then 10 local training rounds, a learning

rate of 0.05, euclidean distance and a weighting factor of 10.

In our setting, we obtain niid through dirichlet partitioning. It is a technique used to simulate

non-IID data distributions by dividing a dataset into subsets according to a Dirichlet distribution.

The method allows control over the degree of data skewness across partitions via the α param-

eter, enabling realistic modeling of heterogeneous data distributions in decentralized learning

environments. This approach is particularly useful in decentralized learning to create diverse,

non-overlapping data subsets that better reflect real-world scenarios. To create the cluster,s the

experiments set up 2 dirichlet partitionings, the first one to create the clusters, and the second one

to create the node datasets from the clusters data. Note again, that we focus on labels skew in the

setting, such that each node has a significantly different label distribution.

In the presented results, we chose to run Epidemic Learning for 40 communications rounds

before DBCA, it makes the information flow efficiently and improves learning capacity compared to

the vanilla version without it.

4.1.4 Results

The main focus of our research was to find out if by communicating with nodes that are more similar

than others, the accuracy would improve or not.
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No cluster case

One of the highlight of our work is that we proved that in some heterogeneity levels, communicating

with nodes that are different, data wise (i.e different label distributions), to the local node ends ups

improving the overall accuracy of the setting.

To begin, observe the plot 4.1, it shows that our method outperforms our baselines in the setting

where alpha is 0.5, therefore in an environment where heterogeneity is present but not extreme. The

believed explanation behind this, is that nodes improve their prediction power on class samples

present in low percentages by sharing their model with nodes that are far away data related. As the

node receiving the model, if very different will likely communicate back with the original node sender.

By receiving information of models trained on various data, it will improve the local generalization

power of the local node on samples present in low quantity in the training data.

Figure 4.1: Performances of the baselines compared to DBCA in a setting with alpha=0.5

To illustrate this, take weighting factors of 10/-10 and observe the accuracy results presented

in plot 4.2. In this case, we have the following communication probabilities for nodes ni and n j at

time step t (t ′ is the time step of the round where we last received a model from node n j ):
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• For a weighting factor of 10, we have the following communication strategy:

P (ni ,n j ) = 1

e−10∗||θt
i −θt

j
′ ||2 = e10∗||θt

i −θt
j

′ ||2

• For a weighting factor of -10, we have the following communication strategy:

P (ni ,n j ) = 1

e10∗||θt
i −θt

j
′ ||2

As a result, we can deduce the following:

• For a weighting factor of 10, the higher the distance between the model parameters, the higher

the probability of communicating between the nodes. Therefore, the more dissimilar the

nodes, the more likely they’re going to communicate.

• For a weighting factor of -10, the higher the distance between the model parameters, the lower

the probability of communicating between the nodes. Therefore, the more dissimilar the

nodes, the less likely their going to communicate.

This dissimilar and similar communication methods are compared in the plot 4.2. We indeed

observe that in the case of some heterogeneity, with alpha being 0.5, we obtain a better accuracy

when communicating with dissimilar nodes.

19



Figure 4.2: Performance of DBCA with different weighting factor in a setting with alpha=0.5

Nevertheless, the plot 4.3 shows that our method does worse in scenarios where heterogeneity

is extreme. As indicated, when alpha is 0.1, the setting scenario implies a quite heavy non-IDD

presence. The nodes are so skewed at label distribution, that, the vast majority of the train dataset is

made of a single label. In this case then, communication with other nodes ends up decreasing the

local accuracy compared to not communication at all with other nodes, as observed in the plot.
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Figure 4.3: Performance of DBCA compare to Epidemic Learning and DBCA without communication

(local training only) in a setting with alpha=0.1

However too, when there is no heterogeneity, such as when alpha is close to 1, our algorithm

under-performs epidemic learning, as one can observe in the plot 4.4. A behavior that was observed

during the experiments, is that DBCA will not converge to communicate to some restricted nodes if

there is not enough non-IDD in the setting, and thus will behave like Epidemic Learning.
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Figure 4.4: Performance of DBCA compared to Epidemic Learning and DBCA without communica-

tion (local training only) in a setting with alpha close to 1

The algorithm also performs well on other more diverse datasets, take for instance CIFAR-100, in

4.5 we have the performance of DBCA which still outperforms Epidemic Learning in more complex

tasks.
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Figure 4.5: Performance of DBCA compared to Epidemic Learning on CIFAR-100 for an alpha of 0.5

Clustered case

In the clustered case, communicating with non-similar nodes also improves accuracy.

To show this research result, we present this setup: create 4 clusters, nodes communicate mostly

within the cluster, but from time to time they randomly choose nodes outside of their cluster, and

send their model. We plot one of these experiments in 4.6, as observed, during rounds where nodes

communicate with nodes outside of their cluster the global accuracy of the setting improves as seen

in the spikes.
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Figure 4.6: Performance of DBCA on different cluster setups, dirichlet 1 representing the first dirichlet

split in the data to isolate the cluster, and dirichlet 2 to sample nodes from the clusters

If we take the case with the first split equal to alpha_1=0.3 and after alpha_2=0.7, and compare it

to other possible communication methods for the clusters in 4.7 we observe that for this cluster setup

we actually underperform Epidemic Learning. However, we also observe that, by communicating

only with nodes outside the cluster we obtain better results than by limiting the communication

inside of it. As we have made our setting such that nodes belonging to the same cluster are very

similar, we showed differently that by communicating with nodes that are dissimilar we can improve

the overall accuracy in decentralized learning. Another similar example can be found here 7.1.
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Figure 4.7: Performance of DBCA cluster, compared to other possible communication methods in a

split with alpha_1=0.3 and alpha_2=0.7

4.1.5 Sensitivity to hyperparameters

During the experiments done in our research, we tried out more parameters in our setting. To

mention a few:

• Learning rate tuning: 0.025, 0.05, 0.1, adding learning rate decay

• Scaling 8 nodes, 16 nodes, 32 nodes, 64 nodes

• Distance: L1 distance, KL distance

• Number of rounds

• Knowledge distillation

Nevertheless, none of these parameter tunings had a significant impact on our results, which

highlights that the parameter adjustment mentioned and done in our experiments were the principal

drivers of the results we managed to obtain.
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Chapter 5

Conclusion

This work has made a contribution to the field of decentralized learning (DL) in non-IID settings,

particularly through the development and evaluation of the Distance Based Communication Algo-

rithm (DBCA). By leveraging model distance to guide inter-node communication, DBCA introduces

a novel probabilistic approach that facilitates both intra and inter cluster exchanges. Our findings

show that communicating with dissimilar nodes can significantly enhance overall accuracy in de-

centralized learning systems. This discovery highlights the importance of diversity in information

sharing, especially in heterogeneous data environments.

The effectiveness of DBCA is particularly evident in scenarios with moderate data heterogeneity.

In these cases, DBCA consistently outperformed existing methods, including Epidemic Learning and

Decentralized Adaptive Clustering (DAC), demonstrating its robustness and adaptability. However,

we also observed that in extreme cases of heterogeneity or near-homogeneity, the benefits of DBCA

are diminished, emphasizing the need to tailor communication strategies based on the degree of

data skewness.

In clustered settings, we showed that by allowing nodes to occasionally communicate with

those outside their cluster, it would improve overall model performance. This suggests that even

in highly similar environments, introducing diversity in communication can enhance learning

outcomes. Additionally, our experiments on more complex datasets, such as CIFAR-100, confirmed

the potential of DBCA to generalize across a wide range of tasks, further showcasing its versatility in

decentralized learning scenarios.

Moreover, our experiments demonstrated that DBCA is robust to hyperparameter tuning, with

its core benefits largely unaffected by adjustments in learning rates, node scaling, or communication

rounds. This robustness makes DBCA an interesting tool for decentralized systems where practical

constraints may limit the ability to fine-tune models across various nodes.

In conclusion, the DBCA algorithm advances decentralized learning by strategically balancing
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model similarity and diversity in node communication, providing a novel method for optimizing

performance in non-IID environments. The results of this work could gear the design of new decen-

tralized learning systems ideas, particularly in real-world applications where data heterogeneity is

the norm.
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Chapter 6

Discussion

Looking forward, there are several promising avenues for future research. One direction is to

explore dynamic adaptations of DBCA that can respond to varying degrees of heterogeneity over

time, allowing the algorithm to adjust its communication probabilities as data distributions evolve.

Additionally, extending DBCA to handle more complex real-world scenarios—such as those involving

time-varying networks or highly imbalanced data—could unlock further potential in fields like

healthcare, finance, and distributed sensor networks. Another compelling direction would be to

investigate hybrid approaches that combine DBCA with other advanced decentralized learning

techniques, potentially creating more robust and efficient systems capable of handling even more

diverse and extreme data environments.

By continuing to refine and expand upon DBCA, future work can address the limitations observed

in extreme heterogeneity and homogeneity, pushing the boundaries of decentralized learning in

increasingly complex and challenging settings.

Also, for the clustered case, new algorithm implementations inspired by DBCA can by tried, as

using cluster proxies, PCA decomposition of the data nodes to then communicate and further ideas.
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Chapter 7

Appendix

Figure 7.1: Performance of DBCA cluster, compared to other possible communication methods in a

split with alpha_1=0.5 and alpha_2=0.5
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