Publications

2024

Journal Articles

A microbial-derived succinylated bile acid to safeguard liver health

A. Perino; H. C. E. Demagny; K. Schoonjans 

Cell. 2024-05-23. Vol. 187, num. 11, p. 2687-2689. DOI : 10.1016/j.cell.2024.04.020.

Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma

Y. Kim; K-Y. Jung; Y. H. Kim; P. Xu; B. E. Kang et al. 

Drug Resistance Updates. 2024-01-25. Vol. 73, p. 101054. DOI : 10.1016/j.drup.2024.101054.

Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1

R. Rodriguez-Agudo; I. Gonzalez-Recio; M. Serrano-Macia; M. Bravo; P. Petrov et al. 

Jhep Reports. 2024-01-01. Vol. 6, num. 1, p. 100918. DOI : 10.1016/jjhepr.2023.100918.

2023

Journal Articles

Genetic and dietary modulators of the inflammatory response in the gastrointestinal tract of the BXD mouse genetic reference population

X. Li; J-D. H. Morel; G. Benegiamo; J. G. A. Poisson; A. Bachmann et al. 

Elife. 2023-10-19. Vol. 12, p. RP87569. DOI : 10.7554/eLife.87569.

Asparagine protects pericentral hepatocytes during acute liver injury

Y. Sun; H. Demagny; A. Faure; F. Pontanari; A. Jalil et al. 

Journal Of Clinical Investigation. 2023-04-03. Vol. 133, num. 7, p. e163508. DOI : 10.1172/JCI163508.

Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs

E. Yildiz; G. El Alam; A. Perino; A. Jalil; P-D. Denechaud et al. 

Elife. 2023-03-06. Vol. 12, p. e81926. DOI : 10.7554/eLife.81926.

2022

Journal Articles

V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans

T. Y. Li; A. W. Gao; X. Li; H. Li; Y. J. Liu et al. 

Journal of Cell Biology. 2022-10-31. Vol. 222, num. 1. DOI : 10.1083/jcb.202205045.

Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis

H. Li; A. Perino; Q. Huang; G. V. G. Von Alvensleben; A. Banaei-Esfahani et al. 

Cell Metabolism. 2022-10-04. Vol. 34, num. 10, p. 1594-+. DOI : 10.1016/j.cmet.2022.08.015.

Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer

W. K. L. Doolittle; S. Park; S. G. Lee; S. Jeong; G. Lee et al. 

Oncogene. 2022-10-04. DOI : 10.1038/s41388-022-02484-7.

The Slc25a47 locus is a novel determinant of hepatic mitochondrial function implicated in liver fibrosis

N. Bresciani; H. Demagny; V. Lemos; F. Pontanari; X. Li et al. 

Journal Of Hepatology. 2022-10-01. Vol. 77, num. 4, p. 1071-1082. DOI : 10.1016/j.jhep.2022.05.040.

Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance

T. Laura; H. Helene; M. Melusine; G. Manon; D. H. Angelique et al. 

Advanced Science. 2022-04-18.  p. 2200626. DOI : 10.1002/advs.202200626.

Metabolic Messengers: bile acids

A. Perino; K. Schoonjans 

Nature Metabolism. 2022-03-25. DOI : 10.1038/s42255-022-00559-z.

2021

Journal Articles

Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis

M. Reich; L. Spomer; C. Klindt; K. Fuchs; J. Stindt et al. 

Journal Of Hepatology. 2021-09-01. Vol. 75, num. 3, p. 634-646. DOI : 10.1016/j.jhep.2021.03.029.

Short Article Hypothalamic bile acid-TGR5 signaling protects from obesity

A. Castellanos-Jankiewicz; O. Guzman-Quevedo; V. S. Fenelon; P. Zizzari; C. Quarta et al. 

Cell Metabolism. 2021-07-06. Vol. 33, num. 7, p. 1483-1492.e10. DOI : 10.1016/j.cmet.2021.04.009.

Central anorexigenic actions of bile acids are mediated by TGR5

A. Perino; L. A. Velazquez-Villegas; N. Bresciani; Y. Sun; Q. Huang et al. 

Nature Metabolism. 2021-05-01. Vol. 3, num. 5, p. 595-603. DOI : 10.1038/s42255-021-00398-4.

Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology

Y. Sun; H. C. E. Demagny; K. Schoonjans 

Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2021-04-20. Vol. 1867, num. 8, p. 166145. DOI : 10.1016/j.bbadis.2021.166145.

Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver

B. Mathur; A. Shajahan; W. Arif; Q. Chen; N. J. Hand et al. 

Science Advances. 2021-04-01. Vol. 7, num. 17, p. eabf4865. DOI : 10.1126/sciadv.abf4865.

Dietary Fiber Is Essential to Maintain Intestinal Size, L-Cell Secretion, and Intestinal Integrity in Mice

J. E. Hunt; B. Hartmann; K. Schoonjans; J. J. Holst; H. Kissow 

Frontiers In Endocrinology. 2021-02-26. Vol. 12, p. 640602. DOI : 10.3389/fendo.2021.640602.

TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation

Y. Shi; W. Su; L. Zhang; C. Shi; J. Zhou et al. 

Frontiers In Immunology. 2021-02-22. Vol. 11, p. 609060. DOI : 10.3389/fimmu.2020.609060.

Molecular physiology of bile acid signaling in health, disease, and aging

A. Perino; H. C. E. Demagny; L. A. Velazquez Villegas; K. Schoonjans 

Physiological Reviews. 2021. Vol. 101, num. 2, p. 683-731. DOI : 10.1152/physrev.00049.2019.

Pancreatic Sirtuin 3 Deficiency Promotes Hepatic Steatosis by Enhancing 5-Hydroxytryptamine Synthesis in Mice With Diet-Induced Obesity

X. Ming; A. C. K. Chung; D. Mao; H. Cao; B. Fan et al. 

Diabetes. 2021-01-01. Vol. 70, num. 1, p. 119-131. DOI : 10.2337/db20-0339.

TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury

H. Zhou; S. Zhou; Y. Shi; Q. Wang; S. Wei et al. 

American Journal Of Transplantation. 2021. Vol. 21, num. 4, p. 1453-1464. DOI : 10.1111/ajt.16327.

2020

Journal Articles

Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis

B. Mathur; W. Arif; M. E. Patton; R. Faiyaz; J. Liu et al. 

Jhep Reports. 2020-10-01. Vol. 2, num. 5, p. 100140. DOI : 10.1016/j.jhepr.2020.100140.

Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration

G. Sorrentino; A. Perino; E. Yildiz; G. El Alam; M. B. Sleiman et al. 

Gastroenterology. 2020-09-01. Vol. 159, num. 3, p. 956-968.e8. DOI : 10.1053/j.gastro.2020.05.067.

Compound 18 Improves Glucose Tolerance in a Hepatocyte TGR5-dependent Manner in Mice

M. M. Holter; M. K. Chirikjian; D. A. Briere; A. Maida; K. W. Sloop et al. 

Nutrients. 2020-07-17. Vol. 12, num. 7, p. 2124. DOI : 10.3390/nu12072124.

Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis

E. Bellafante; S. McIlvride; V. Nikolova; H. M. Fan; L. B. Manna et al. 

Scientific Reports. 2020-07-13. Vol. 10, num. 1, p. 11523. DOI : 10.1038/s41598-020-67968-6.

Mechano-modulatory synthetic niches for liver organoid derivation

G. Sorrentino; S. Rezakhani; E. Yildiz; S. Nuciforo; M. H. Heim et al. 

Nature Communications. 2020-07-10. Vol. 11, num. 1, p. 3416. DOI : 10.1038/s41467-020-17161-0.

L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling

M. L. Lund; G. Sorrentino; K. L. Egerod; C. Kroone; B. Mortensen et al. 

Diabetes. 2020-04-01. Vol. 69, num. 4, p. 614-623. DOI : 10.2337/db19-0764.

2019

Journal Articles

Identifying gene function and module connections by the integration of multispecies expression compendia

H. Li; D. Rukina; F. P. A. David; T. Y. Li; C-M. Oh et al. 

Genome Research. 2019-12-01. Vol. 29, num. 12, p. 2034-2045. DOI : 10.1101/gr.251983.119.

The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver

C. Klindt; M. Reich; B. Hellwig; J. Stindt; J. Rahnenfuehrer et al. 

Cells. 2019-11-01. Vol. 8, num. 11, p. 1467. DOI : 10.3390/cells8111467.

The Ovulatory Signal Precipitates LRH-1 Transcriptional Switching Mediated by Differential Chromatin Accessibility

S. Bianco; A-M. Bellefleur; E. Beaulieu; C. J. Beauparlant; K. Bertolin et al. 

Cell Reports. 2019-08-27. Vol. 28, num. 9, p. 2443-2454.e4. DOI : 10.1016/j.celrep.2019.07.088.

NTCP deficiency in mice protects against obesity and hepatosteatosis

J. M. Donkers; S. Kooijman; D. Slijepcevic; R. F. Kunst; R. L. P. R. Abbing et al. 

Jci Insight. 2019-07-25. Vol. 4, num. 14, p. e127197. DOI : 10.1172/jci.insight.127197.

The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions

C. Seitz; J. Huang; A-L. Geiselhoeringer; P. Galbani-Bianchi; S. Michalek et al. 

Science Advances. 2019-07-01. Vol. 5, num. 7, p. eaav9732. DOI : 10.1126/sciadv.aav9732.

A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model

T. Sajic; R. Ciuffa; V. Lemos; P. Xu; V. Leone et al. 

Scientific Reports. 2019-05-06. Vol. 9, p. 6913. DOI : 10.1038/s41598-019-43091-z.

Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents

C. B. Christiansen; S. A. J. Trammell; N. J. W. Albrechtsen; K. Schoonjans; R. Albrechtsen et al. 

American Journal Of Physiology-Gastrointestinal And Liver Physiology. 2019-05-01. Vol. 316, num. 5, p. G574-G584. DOI : 10.1152/ajpgi.00010.2019.

The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging

D. D’Amico; A. Mottis; F. Potenza; V. Sorrentino; H. Li et al. 

Molecular Cell. 2019-02-21. Vol. 73, num. 4, p. 775-787.e10. DOI : 10.1016/j.molcel.2018.11.034.

2018

Journal Articles

De novo NAD(+) synthesis enhances mitochondrial function and improves health

E. Katsyuba; A. Mottis; M. Zietak; F. De Franco; V. van der Velpen et al. 

Nature. 2018-11-15. Vol. 563, num. 7731, p. 354-359. DOI : 10.1038/s41586-018-0645-6.

Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas

I. Cobo; P. Martinelli; M. Flandez; L. Bakiri; M. Zhang et al. 

Nature. 2018. Vol. 554, num. 7693, p. 533-537. DOI : 10.1038/nature25751.

The Orphan Nuclear Receptor Liver Homolog Receptor-1 (Nr5a2) Regulates Ovarian Granulosa Cell Proliferation

M. Meinsohn; F. Morin; K. Bertolin; R. Duggavathi; K. Schoonjans et al. 

JOURNAL OF THE ENDOCRINE SOCIETY. 2018. Vol. 2, num. 1, p. 24-41. DOI : 10.1210/js.2017-00329.

TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue

L. Velazquez-Villegas; A. Perino; V. Lemos; M. Zietak; M. Nomura et al. 

Nature Communications. 2018. Vol. 9, p. 245. DOI : 10.1038/s41467-017-02068-0.

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus

N. Cobo-Vuilleumier; P. Lorenzo; N. Rodriguez; I. Gomez; E. Fuente-Martin et al. 

Nature Communications. 2018. Vol. 9, p. 162. DOI : 10.1038/s41467-018-03943-0.

Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas

R. Kuhre; N. Albrechtsen; O. Larsen; S. Jepsen; E. Balk-Moller et al. 

MOLECULAR METABOLISM. 2018. Vol. 11, p. 84-95. DOI : 10.1016/j.molmet.2018.03.007.

An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function

H. Li; X. Wang; D. Rukina; Q. Huang; T. Lin et al. 

Cell Systems. 2018. Vol. 6, num. 1, p. 90-102. DOI : 10.1016/j.cels.2017.10.016.

2017

Journal Articles

Small Heterodimer Partner Deletion Prevents Hepatic Steatosis and When Combined With Farnesoid X Receptor Loss Protects Against Type 2 Diabetes in Mice

O. Akinrotimi; R. Riessen; P. Vanduyne; J. E. Park; Y. K. Lee et al. 

Hepatology. 2017. Vol. 66, num. 6, p. 1854-1865. DOI : 10.1002/hep.29305.

A multiscale study of the role of dynamin in the regulation of glucose uptake

R. Trouillon; M. C. Letizia; K. J. Menzies; L. Mouchiroud; J. Auwerx et al. 

Integrative Biology. 2017. Vol. 9, num. 10, p. 810-819. DOI : 10.1039/c7ib00015d.

Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human beta-defensin-1 and-2 secretion by colonic epithelial cells

N. K. Lajczak; V. Saint-Criq; A. M. O’Dwyer; A. Perino; L. Adorini et al. 

Faseb Journal. 2017. Vol. 31, num. 9, p. 3848-3857. DOI : 10.1096/fj.201601365R.

Ovary-specific depletion of the nuclear receptor Nr5a2 compromises expansion of the cumulus oophorus but not fertilization by intracytoplasmic sperm injection

K. Bertolin; M-C. Meinsohn; J. Suzuki; J. Gossen; K. Schoonjans et al. 

Biology Of Reproduction. 2017. Vol. 96, num. 6, p. 1231-1243. DOI : 10.1093/biolre/iox045.

beta-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue

E. Somm; H. Henry; S. J. Bruce; S. Aeby; M. Rosikiewicz et al. 

Jci Insight. 2017. Vol. 2, num. 8, p. e91809. DOI : 10.1172/jci.insight.91809.

Plasma Membrane-bound G Protein-coupled Bile Acid Receptor Attenuates Liver Ischemia/Reperfusion Injury Via the Inhibition of Toll-like Receptor 4 Signaling in Mice

H. Yang; H. Zhou; L. Zhuang; J. Auwerx; K. Schoonjans et al. 

Liver Transplantation. 2017. Vol. 23, num. 1, p. 63-74. DOI : 10.1002/lt.24628.

Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease

S. Stein; V. Lemos; P. Xu; H. Demagny; X. Wang et al. 

Journal Of Clinical Investigation. 2017. Vol. 127, num. 2, p. 583-592. DOI : 10.1172/Jci85499.

Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease

K. Gariani; D. Ryu; K. J. Menzies; H-S. Yi; S. Stein et al. 

Journal Of Hepatology. 2017. Vol. 66, num. 1, p. 132-141. DOI : 10.1016/j.jhep.2016.08.024.

2016

Journal Articles

LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer

P. Xu; M. H. Oosterveer; S. Stein; H. Demagny; D. Ryu et al. 

Genes & Development. 2016-06-01. Vol. 30, num. 11, p. 1255-1260. DOI : 10.1101/gad.277483.116.

Bile acid-FXR alpha pathways regulate male sexual maturation in mice

M. Baptissart; E. Martinot; A. Vega; L. Sedes; B. Rouaisnel et al. 

Oncotarget. 2016. Vol. 7, num. 15, p. 19468-19482. DOI : 10.18632/oncotarget.7153.

NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice

H. Zhang; D. Ryu; Y. Wu; K. Gariani; X. Wang et al. 

Science (New York, N.Y.). 2016. Vol. 352, num. 6292, p. 1436-1443. DOI : 10.1126/science.aaf2693.

Eliciting the mitochondrial unfolded protein response via NAD+ repletion reverses fatty liver disease

K. L. Gariani; K. J. Menzies; D. Ryu; C. J. Wenger; X. Wang et al. 

Hepatology. 2016. Vol. 63, num. 4, p. 1190-1204. DOI : 10.1002/hep.28245.

2015

Journal Articles

Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

C. A. Brighton; J. Rievaj; R. E. Kuhre; L. L. Glass; K. Schoonjans et al. 

Endocrinology. 2015. Vol. 156, num. 11, p. 3961-3970. DOI : 10.1210/en.2015-1321.

Women in Metabolism: Part I

B. Kahn; M. C. Simon; B. B. Zhang; J. R. Zierath; D. M. Muoio et al. 

Cell Metabolism. 2015. Vol. 21, num. 5, p. 654-657. DOI : 10.1016/j.cmet.2015.04.017.

Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells

M-S. Trabelsi; M. Daoudi; J. Prawitt; S. Ducastel; V. Touche et al. 

Nature Communications. 2015. Vol. 6, p. 7629. DOI : 10.1038/ncomms8629.

Phosphorylation of the nuclear receptor co-repressor 1 by protein kinase B (PKB/Akt) switches its co-repressor targets in the liver

Y. S. Jo; D. Ryu; A. Maida; X. Wang; R. M. Evans et al. 

Hepatology (Baltimore, Md.). 2015. Vol. 62, num. 5, p. 1606-1618. DOI : 10.1002/hep.27907.

Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

S. Fang; J. M. Suh; S. M. Reilly; E. Yu; O. Osborn et al. 

Nature Medicine. 2015. Vol. 21, num. 2, p. 71-77. DOI : 10.1038/nm.3760.

Identification of the Link Between the Hypothalamo-Pituitary Axis and the Testicular Orphan Nuclear Receptor NR0B2 in Adult Male Mice

A. Vega; E. Martinot; M. Baptissart; A. De Haze; J-P. Saru et al. 

Endocrinology. 2015. Vol. 156, num. 2, p. 660-669. DOI : 10.1210/en.2014-1418.

Molecular basis for the regulation of the nuclear receptor LRH-1

S. Stein; K. Schoonjans 

Current Opinion In Cell Biology. 2015. Vol. 33, p. 26-34. DOI : 10.1016/j.ceb.2014.10.007.

LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPAR gamma ligand synthesis

L. Lefevre; H. Authier; S. Stein; C. Majorel; B. Couderc et al. 

Nature Communications. 2015. Vol. 6, p. 6801. DOI : 10.1038/ncomms7801.

The Sirt1 activator SRT3025 provides atheroprotection in Apoe(-/-) mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression

M. X. Miranda; L. J. Van Tits; C. Lohmann; T. Arsiwala; S. Winnik et al. 

European Heart Journal. 2015. Vol. 36, num. 1, p. 51-59. DOI : 10.1093/eurheartj/ehu095.

2014

Journal Articles

TGR5 reduces macrophage migration through mTOR-induced C/EBP beta differential translation

A. Perino; T. W. H. Pols; M. Nomura; S. Stein; R. Pellicciari et al. 

Journal Of Clinical Investigation. 2014. Vol. 124, num. 12, p. 5424-5436. DOI : 10.1172/JCI76289.

Hepatotoxicity induced by neonatal exposure to diethylstilbestrol is maintained throughout adulthood via the nuclear receptor SHP

A. Vega; M. Baptissart; E. Martinot; J-P. Saru; S. Baron et al. 

Expert Opinion On Therapeutic Targets. 2014. Vol. 18, num. 12, p. 1367-1376. DOI : 10.1517/14728222.2014.964209.

SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport

S. Stein; M. H. Oosterveer; C. Mataki; P. Xu; V. Lemos et al. 

Cell metabolism. 2014. Vol. 20, num. 4, p. 603-13. DOI : 10.1016/j.cmet.2014.07.023.

A SIRT7-Dependent Acetylation Switch of GABPβ1 Controls Mitochondrial Function

D. Ryu; Y. S. Jo; G. Lo Sasso; S. Stein; H. Zhang et al. 

Cell metabolism. 2014. Vol. 20, num. 5, p. 856-869. DOI : 10.1016/j.cmet.2014.08.001.

Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

E. Pirinen; C. Canto; Y. S. Jo; L. Morato; H. Zhang et al. 

Cell Metabolism. 2014. Vol. 19, num. 6, p. 1034-1041. DOI : 10.1016/j.cmet.2014.04.002.

SIRT2 Deficiency Modulates Macrophage Polarization and Susceptibility to Experimental Colitis

G. Lo Sasso; K. J. Menzies; A. Mottis; A. Piersigilli; A. Perino et al. 

Plos One. 2014. Vol. 9, num. 7, p. e103573. DOI : 10.1371/journal.pone.0103573.

Another Shp on the Horizon for Bile Acids

A. Perino; K. Schoonjans 

Cell Metabolism. 2014. Vol. 20, num. 2, p. 203-205. DOI : 10.1016/j.cmet.2014.07.019.

Bile Acids Alter Male Fertility Through G-Protein-Coupled Bile Acid Receptor 1 Signaling Pathways in Mice

M. Baptissart; A. Vega; E. Martinot; A. J. Pommier; S. M. Houten et al. 

Hepatology. 2014. Vol. 60, num. 3, p. 1054-1065. DOI : 10.1002/hep.27204.

The Orphan Nuclear Receptor Nr5a2 Is Essential for Luteinization in the Female Mouse Ovary

K. Bertolin; J. Gossen; K. Schoonjans; B. D. Murphy 

Endocrinology. 2014. Vol. 155, num. 5, p. 1931-1943. DOI : 10.1210/en.2013-1765.

Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer

G. Lo Sasso; D. Ryu; L. Mouchiroud; S. C. Fernando; C. L. Anderson et al. 

PloS One. 2014. Vol. 9, num. 7, p. e102495. DOI : 10.1371/journal.pone.0102495.

Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRas(G12V)-driven pancreatic tumourigenesis

M. Flandez; J. Cendrowski; M. Canamero; A. Salas; N. Del Pozo et al. 

Gut. 2014. Vol. 63, num. 4, p. 647-655. DOI : 10.1136/gutjnl-2012-304381.

2013

Journal Articles

Probing the Binding Site of Bile Acids in TGR5

A. Macchiarulo; A. Gioiello; C. Thomas; T. W. H. Pols; R. Nuti et al. 

Acs Medicinal Chemistry Letters. 2013. Vol. 4, num. 12, p. 1158-1162. DOI : 10.1021/ml400247k.

Metabolic Characterization of a Sirt5 deficient mouse model

J. Yu; S. Sadhukhan; L. G. Noriega; N. Moullan; B. He et al. 

Scientific Reports. 2013. Vol. 3, p. 2806. DOI : 10.1038/srep02806.

The Receptor TGR5 Protects the Liver From Bile Acid Overload During Liver Regeneration in Mice

N. Pean; I. Doignon; I. Garcin; A. Besnard; B. Julien et al. 

Hepatology. 2013. Vol. 58, num. 4, p. 1451-1460. DOI : 10.1002/hep.26463.

Liver receptor homolog-1 is essential for pregnancy

C. Zhang; M. J. Large; R. Duggavathi; F. J. Demayo; J. P. Lydon et al. 

Nature Medicine. 2013. Vol. 19, num. 8, p. 1061-1066. DOI : 10.1038/nm.3192.

The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling

L. Mouchiroud; R. H. Houtkooper; N. Moullan; E. Katsyuba; D. Ryu et al. 

Cell. 2013. Vol. 154, num. 2, p. 430-41. DOI : 10.1016/j.cell.2013.06.016.

NR5A2 Regulates Lhb and Fshb Transcription in Gonadotrope-Like Cells In Vitro, but Is Dispensable for Gonadotropin Synthesis and Fertility In Vivo

J. Fortin; V. Kumar; X. Zhou; Y. Wang; J. Auwerx et al. 

Plos One. 2013. Vol. 8, num. 3, p. e59058. DOI : 10.1371/journal.pone.0059058.

The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice

F. Alemi; D. P. Poole; J. Chiu; K. Schoonjans; F. Cattaruzza et al. 

Gastroenterology. 2013. Vol. 144, num. 1, p. 145-154. DOI : 10.1053/j.gastro.2012.09.055.

2012

Journal Articles

Bile Acid Binding Resin Improves Metabolic Control through the Induction of Energy Expenditure

M. Watanabe; K. Morimoto; S. M. Houten; N. Kaneko-Iwasaki; T. Sugizaki et al. 

PloS One. 2012. Vol. 7, num. 8, p. e38286. DOI : 10.1371/journal.pone.0038286.

Systems Genetics of Metabolism : The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits

P. Andreux; E. G. Williams; H. Koutnikova; R. Houtkooper; M-F. Champy et al. 

Cell. 2012. Vol. 150, num. 6, p. 1287-1299. DOI : 10.1016/j.cell.2012.08.012.

LRH-1-dependent glucose sensing determines intermediary metabolism in liver

M. H. Oosterveer; C. Mataki; H. Yamamoto; T. Harach; N. Moullan et al. 

Journal of Clinical Investigation. 2012. Vol. 122, num. 8, p. 2817-2826. DOI : 10.1172/JCI62368.

The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity

C. Cantó; R. Houtkooper; E. Pirinen; D. Youn; M. Oosterveer et al. 

Cell Metabolism. 2012. Vol. 15, num. 6, p. 838-847. DOI : 10.1016/j.cmet.2012.04.022.

TGR5 potentiates GLP-1 secretion in response to anionic exchange resins

T. Harach; T. W. H. Pols; M. Nomura; A. Maida; M. Watanabe et al. 

Scientific Reports. 2012. Vol. 2, p. 430. DOI : 10.1038/srep00430.

Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis

P. J. Fernandez-Marcos; E. H. Jeninga; C. Canto; T. Harach; V. C. J. de Boer et al. 

Scientific Reports. 2012. Vol. 2, p. 425. DOI : 10.1038/srep00425.

2011

Journal Articles

The metabolic footprint of aging in mice

R. H. Houtkooper; C. Argmann; S. M. Houten; C. Cantó; E. H. Jeninga et al. 

Scientific Reports. 2011. Vol. 1, p. 134. DOI : 10.1038/srep00134.

Mitochondrial Matrix Calcium Is an Activating Signal for Hormone Secretion

A. Wiederkehr; S. Gergo; D. Akhmedov; C. Mataki; C. W. Heizmann et al. 

Cell Metabolism. 2011. Vol. 13, p. 601-611. DOI : 10.1016/j.cmet.2011.03.015.

Local glucocorticoid production in the mouse lung is induced by immune cell stimulation

N. Hostettler; P. Bianchi; C. Gennari-Moser; D. Kassahn; K. Schoonjans et al. 

Allergy. 2011. Vol. 67, num. 2, p. 227-234. DOI : 10.1111/j.1398-9995.2011.02749.x.

TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading

T. Pols; M. Nomura; T. Harach; G. Lo Sasso; M. H. Oosterveer et al. 

Cell Metabolism. 2011. Vol. 14, num. 6, p. 747-757. DOI : 10.1016/j.cmet.2011.11.006.

Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO⁻₃ output

A. Baghdasaryan; T. Claudel; J. Gumhold; D. Silbert; L. Adorini et al. 

Hepatology (Baltimore, Md.). 2011. Vol. 54, num. 4, p. 1303-12. DOI : 10.1002/hep.24537.

Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure

M. Watanabe; Y. Horai; S. M. Houten; K. Morimoto; T. Sugizaki et al. 

The Journal of biological chemistry. 2011. Vol. 286, num. 30, p. 26913-20. DOI : 10.1074/jbc.M111.248203.

The bile acid membrane receptor TGR5: a valuable metabolic target

T. W. H. Pols; L. G. Noriega; M. Nomura; J. Auwerx; K. Schoonjans 

Digestive diseases (Basel, Switzerland). 2011. Vol. 29, num. 1, p. 37-44. DOI : 10.1159/000324126.

NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function

H. Yamamoto; E. G. Williams; L. Mouchiroud; C. Canto Alvarez; W. Fan et al. 

Cell. 2011. Vol. 147, num. 4, p. 827-839. DOI : 10.1016/j.cell.2011.10.017.

Lack of IL-2 in PPAR-alpha deficient mice triggers allergic contact dermatitis by affecting regulatory T cells

S. Dubrac; A. Elentner; K. Schoonjans; J. Auwerx; M. Schmuth 

European journal of immunology. 2011. Vol. 41, num. 7, p. 1980-1991. DOI : 10.1002/eji.201041357.

PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation

P. Bai; C. Canto Alvarez; H. Oudart; A. Brunyánszki; Y. Cen et al. 

Cell Metabolism. 2011. Vol. 13, num. 4, p. 461-468. DOI : 10.1016/j.cmet.2011.03.004.

2010

Journal Articles

The normal mechanisms of pregnancy-induced liver growth are not maintained in mice lacking the bile acid sensor Fxr

A. Milona; B. M. Owen; S. van Mil; D. Dormann; C. Mataki et al. 

American Journal Of Physiology-Gastrointestinal And Liver Physiology. 2010. Vol. 298, p. G151-G158. DOI : 10.1152/ajpgi.00336.2009.

The Intestinal Nuclear Receptor Signature With Epithelial Localization Patterns and Expression Modulation in Tumors

S. Modica; F. Gofflot; S. Murzilli; A. D’Orazio; L. Salvatore et al. 

Gastroenterology. 2010. Vol. 138, p. 636-U295. DOI : 10.1053/j.gastro.2009.09.060.