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Despite clear evidence of correlations between financial and medical statuses and decisions, most
models treat financial and health-related choices separately. This article bridges this gap by proposing
a tractable dynamic framework for the joint determination of optimal consumption, portfolio holdings,
health investment, and health insurance. We solve for the optimal rules in closed form and capitalize on
this tractability to gain a better understanding of the conditions under which separation between financial
and health-related decisions is sensible, and of the pathways through which wealth and health determine
allocations, welfare and other variables of interest such as expected longevity or the value of health.
Furthermore we show that the model is consistent with the observed patterns of individual allocations and
provide realistic estimates of the parameters that confirm the relevance of all the main characteristics of
the model.
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1. INTRODUCTION

A vast literature on the socioeconomic and health nexus shows that how wealthy and healthy
we are has a strong impact on both our financial and health-related decisions.1 In particular, this
literature reveals that health status is positively correlated with income, consumption and risky
asset holdings, and negatively correlated with health expenditures, whereas it has a mixed effect
on insurance coverage. On the other hand, an agent’s wealth correlates positively with all these
choice variables.

Taken together these stylized facts strongly suggest that any theoretical analysis of financial
and health-related allocations should be undertaken as that of a joint decision problem. Yet, aside

1. See Smith (1999, 2007, 2009) for an enlightening survey and recent evidence. See also Section 4.3 for cross-
sectional evidence from PSID data.
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from rare exceptions, the two are almost always analysed separately. At the risk of over-
simplifying, health models abstract from financial investment choices whereas health-related
considerations are usually absent from financial models. This segmentation might not be so prob-
lematic if it could be shown that the two types of decisions are indeed separable. Unfortunately,
in the absence of encompassing models, separation cannot even be verified and, thus, should not
be taken for granted. Otherwise, segmented models can only provide a partial understanding of
the intricate pathways through which wealth and health determine allocations and welfare.

This article bridges this gap by proposing a tractable dynamic model for the joint determination
of consumption, portfolio, health investment, and insurance coverage. Our modelling strategy
innovates by combining two well-accepted, but otherwise segmented, frameworks from the
Financial and Health Economics literatures within a unified setup. More precisely, we start
from a standard Merton (1971) portfolio and consumption choice problem with independent
and identically distributed (i.i.d.) returns and append to this model an insurance choice model, as
well as a costly health investment decision à la Grossman (1972) in which better health improves
labour income as well as reduces the agent’s morbidity and mortality risks through a decrease in
the arrival rates of the corresponding shocks.

We solve the model analytically and show that it can generate patterns of consumption,
portfolio, health expenditures, and insurance coverage that are consistent with those observed
empirically. In addition, our analytic solution allows us to determine the conditions under which
it is sensible to separate financial from health-related decisions, and also provides a natural way
of estimating the model. Capitalizing on this feature we estimate the key parameters of the
model using cross-sectional data from the Panel Study of Income Dynamics (PSID) and find
that our predicted rules are able to fit the data with reasonable parameter values that confirm
the relevance of all the model’s main characteristics. Importantly, these estimates also indicate
that the conditions for separation are not met and therefore justify the need for a joint dynamic
analysis of financial and health-related decisions.

As is well known (e.g. Shepard and Zeckhauser, 1984; Rosen, 1988; Bommier and Rochet,
2006; Bommier, 2010, among others), the specification of preferences is delicate in an endogenous
mortality setting such as ours. In the standard time-additive framework of Yaari (1965) and
Hakansson (1969) utility is computed as a sum of discounted period utilities up to the random time
of death. This associates death with a utility level of zero and, therefore, entails a counterintuitive
preference for death over life when the period utility is negative.2 Our approach to this problem
innovates by resorting to a class of recursive preferences that measures utility and consumption
in the same metric (Epstein and Zin, 1989; Duffie and Epstein, 1992b). With such preferences
death is associated with a consumption level of zero whereas life corresponds to strictly positive
consumption and, since preferences are monotonic, it follows that life is always preferred to
death, regardless of parameter values. Another novel feature of our preference specification is
that it assigns distinct risk aversion parameters to each of the three types of risk (financial,
morbidity, and mortality) present in the model.3 This feature is referred to as source-dependent

2. This is in particular the case for power utility functions with relative risk aversion larger than 1, as is often
found in the finance literature, and for negative exponential utility functions. To avoid this outcome, existing solutions
include adding a sufficiently large positive constant to utility (see Rosen, 1988; Becker et al., 2005; Hall and Jones,
2007 among others) or simply restricting the relative risk aversion of the power utility function to be smaller than one
(Shepard and Zeckhauser, 1984). Another possible solution is to equate death with full depreciation of the health stock
and impose Inada conditions on the flow utility of health (e.g. Yogo, 2009).

3. A further benefit of recursive preferences is that it also disentangles sentiment towards risk from attitudes
towards time. This appears particularly relevant in a context where longevity risk can be controlled. Indeed, the elasticity
of intertemporal substitution is shown to be a strong determinant of the responses of welfare and consumption to mortality,
risk.
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risk aversion (Skiadas, 2008, 2009) and our study constitutes the first application of such
preferences to the study of individual consumption, portfolio, and health-related choices in a
dynamic setting.

In our model, health is subject to diminishing returns to scale and enters the agent’s decision
problem through two channels. The first channel is referred to as the budget constraint channel
and captures the fact that better health increases labour income, e.g. through less frequent sick
leaves and/or better access to promotions for more assiduous workers. This explicit modelling
of the health dependence of income departs from standard approaches in which it is assumed
that agents get direct utility from being healthy.4 The second channel is referred to as the risk
channel and captures the fact that better health lowers morbidity and mortality risks by reducing
the arrival intensities of the corresponding discrete shocks. In this dimension, our model is more
general than other health risks models that typically consider a single endogenous risk.5 To gain
some intuition about the respective impact of these two channels, we start by abstracting from
the second by considering a model in which health risks are exogenous.

In this restricted version of the model, the arrival rates of mortality and morbidity shocks are
independent from the agent’s health and this feature admits a derivation of the optimal rules in
closed form. These solutions in turn permit an intuitive interpretation of the underlying economic
mechanisms, and establish that separating financial and health-related decisions is sensible under
exogenous health risks. More precisely, our results show that the agent’s problem can be split
into two parts: First, solve for the optimal health investment plan by maximizing the present
value of the agent’s income net of health investments to determine the agent’s human capital.
Second, compute the optimal consumption, portfolio, and insurance coverage to maximize the
agent’s utility given that his total wealth is equal to the sum of his financial wealth and human
capital.

The model with exogenous health risks is very tractable and captures some of the key
determinants of the agent’s decisions but, unfortunately, it also displays some important
shortcomings when confronted to the data. In particular, it counterfactually entails that both health
expenditures and insurance coverage are wealth independent as well as increasing in health, and
that health and wealth are perfect substitutes, contrary to recent evidence suggesting that the
marginal utility of wealth increases with health (e.g. Finkelstein et al., 2008, 2009). Motivated
by theses shortcomings we then turn to an unrestricted version of the model in which the agent’s
health influences his decisions through both the budget constraint channel and the risk channel.

Allowing for health-dependent arrival rates endogenizes the agent’s health risks, and implies
that the model can no longer be solved in closed form. To circumvent this difficulty, we resort
to a perturbation analysis that uses the explicit solution of the restricted model as the starting
point of a first order expansion with respect to the parameters that govern the health dependence
of the intensities associated with mortality and morbidity shocks. This approach delivers an
explicit solution for the approximate optimal rules and, thereby, permits a clear interpretation
of the marginal impact of endogenous morbidity and mortality risks on the agent’s decisions. In
particular, we show that separating financial and health-related decisions remains optimal as long
as mortality is exogenous, but not otherwise. Furthermore, we show that the unrestricted model
fixes the shortcomings of the model with exogenous health risks and can potentially explain the
cross-sectional patterns found in the data.

4. See for example Grossman (1972); Hall and Jones (2007); Edwards (2008); and Yogo (2009)
5. See Hall and Jones (2007); Chang (2005) for models with endogenous mortality but exogenous morbidity,

and Picone et al. (1998); Edwards (2008); and Laporte and Ferguson (2007) among others for models with endogenous
morbidity but exogenous mortality.
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To verify whether this is the case we estimate the quadrivariate system of optimal rules derived
from the theoretical model to identify a set of key parameters. The estimation results, obtained
using a sample of individuals drawn from PSID, attest that the model with endogenous health risks
offers a good in-sample fit of the observed allocations with realistic parameter values, and confirm
the relevance of the main characteristics of the model. In particular, our parameter estimates
corroborate that preferences are non-time additive and display source-dependent risk aversion.
To investigate the out-of-sample performance of the model we derive explicit expressions for life
expectancy, as well as for the values of health and life, and then use the estimated parameters to
compute the prediction of the models regarding these quantities. The corresponding results are
realistic and compare favourably with received estimates in the literature. Overall, both in- and
out-of-sample results convey a similar message: Whereas a non-negligible part of morbidity and
mortality risks is attributable to endowed factors, agents can (and do) adjust both health-related
risks through health investments.

The three papers that are most closely related to our work are those of Edwards (2008), Yogo
(2009), and Hall and Jones (2007). Edwards (2008) studies financial decisions in the presence of
health shocks and focuses on higher morbidity risks for older people as a potential explanation
for the fall in risky asset holdings after retirement. His empirical findings suggest that medical
risks are indeed perceived as important by retired individuals, and are a key determinant of asset
holdings. We differ in that we abstract from life cycle, utilitarian effects, or bequests. Moreover,
his distributional assumptions on health are quite different from ours since sickness is modelled
as an exogenous, and uninsurable risk that requires constant expenditures once incurred. Yogo
(2009) is closer to us in that he also considers the implications of a model where health investments
are subject to diminishing returns to scale. However, his focus on housing and the welfare gains of
actuarially fair annuities is quite different. Moreover, he models health as generating direct utility
flows instead of our health-dependent labour income approach and does not allow for endogeneity
in health risks. Similar to us, Hall and Jones (2007) also consider an endogenous mortality model
with costly health investment and positive service flows of health. However, they do not consider
portfolio allocations and their focus on the time series of aggregate health spending and longevity
is very different from ours. Importantly, these papers provide neither joint analytical solutions for
consumption, portfolio, health expenditures, and insurance in the presence of endogenous health
risks, nor a structural estimation of these allocations.

The rest of this article is organized as follows. We introduce the theoretical model in Section 2.
The solution to the model is discussed in Section 3. We present the empirical evaluation of the
model in Section 4, and provide concluding remarks in Section 5. The proofs of all results are
gathered inAppendixA.Appendix B outlines a general version of the model where all coefficients
can depend on the agent’s age. Finally, some arguments omitted from the text are presented in
Appendix C, and Appendix D presents an overview of the cross-sectional PSID data that we use
in our estimation.

2. THE MODEL

This section describes an economic environment in which the agent has preferences over lifetime
consumption plans in the presence of partially controllable mortality and morbidity risks.

2.1. Survival and health dynamics

Let Tm denote the random duration of the agent’s lifetime or, equivalently the agent’s age at death,
and Ht represent his health status at age t. In the spirit of Ehrlich (2000), Ehrlich and Yin (2005),
and Hall and Jones (2007), we model the agent’s mortality as the first jump of a Poisson process
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Qm whose intensity depends on the agent’s health status. Specifically, the agent’s death intensity
is defined to be

λm(Ht−)= lim
τ→0

1

τ
Pt [t<Tm ≤ t+τ ]=λm0 +λm1H−ξm

t− (1)

for some non-negative constants λm0, λm1, and ξm ≥1 where Pt(·) is a conditional probability
and Ht− = lims↑t Hs. The fact that the intensity function is decreasing in health ensures that the
survival probability:

Pt[Tm> t+s]=1{Tm>t}Et

[
e−∫ t+s

t λm(Hτ−)dτ
]

(2)

is monotone increasing in the agent’s health status up to an exogenous ceiling that is determined
by the constant λm0>0. Intuitively, an agent may increase his survival probability by investing
in his health and still die from an exogenous shock that does not depend on controllable health
(e.g. an accident or certain types of cancer). Alternatively, this incompressible part of the intensity
can be interpreted as an endowed death probability that is determined by environmental and/or
biological factors.

The specification of the survival probability in (2) differs from those proposed in the literature
along three important dimensions. First, the incompressible part of the death intensity is made
constant rather than age-varying for tractability reasons (however, see Remark 1 for time-varying
extensions). Second, the endogenous part of the death intensity is a function of the agent’s current
health status rather than of his current health investment. This assumption implies that the agent
cannot freely alter his survival probability by investing large amounts in times of sickness and
reflects the path dependence of health-related decisions. Third, the death intensity in (1) is a
function of a stochastic rather than a deterministic health process.

To describe the dynamics of the health status, let Qs denote a Poisson process whose jumps
capture shocks to the agent’s health, and I be a non-negative predictable process that represents
the agent’s health investment.6 We assume that the agent’s health status evolves according to

dHt =
(
(It/Ht−)α−δ)Ht−dt−φHt−dQst, H0>0, (3)

for some constants δ≥0 and α,φ∈ (0,1) that represent the decay rate of health in the absence
of shocks, the degree of health adjustment costs and the fraction of health that is lost upon the
occurrence of a shock. The above dynamics imply that the expected instantaneous growth rate of
health

Et− [dHt/Ht−]=((It/Ht−)α−δ−φλs(Ht−)
)
dt (4)

is concave in the investment-to-health ratio. It follows that a given amount of health investment
has a larger impact on the agent’s health when he is currently unhealthy and thus models decreasing
returns to health investment.7

6. The constraint that health investment cannot be negative is standard in the health economics literature. See
for example Grossman (1972); Ehrlich and Chuma (1990); Chang (1996); Picone et al. (1998); Ehrlich (2000); Edwards
(2008); Hall and Jones (2007). It reflects the irreversibility of health-related expenditures and the fact that health is not a
traded asset.

7. Similar decreasing returns to health investments can be found in Ehrlich and Chuma (1990); Ehrlich (2000);
Ehrlich and Yin (2005). An equivalent interpretation of (3) is that the agent is endowed with a health production function
that is linear in gross health investment Ig = IαH1−α but faces convex adjustment costs that are given by I =H1−bIb

g with
b=1/α>1.
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Figure 1

Intensities of mortality shocks (solid line) and morbidity shocks (dashed line) as functions of the agent’s health

status

To capture the fact that morbidity shocks are less likely for healthier agents we assume that
their arrival rate is decreasing in the agent’s health status with

λs(Ht−)=η+ λs0 −η
1+λs1H−ξs

t−
(5)

for some non-negative constants such that λs0 ≤η and ξs ≥1. Similar to (1) this functional form
implies that while the agent can lower the likelihood of health shocks by investing in his health,
he cannot reduce it further than

λs0 = lim
H→∞λs(H)

which can be interpreted as an endowed probability of health shocks. Note that the intensities
of mortality and morbidity shocks induce very different risk characteristics as the agent’s health
deteriorates. In particular, and as illustrated by Figure 1, the agent’s death intensity diverges to
infinity, thus leading to certain death, as his health decreases to zero whereas the intensity of
morbidity shocks remains bounded and reaches a finite maximal value given by η=λs(0).

2.2. Income, traded assets, and budget constraint

We assume that the agent’s flow rate of labour income is given by an increasing function of his
current health status:

Yt =Y (Ht−)=y0 +βHt− (6)

for some constants y0,β≥0. A natural interpretation of this specification is that employers offer
higher wages to agents who are in better health and thus less subject to be absent from work.
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Equivalently, a healthier agent misses less workdays and hence receives higher labour income.8

Since the agent’s future income depends on his future health investment and can be used as
collateral to borrow, a moral hazard problem may arise. In the subsequent analysis, we follow
the frictionless markets tradition and rule out this moral hazard problem by assuming that agents
commit to their future health expenditures.

The income process in (6) imposes that all income risks are attributable to health shocks.
This hypothesis is admittedly restrictive since other shocks such as productivity, unemployment,
or fiscal shocks clearly also affect income. Unfortunately, closed-form solutions for allocation
problems with idiosyncratic income risk are notoriously difficult to obtain (see e.g. Duffie et al.,
1997), and we will therefore abstract from such risks for the sake of tractability. Due to this
restriction our model will tend to under-predict true income volatility unless health is assumed
to be unrealistically volatile.9 To circumvent this difficulty one can easily extend the model to
include a stochastic and time-varying intercept yt ≥0 in (6) as long as this process only depends
on aggregate market risk. This extension of the basic model is presented in Remark 4.

The financial market consists in two continuously traded securities: a riskless bond and a risky
stock. The price of the bond is given by ert for some constant rate of interest r>0 and the price
of the stock evolves according to

dSt =μStdt+σSStdZt, S0>0,

for some constant growth rateμ≥r and constant volatilityσS>0 where the process Z is a standard
Brownian motion.10 In addition to the bond and the stock, we assume that the agent can invest
in an instantaneous health insurance contract. Specifically, we assume that an agent’s health is
perfectly observable and that at every point in time an agent may purchase an actuarially fair
insurance contract that pays one unit of consumption if a health shock occurs at the next instant
and zero otherwise. The net pay-off of such a contract to the agent is

xtdMst =xtdQst −xtλs(Ht−)dt

where the predictable process xt represents the chosen amount of coverage chosen, xtdQst is
the amount paid by the insurer in case of a shock, and xtλs(Ht−)dt represents the instantaneous
insurance premium paid by the agent. Since the agent should not be allowed to sell insurance
contracts on his own health, the amount of coverage xt is constrained to be non-negative at all
times.

Assume that the agent has some initial financial wealth W0, and let the predictable processes
c≥0 and π ∈R represent the amount he consumes and the amount he invests in the stock. Under
the usual self-financing requirement, the agent’s financial wealth then evolves according to

dWt =(rWt−+Yt −ct −It)dt+πtσS (dZt +θdt)+xtdMst (7)

where the constant θ=σ−1
S (μ−r)≥0 is the market price of financial risk. This budget constraint

reveals two additional channels through which the agent’s health status influences his decisions:

8. Since the benchmark model does not allow for age-dependent parameters (however see Remark 1) our income
specification implies that the agent’s income depends on his health status even at old age. This feature of the model is
consistent with the findings of French (2005) that many elders find it profitable to continue working after retirement.

9. See Carroll and Samwick (1997, 1998); Gourinchas and Parker (2002) for measurement and discussion of
income shocks effects on precautionary savings and wealth.

10. The assumption of a single stock is imposed purely for expositional simplicity. Under the assumption of a
constant investment opportunity set, the model can be easily generalized to include multiple risky securities.
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an unhealthy agent faces not only a lower labour income but also a higher insurance premium
because of the higher probability of health shocks.

Remark 1 (Age-dependent parameters). The model presented above assumes that all agent-
specific parameters are constant. This assumption is imposed to facilitate the exposition and
interpretation of our results and can be relaxed at the cost of more involved notation. We present
in Appendix B a general version of the model in which the intensity of shocks λm0, λm1, λs1, λs0 ,
η, the depreciation rate of health δ, the fraction of health φ that is lost upon experiencing a health
shock, and the health sensitivity β of labour income are allowed to vary with the agent’s age.

Remark 2 (The public health system). While this is not our focus, our model can be used to
investigate the effects of changes in the public health system. In particular, within our model a
better health system can be thought as providing a higher health independent income y0 and/or
a lower sensitivity β of income to health. Alternatively, one might capture the influence of the
public health system by assuming that, as in Medicare, a fraction of the health investments of
retired agents is subsidized. This feature can be captured in a simple way by replacing the health
investment It in the dynamic budget constraint (7) by (1−st)It where st =0 for t ≤65 and 0≤st<1
for t>65 is the subsidized fraction.

2.3. Preferences

Starting with the seminal contributions of Yaari (1965) and Hakansson (1969), the standard way
of specifying preferences in the presence of mortality risk has been to define the utility to an agent
of age t of a consumption plan c as

Ut =1{Tm>t}Et

∫ Tm

t
e−ρ(s−t)u(cs)ds (8)

for some non-negative subjective rate of time preference ρ and some concave period utility
function u satisfying the usual regularity conditions.11

As pointed out by Shepard and Zeckhauser (1984) and Rosen (1988), the level of the period
utility has important implications in such a specification since adding a constant to u changes the
value that the agent places on longevity relative to consumption. Put differently, in the presence
of an uncertain and endogenous horizon, preferences are not invariant to affine transformations as
they are in the standard setting where the horizon is non-random and exogenous. This undesirable
feature is due to the fact that (8) attributes utility zero to death and, hence, implies that the utility
of any consumption schedule must be compared to zero to determine whether the agent is better
off living or dying. In particular, if the period utility is of the iso-elastic type:

u(c;ϑ)=c1−ϑ/(1−ϑ) (9)

for some non-negative constant ϑ �=1 then the agent’s preferences towards mortality depend on
whether the risk aversion parameter ϑ is smaller or larger than unity. In the former case, the utility
of any consumption schedule is positive and it follows that the agent prefers life to death. On
the contrary, if ϑ>1, as is often found in empirical studies, then the utility of any consumption

11. See for example Richard (1975); Shepard and Zeckhauser (1984); Rosen (1988); Ehrlich and Chuma (1990);
Ehrlich (2000); Becker et al. (2005); Edwards (2008); Hall and Jones (2007); and Yogo (2009).
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schedule is negative and the agent thus counterintuitively prefers death to life irrespective of his
current consumption level.12

In addition to this non-invariance, the time-additive specification in (8) suffers from two
other important limitations. First, by summing up the utility of period consumption up to the
time of death, the time additive specification counter-intuitively assumes that the agent is risk
neutral towards mortality risk (see Bommier, 2006). Second, this specification supposes that the
agent’s risk preferences are entirely summarized by the period utility function u and thus does not
allow for different attitudes towards different sources of risk. This last restriction is particularly
important in the context of our model because there is no ex ante reason to believe that agents
should be equally averse to mortality, morbidity, and financial risks.

Motivated by the above discussion, and in particular by the fact that (8) cannot reconcile
an empirically plausible level of risk aversion with a sensible behaviour towards longevity risk,
we will forego the time additive specification and assume instead that the agent has recursive
preferences of the type proposed by Kreps and Porteus (1979); Epstein and Zin (1989); Weil
(1989), and Duffie and Epstein (1992b). As demonstrated below, an appropriate generalization
of these preferences allows to remedy the above shortcomings of the time additive specification
while maintaining a tractable setup.

Let Ut =Ut(c,I,H) be the continuation utility to an agent of age t of a consumption schedule
c under the assumption that he follows the health investment strategy I . Denote the instantaneous
volatility of this process by

σt = 1

dt
d〈U,Z〉t

and let
�kUt =Et−[Ut −Ut−|dQkt �=0]

represent the predictable jump in the agent’s continuation utility that is triggered by a jump in either
the mortality process (k =m), or the health risk process (k =s). Generalizing the continuous-time
recursive preference specification of Duffie and Epstein (1992b) we assume that the continuation
utility process, its volatility and its jumps satisfy the recursive integral equation13

Ut =1{Tm>t}Et

∫ Tm

t

(
f (cτ ,Uτ−)− γ σ 2

τ

2Uτ−
−

s∑
k=m

Fk(Uτ−,Hτ−,�kUτ )

)
dτ (10)

where the constant γ >0 measures the agent’s local risk aversion over static financial gambles.
The function

f (c,v)= ρv

1−1/ε

(
((c−a)/v)1− 1

ε −1
)

(11)

is the standard Kreps–Porteus aggregator with elasticity of intertemporal substitution (EIS) ε>0,
subjective rate of time preference ρ>0 and subsistence consumption level a≥0. Finally we have

12. A similar problem arises for the negative exponential utility given by u(c)=−exp(−ac) for some a>0.
To ensure sensible results, many authors consider non-negative period utility functions for which life is always preferred.
Following this approach, Rosen (1988); Becker et al. (2005), and Hall and Jones (2007) use a utility of the form
v(c)=u(c)+b where b is chosen in such a way as to guarantee that v is non-negative. Unfortunately, such a constant
exists only if u is bounded from below and it follows that this approach cannot be used to accommodate the case where
u is given by (9) for some ϑ>1.

13. Appendix C.1 establishes that this continuous-time preference specification can be obtained as the limit of a
discrete-time specification in which the agent uses a Constant Elasticity of Substitution (CES) aggregator to combine
today’s consumption with a source-dependent certainty equivalent of tomorrow’s utility.
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Figure 2

Instantaneous relative penalization for jumps Fk(v,h,�)/(vλk(h)) as a function of the relative jump size �/v for an

agent with low (dashed line), intermediate (dotted line), and high (solid) relative risk aversion for jumps

set

Fk(v,h,�)=vλk(h)

[
�

v
+u(1;γk)−u

(
1+�

v
;γk

)]
, (12)

where u(x;γk) is the constant relative risk aversion utility function of Equation (9) with curvature
indices 0≤γm<1 and γs ≥0.

The first two terms inside the integral on the right-hand side of (10) correspond to standard
Kreps–Porteus preferences in a Brownian setting and encode, respectively, the agent’s substitution
behaviour and his risk aversion towards the Brownian motion driving financial market returns.
By contrast, the last two terms are associated with mortality (k =m) and morbidity shocks (k =s)
and penalize the agent’s utility for exposure to these sources of risks. Indeed, Appendix C.2
establishes that the functions Fk are non-negative and convex in � with a minimum equal to
zero at zero so that the agent gets penalized for both positive and negative jumps in continuation
utility. The magnitude of the penalization however depends on the sign of the jumps and is larger
for negative jumps as illustrated by Figure 2.

In the absence of bequests, the continuation utility in (10) vanishes at death.14 As a result we
have that the corresponding jump in utility is

�mUt =Et−[0−Ut−|dQmt �=0]=−Ut−

14. This assumption is imposed for tractability and can be justified by noting that while bequest motives are
potentially relevant in an endogenous mortality setting, panel data evidence suggests that their role in explaining the
behaviour of retired agents is debatable. In particular, Hurd (2002) finds no clear evidence of a bequest motive behind
savings decisions and Hurd (1987) finds no differences in the saving behaviour of the elderly who have children compared
to those who do not. Importantly, in the absence of bequests the agent has no incentive to invest in a life insurance contract
that pays a lumpsum at death in exchange for periodic payments while alive. To simplify the presentation we therefore
do not include such contracts in the menu of assets.
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and it follows that the penalization for mortality risk satisfies

Fm(Uτ−,Hτ−,�mUτ )

λm(Hτ−)Uτ−
=u(1;γm)− lim

x→0
u(x;γm)−1= γm

1−γm
=�m. (13)

This expression reveals why the risk aversion parameter γm associated with mortality risk must
be strictly smaller than unity. Indeed, the penalization associated with death would otherwise
be infinite since limx→0u(x;γm)=−∞ for γm ≥1, and the agent’s continuation utility would
therefore be undefined. Because the relative penalty�m in Equation (13) can be made arbitrarily
large as γm approaches 1 from below, this restriction does not preclude strong utility costs of
mortality risk. Importantly, our structural estimation discussed below confirms that 0≤γm<1 is
also consistent with the data.

A key feature of our preference specification is that, since the relative risk aversion parameters
γ , γm, and γs can be different, it not only disentangles the agent’s attitude towards intertemporal
substitution from his attitude towards risk but also allows to discriminate among various sources of
risk.15 This feature is referred to as source-dependent risk aversion (see e.g. Lazrak and Quenez,
2003; Skiadas, 2008) and our model constitutes one of the first applications of such preferences
to the study of portfolio, consumption, and health-related choices.

A second essential property of our specification is that it guarantees unconditional preference
for life. Indeed, following Duffie and Epstein (1992b) it can be shown that the homogeneity of the
aggregator f and the penalty functions (Fm,Fs) implies that continuation utility is homogenous
of degree one so that utility and excess consumption are measured in the same units. In particular,
the utility associated with a non-negative consumption schedule is non-negative. Since death is
by definition associated with zero consumption in the absence of bequests, it follows that the
agent sees his own mortality as detrimental irrespective of whether his risk aversion towards
financial risks (γ ) and morbidity risk (γs) are smaller or larger than unity.

2.4. The decision problem

The agent’s problem consists in choosing a portfolio, consumption, health insurance, and health
investment strategy to maximize his lifetime utility. Accordingly, the agent’s indirect utility is
defined by

V (Wt,Ht)= sup
(c,π,x,I)

Ut(c,I,H)

subject to the dynamics of the health process (3) and the budget constraint (7), where Ut(c,I) is
the continuation utility process associated with the lifetime consumption and health investment
plan (c,I) through the recursive integral Equation (10).

Since his uncertain duration of his lifetime cannot be hedged by trading in the available
assets, the agent faces incomplete markets. However, under the assumption of Poisson mortality,
his decision problem can be conveniently recast as an equivalent infinite horizon problem with
endogenous discounting and complete markets. Specifically, using (2) and the law of iterated
expectations we show in Appendix C.2 that

Ut(c,I,H)=1{Tm>t}Ut(c,I,H) (14)

15. Our specification is equivalent to the continuous-time Kreps–Porteus specification of Duffie and Epstein (1992b)
when γs =γm =γ and to time-additive iso-elastic utility when γs =γm =γ =1/ε.
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where the modified continuation utility process Ut =Ut(c,I,H) is associated with an infinitely
lived agent and solves

Ut =Et

∫ ∞

t
e−∫ τt νm(Hv)dv

(
f (cτ ,Uτ−)− γ |στ (U)|2

2Uτ− −Fs(Uτ−,Hτ−,�sUτ )

)
dτ (15)

with

νm(H)=λm(H)(1+�m)= λm(H)

1−γm
. (16)

This formulation of the objective function brings to light the channels through which the agent’s
health enters the decision problem. First, health can be interpreted as a durable good that generates
service flows through the income Y net of insurance premium xλs(H). Second, health determines
the instantaneous probability of morbidity shocks and the rate νm(H) at which the agent discounts
future consumption and continuation utilities. We show in the next sections how these two
channels, that we refer to as the budget constraint and the risk channel, interact to generate
the optimal rules.

Remark 3 (Health-dependent preferences). Our formulation of the agent’s problem closely
parallels the widely used approach of specifying a health-dependent utility and omitting health-
dependent income.16 To see this, let c̄=c−βH denote the agent’s consumption in excess of his
income, and rewrite the problem as

V (Wt,Ht)= sup
(c̄,π,x,I)

Ut(c̄+βH,I,H),

subject to (1), (3), (5), and the modified budget constraint

dWt =(rWt−− c̄t −It)dt+πtσ (dZt +θdt)+xtdMst .

Hence, abstracting from health-dependent income and solving the agent’s problem with the non-
separable, health-dependent intertemporal aggregator f̄ (c,H,v)= f (c+βH,v), is equivalent to
solving our formulation of the agent’s problem with health-independent intertemporal aggregator
and health-dependent income. Allowing for more general forms of health dependence would be
desirable but unfortunately precludes the obtention of closed form solutions even in the restricted
model with exogenous health risks.

3. OPTIMAL RULES

This section derives the solution to our model. As explained above, the agent’s health enters the
problem through two channels: the risk channel and the budget constraint channel. In order to
gain intuition on the respective impact of these pathways, Section 3.1 starts by abstracting from
the first channel to focus on the budget constraint effects. Section 3.2 then turns to the general
case where health influences the arrival rates of both mortality and morbidity shock in addition
to his budget constraint.

16. Examples of studies that follow this approach include Grossman (1972), Ehrlich and Chuma (1990),
Picone et al. (1998), Ehrlich (2000), Edwards (2008), Hall and Jones (2007), and Yogo (2009).
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3.1. Health independent mortality and morbidity

When λm1 =λs1 =0 the arrival rates of mortality and morbidity shocks are constant and, as a
result, the agent’s objective function (15) is independent from his health. In this case we show
in Appendix C.4 that thanks to market completeness the agent’s problem can be solved in two
steps as in Bodie et al. (1992). First, the optimal health investment is computed by maximizing
the agent’s human wealth defined as the present value of his income net of health investments.
Second, the optimal portfolio, optimal health insurance, and optimal consumption schedule are
obtained by solving the problem of an hypothetical agent who has no income, but whose initial
wealth is replaced by the total (i.e. financial plus human) wealth of the original agent.

Since markets are complete, the present value of the health dependent part of the agent’s
income net of health investments can be computed as

P(Ht)=sup
I≥0

Et

∫ ∞

t
mt,τ (βHτ−−Iτ )dτ

subject to the law of motion for health (3), where the non-negative process

mt =exp

(
−rt−θZt − θ2

2
t

)
(17)

is the stochastic discount factor induced by the prices of the bond, the stock and the insurance
contract, and we have set mt,τ =mτ /mt . The following proposition derives an analytical solution
to this first-step problem.

Proposition 1. Let λm1 =λs1 =0, assume that

β<(r+δ+φλs0)
1
α (18)

and define

g(x)=β−(r+δ+φλs0)x−(1−1/α)(αx)
1

1−α .

Then the present value of the agent’s income and the optimal health investment strategy are
explicitly given by

P0(H)=BH, (19)

I0t =(αP0H (Ht−))
1

1−α Ht− = (αB)
1

1−α Ht− =KP0(Ht−), (20)

where B is the unique non-negative constant such that g(B)=0 and g′(B)<0.

The restriction imposed by (18) is a transversality condition that limits the health sensitivity of
the agent’s income rate to guarantee that the corresponding present value is finite. The fact that
this present value is linear in the agent’s health implies that B=P0(H)/H =P0H (H) gives both
the average and the marginal value of health.17 This marginal value displays intuitive properties

17. This property is well known in the investment literature (see e.g.Uzawa, 1969; Hayashi, 1982; Abel and Eberly,
1994) and follows from the linearity in health of the agent’s income, the restriction to constant intensities, and the
Cobb–Douglas specification of the adjustment technology.
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that are consistent with received investment theories. Notably, Appendix C.5 proves that B is
decreasing in r, as well as in δ,φ and λs0 — the parameters determining the expected decay rate
of health in (4) — whereas it is increasing in the health sensitivity of income, β. Since the optimal
health investment is increasing in human wealth it displays the same comparative statics as B
with respect to the parameters r, φ, δ, λs0, and β.

Importantly, Proposition 1 reveals that the death intensity parameter λm0 influences neither
the marginal value of health nor the optimal investment. To understand this effect recall that in
our formulation the mortality intensity only influences the decision problem through the discount
rate νm(H) in (15) and observe that, due to the separation property discussed above, the optimal
investment is determined independently of preferences by maximizing the present value of future
net income for an hypothetical infinitely lived agent. As we will see later (see Theorem 2 and the
ensuing discussion) this salient property of the optimal policy no longer holds under endogenous
mortality because in that case the determination of the optimal health investment cannot be
separated from the agent’s other choices.

Having computed the present value of the agent’s income and the optimal health investment
strategy, we now turn to the determination of the optimal consumption, portfolio, and insurance
strategy. Let

Nt =N0(Wt,Ht)=Wt +P0(Ht)+ y0 −a

r
(21)

denote the agent’s total (i.e. financial plus human) wealth net of minimal consumption
expenditures. Using Proposition 1 together with the budget constraint (7) and the definition
of B it can be shown that total wealth evolves according to

dNt = (rNt−− c̄t)dt+πtσS(dZt +θdt)+ x̄tdMst (22)

where x̄t =xt −φP0(Ht−) and c̄t =ct −a represent the agent’s net exposure to health shocks and
his excess consumption. This implies that under exogenous health risks the indirect utility of an
alive agent is given by18

V0(Wt,Ht)=G(N0(Wt,Ht))= sup
(c̄,π,x̄)

Ut(c,I,H) (23)

subject to the budget constraint for total wealth in (22). The solution to this portfolio, insurance
and consumption choice problem with recursive utility and source-dependent preferences can be
obtained as a generalization of the results in Svensson (1989); Obstfeld (1994); and Smith (1996)
among others. Using this solution to construct the agent’s optimal rules delivers the following
theorem.

Theorem 1. Let λm1 =λs1 =0, assume that Equation (18) as well as

A=ερ+(1−ε)(r−νm0 +θ2/(2γ ))>max
(

0;r−νm0 +θ2/γ
)

(24)

hold with νm0 =λm0/(1−γm) and define�=ρ(A/ρ)1/(1−ε)>0. Then the indirect utility function
of an alive agent is

V0(W ,H)=�N0(W ,H), (25)

18. As explained in Appendix C.4 under exogenous health risks the agent’s objective function depends neither on
his health investments nor on his health status.
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and generates the optimal consumption, portfolio, health insurance, and health investment
strategies given by

c0t =a+AN0(Wt−,Ht−), (26)

π0t = (θ/(γ σS))N0(Wt−,Ht−), (27)

x0t =−�sP0(Ht)=P0(Ht−)−P0((1−φ)Ht−)=φP0(Ht−), (28)

and Equation (20) where the agent’s human wealth P0(H) and total wealth N0(W ,H) are defined
in Equations (19) and (21).

The restriction (24) guarantees that the optimal consumption schedule induces a strictly
positive marginal propensity to consume and that the value function satisfies an appropriate
transversality conditions.The parametric form of the restriction is entirely standard (e.g. Svensson,
1989; Obstfeld, 1994), except for the presence of the constant νm0>0 that reflects the combined
impact of mortality risk and the agent’s aversion to that risk on the optimal consumption schedule.

Proposition 1 and Theorem 1 indicate that, due to the separation between optimal health
investment and the agent’s other decisions, exogenous morbidity and mortality have very different
effects on the optimal rules. Indeed, the morbidity parameters (φ,λs0) govern the marginal value of
health and thereby determine the agent’s total wealth so that their impact on the optimal rules must
be analysed through their effect on available resources. By contrast, the mortality parameter λm0
does not affect the agent’s total wealth but determines the sensitivity of the optimal consumption
to changes in the available resources through the marginal propensity to consume A in (24).

To understand the effect of exogenous morbidity, consider the expected growth rate of health
in (4). As shown by this equation, an increase in either δ, λs0 or φ is equivalent to an increase in
the rate δ+φλs0 at which the agent’s health is expected to depreciate absent investment. Faster
depreciation reduces the agent’s human wealth by lowering the marginal value of health and
implies lower health investments, lower total wealth and, hence, lower welfare, consumption
and risky investments since all are proportional to total wealth. Whether it also justifies a lower
amount of health insurance depends on the relative increase of φ compared to the decrease in the
marginal value of health. If the latter dominates then faster depreciation triggers a decrease in
the agent’s exposure to morbidity risk and therefore a decrease in the optimal amount of health
insurance. Conversely, if the increase in φ dominates the decrease in B then the agent’s exposure
to morbidity risk increases and so does the optimal health insurance coverage.

The human wealth (19) and health insurance (28) reveal that with exogenous mortality and
morbidity, it is always optimal for the agent to fully hedge health shocks. Indeed, the dynamics
of the health status and the expression for the optimal insurance coverage imply that the net
exposure to health shocks is:

�sN0(Wt,Ht)=1{dQst �=0}(N0(Wt−+x0t,Ht−(1−φ))−N0(Wt−,Ht−))

=1{dQst �=0}(x0t +�sP0(Ht−))=0,

so that the agent’s total wealth, and hence also his indirect utility, is insensitive to health shocks.
To understand this result note that with exogenous mortality and morbidity the agent’s only
exposure to health shock risk comes from his income and observe that this risk does not carry
a risk premium as the insurance contract is assumed to be actuarially fair. Since the agent is
risk averse he will not willingly expose himself to a risk for which he is not remunerated, and it
follows that he will choose his insurance coverage in such a way as to eliminate any exposure to
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that risk. This argument also explains why neither the optimal rules nor the indirect utility depend
on the parameter γs that governs the agent’s risk aversion to health shocks.

Turning to the impact of exogenous mortality risk, (24) and (26) reveal that an increase in either
the mortality intensity λm0 or the mortality risk aversion γm leads the agent to either increase or
decrease consumption depending on his elasticity of intertemporal substitution. To understand this
finding recall that νm0 =λm0/(1−γm) influences the agent’s problem only through the discount
rate in (15). As a result, an increase in νm0 implies that future consumption and continuation
utilities are more heavily discounted and thereby leads to two conflicting effects. First, since more
future consumption is needed to maintain the same level of current utility, this encourages the
agent to consume less today. Second, as future consumption becomes less valuable compared with
today’s consumption, this prompts the agent to save less in order to increase current consumption.
When the agent’s EIS parameter ε is smaller than unity, the first effect dominates and the agent
reduces his consumption in response to an increase in either mortality risk or his aversion to
that risk. Conversely, when ε>1 the second effect dominates and the agent increases current
consumption. Exact cancelation of the two effects occurs when ε=1 in which case mortality risk
has no impact on the optimal rules. By contrast, (25) and the definition of� imply that an increase
in either mortality risk or the agent’s aversion to that risk is detrimental to welfare irrespective of
the agent’s EIS. This result reflects the unconditional preference for life implied by our preference
specification and stands in stark contrast to the corresponding result for time additive iso-elastic
preferences where the impact of mortality on welfare depends on whether risk aversion is greater
or smaller than unity.

The expression for the optimal risky portfolio in (27) shows that the fraction of total wealth
invested in the stock depends neither on mortality risk nor on the agent’s aversion to that risk, and
only involves the market Sharpe ratio and the agent’s aversion to financial risk. To understand this
result observe that with exogenous mortality and morbidity the agent’s investment opportunity
set is constant, and recall from Richard (1975) that in such a setting the optimal investment in
risky assets is independent of the agent’s exogenous planning horizon. Consequently, the optimal
fraction of total wealth invested in the stock is given by the mean variance efficient myopic
demand θ/(γ σS) and decreases with the agent’s financial risk aversion but remains unaffected
by changes in either mortality risk or the agent’s aversion to that risk.

The optimal rules associated with exogenous mortality and morbidity capture some of the
determinants of the agent’s decisions but also display some significant shortcomings when
confronted to the data. In particular, recent evidence surveyed in Finkelstein et al. (2008, 2009)
indicates that the marginal utility of wealth is positively affected by health, i.e. VWH>0, but this
property cannot be obtained in the restricted version of model because, under exogenous health
risks, health and wealth are perfect substitutes as can be seen from the fact that

V (W ,H)=�N0(W ,H)=�
(

W +BH + y0 −a

r

)
.

Similarly, there is ample evidence to the facts that health investment and insurance are both
increasing in wealth and non-increasing in health (e.g Smith, 1999; Wu, 2003; Barros et al.,
2008). But these properties cannot be obtained within the restricted model as it predicts that the
optimal health investment and health insurance

I0t = (αB)
1

1−α Ht−,
x0t =φP0(Ht−)=φBHt−

are both independent of the agent’s wealth and increase with his health. To verify whether these
stylized facts can be compatible with a richer model we now relax the assumption of exogenous
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shocks by considering the general case in which the intensity of mortality and morbidity shocks
is allowed to depend on the agent’s health status.

3.2. Health-dependent mortality and morbidity

When λm1 and λs1 are non-zero, the arrival rates of shocks are endogenously determined. In
this case, one can no longer compute the optimal health investment independently of the optimal
portfolio, consumption, and insurance strategies since the objective function in (15) now depends
on the agent’s health status through both the endogenous discount rate νm, and the health shock
penalty function Fs.

Resorting instead to the Hamilton–Jacobi–Bellman (HJB) and assuming sufficient smooth-
ness, the agent’s indirect utility solves

0= max
(c,π,x,I)

D(c,π,x,I)V (W ,H)+f (c,V (W ,H))− γ (πσSVW (W ,H))2

2V (W ,H)
(29)

−λs(H)V (W ,H)(u(1;γs)−u(κ(x,W ,H);γs))−νm(H)V (W ,H)

where the differential operator

D(c,π,x,I) = ((πσS)2/2)∂WW +H((I/H)α−δ)∂H

+(rW +πσSθ−c+y0 +βH −I −xλs(H))∂W

is the continuous part of the infinitesimal generator of the state variables under the strategy
(π,c,x,I), and where

κ(x,W ,H)= V (W +x,H(1−φ))

V (W ,H)

represents the relative jump in the agent’s indirect utility induced by the occurrence of a health
shock. Maximizing the right-hand side of the HJB equation reveals that, given the indirect utility
function, the optimal consumption, portfolio, and health investment can be computed as

c∗ =a+V (W ,H)

(
ρ

VW (W ,H)

)ε
, (30)

π∗ = (θ/σS)V (W ,H)VW (W ,H)

γVW (W ,H)2 −V (W ,H)VWW (W ,H)
, (31)

I∗ =H

(
αVH (W ,H)

VW (W ,H)

) 1
1−α
, (32)

whereas the optimal health insurance is implicitly defined by

VW (W ,H)

VW (W +x∗,H(1−φ))
=κ(x∗,W ,H)−γs . (33)

Substituting these first-order conditions into the HJB equation and simplifying the result produces
a non-linear partial differential equation for the indirect utility. Unfortunately, no closed form
solution to this equation can be obtained except for the case of exogenous mortality and morbidity
considered in Section 3.1. Nonetheless, and as we now explain, one can use the solution to this
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special case together with an asymptotic expansion to construct an approximate solution to the
general case.

Let us expand the indirect utility of an alive agent around the case λs1 =λm1 =0 of exogenous
health risks as

V (W ,H)≈Vn(W ,H)=V0(W ,H)+
n∑

k=1

k∑
i=0

λi
s1λ

k−i
m1

i!(k−i)! V (i,k−i)(W ,H)

where n is an integer that represents the order of the expansion, V0 is the indirect utility for the
case of exogenous mortality and morbidity, and the derivatives

V (i,k−i)(W ,H)= ∂kV (W ,H)

∂λi
s1∂λ

k−i
m1

∣∣∣∣∣
λs1=λm1=0

represent corrections to the indirect utility induced by the presence of health-dependent mortality
and morbidity. Substituting this approximation into the HJB equation and expanding the result in
powers of λm1, λs1 gives a sequence of partial differential equations that can be solved recursively
starting from the known function V0. Once the correction terms have been computed up to the
desired order, one can obtain an approximation of the optimal portfolio, consumption, health
investment, and insurance coverage by substituting the above expansion into the first-order
conditions (30), (31), (32) and (33) and again expanding the result in powers of λm1 and λs1.

In order to implement this solution method it is necessary to select the accuracy of the
approximation by fixing the number of terms n to include in the expansion. Since the intensity
parameters λm1,λs1 are expected to be small,19 we can be reasonably confident that the expansion
method already delivers good approximations of the indirect utility and optimal rules at the first
order (n=1). While higher order approximations can also be computed, we will restrict ourselves
to this first-order solution because it allows for an intuitive analysis of the optimal rules.

Theorem 2. Let

χ (x)=1−(1−φ)−x,

F(x)=x(αB)
α

1−α −xδ−λs0χ (−x),

assume that the transversality conditions (18) and (24), as well as

min(νm0,r)−F(1−ξs)>0, (34)

A−max
(

0,r−νm0 +θ2/γ
)
−F(−ξm)>0, (35)

hold, and define a pair of non-negative functions by setting

Ls(H)=φ(η−λs0)(r−F(1−ξs))−1H−ξs

Lm(H)=((1−γm)(A−F(−ξm)))−1H−ξm (36)

19. The estimated value of the parameters λm1 and λs1 obtained through a structural estimation of the optimal rules
predicted by the model are of the order of 10−3 and 10−2, respectively (see Table 2). Details are provided in Section 4.1.
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where the constants B, A and � are as in Proposition 1 and Theorem 1. Up to a first-order
approximation the indirect utility of an alive agent is

V1(W ,H)=V0(W ,H)−λm1�Lm(H)N0(W ,H)−λs1�Ls(H)P0(H) (37)

and generates the approximate optimal consumption, portfolio, health insurance, and health
investment strategy given by

c1t =c0t −λm1A(1−ε)Lm(Ht−)N0(Wt−,Ht−)−λs1ALs(Ht−)P0(Ht−), (38)

π1t =π0t −λs1(θ/(γ σS))Ls(Ht−)P0(Ht−), (39)

x1t =x0t −λm1χ (ξm)(1−1/γs)Lm(Ht−)N0(Wt−,Ht−)

−λs1χ (ξs −1)Ls(Ht−)P0(Ht−)

I1t = I0t +λm1(ξmK/(1−α))Lm(Ht−)N0(Wt−,Ht−) (40)

+λs1((ξs −1)K/(1−α))Ls(Ht−)P0(Ht−)

where the constant K is defined as in (20).

Given complete markets, it is also possible to derive an approximation for the agent’s total and
human wealth at the optimum under endogenous morbidity and mortality using the present value
of the optimal consumption plan:

Proposition 2. Assume that the conditions of Theorem 2 hold, denote by

N∗
t =Et

∫ ∞

t
mt,τ (c∗

τ −a)dτ

the agent’s total wealth net of the present value of minimal consumption expenditures at the
optimum and let

P∗
t =N∗

t −Wt − y0 −a

r
=Et

∫ ∞

t
mt,τ (βHτ −I∗

τ )dτ

denote his human wealth. Up to a first-order approximation

P∗
t ≈P1(Ht)=P0(Ht)(1−λs1Ls(Ht)),

N∗
t ≈N1(Wt,Ht)=N0(Wt,Ht)−λs1Ls(Ht)P0(Ht)=Wt +P1(Ht)+ y0 −a

r

where the non-negative functions P0(H) and Ls(H) are defined as in the statements of Proposition
1 and Theorem 2.

Theorem 2 shows that the effect of endogenous morbidity risk, which can be isolated by setting
λm1 ≡0, is entirely summarized by the induced change in the agent’s human wealth. Indeed, it
can be shown (see Appendix C.6 for details) that under this restriction the approximate indirect
utility and optimal rules can be obtained from their counterparts in Theorem 1 by first replacing
the zero order human wealth P0(Ht) by P∗

t and then performing a first-order expansion. This
implies that the separation between financial and health-related decisions that was optimal in the
restricted model carries over to the model with endogenous morbidity risk as long as mortality
risk is exogenous.
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On the contrary, if mortality risk is endogenous then this separation no longer holds as can
be seen from the fact that when λm1 �=0 the agent’s optimal health investment in (40) depends
not only on his health status but also on his financial wealth. The reason for this non-separability
is that in the presence of endogenous mortality risk the agent’s health status influences the rate
νm(H) at which future consumptions and utilities are discounted and, thereby, provides the agent
with an additional, non-income related, motive for investing in his health status.

Let us now set λm1 �=0≡λs1 to isolate the first-order impact of endogenous mortality risk
on the agent’s decisions. Comparing (27) and (39) shows that mortality risk has no first-order
effect on the agent optimal stock holdings. As in the restricted model this finding is due to the
fact that optimal portfolios are independent of discounting in the absence of hedging motives.
Indeed, the impact of endogenous mortality is computed by performing an expansion around the
case of exogenous mortality and morbidity. Since the corresponding optimal health status does
not covary with the Brownian motion driving stock returns it follows that the dynamic hedging
demand is zero and, hence, that the optimal portfolio remains unaffected by mortality risk.

Conversely, the fact that health is subject to morbidity shocks and influences the agent’s
discount rate gives rise to a dynamic hedging component in the optimal demand for insurance.
This dynamic hedging component is given by

(x1t −x0t)|λs1=0 =λm1(1/γs −1)χ (ξm)Lm(Ht−)N0(Wt−,Ht−)

and implies that in the presence of endogenous mortality the agent will typically not select his
insurance coverage so as to make his total wealth insensitive to morbidity shocks. Indeed, upon
the occurrence of a morbidity shock the agent’s total wealth experiences a jump that is given by

�sN1(Wt,Ht)|λs1=0 =�sN0(Wt,Ht)|λs1=0 =1{dQst �=0} (x1t −φP0(Ht−))|λs1=0

=1{dQst �=0} (x1t −x0t)|λs1=0

To understand the source and direction of this hedging component recall that in the presence of
endogenous mortality the objective function depends on health through the rate νm(H) at which
future consumptions and continuation utilities are discounted. This additional dependence leads
to two conflicting effects. On the one hand, morbidity shocks increase the discount rate and, thus,
have a negative impact on welfare. This provides the agent with an additional motive to buy
insurance, and leads him to increase his demand. On the other hand, since morbidity shocks are
proportional to health, the occurrence of a shock implies that future shocks will have a lower
impact on the discount rate and, thereby, pushes the agent to reduce his demand. If the agent’s
aversion to morbidity risk γs is higher than unity then the first effect dominates and endogenous
mortality implies a non-negative hedging demand for the insurance contract. On the contrary, if
the agent’s aversion to morbidity risk is smaller than unity then endogenous mortality prompts
the agent to reduce his optimal health insurance coverage. Exact cancellation of the two effects
occurs when γs =1 in which case the presence of endogenous mortality risk has no first-order
impact on the optimal amount of health insurance coverage.

As can be seen from Theorem 2 the unrestricted model with endogenous health risks generates
much richer comparative statics than the restricted model, and can potentially address all of its
shortcomings. In particular, the unrestricted model predicts that, in accordance with the data, the
optimal health investment increases with the agent’s financial wealth, and that the marginal utility
of wealth

V1W (W ,H)=�(1−λm1Lm(H))

increases with the agent’s health status. Moreover, depending on the parameters the unrestricted
model allows for essentially arbitrary comparative statics of (x,c,π ) with respect to health and
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wealth and thus can be consistent with empirical comparative statics of these variables. Gauging
the performance of the model in matching the data requires an empirical analysis to which we
turn in Section 4.

Remark 4. The results of Theorems 1 and 2 naturally extend to the case in which the health-
independent part of the agent’s income is stochastic but perfectly correlated with the return on
the risky asset. To see this, assume for example that

dyt =yt(μydt+σydZt)

for some constants μy, σy such that μy<r+σyθ . In this case, the present value of the health-
independent part of the agent’s future income is

G(yt)=Et

∫ ∞

t
mt,sysds= yt

r−μy +σyθ

and, since this value can be hedged by investing in the traded asset, it follows that the
corresponding optimal consumption, investment, and health insurance coverage can be obtained
by simply replacing the total wealth N0(W ,H) with

N0(W ,H,y)=W +P0(H)+G(y)− a

r

in the formulas of Theorems 1 and 2. On the other hand, an application of Itô’s lemma shows that
in order to hedge the variations in the present value of his future income the agent needs to invest
−(σy/σS)G(yt) in the stock, and it follows the optimal risky portfolio holdings are given by

π�0t = (θ/(γ σS))N0(Wt−,Ht−,yt)−(σy/σS)G(yt)

for the model with exogenous health risks, and Equation (39) with π0t ≡π�0t for the general model
with endogenous health risks.

3.3. Extensions: value of health, expected longevity, and value of life

The expression for the indirect utility in (37) makes it possible to compute the implied value
of health and longevity by determining the amount of wealth that an agent would be willing to
give-up to improve either his health or his life expectancy.

In the spirit of the Hicksian compensating variation (see Hicks, 1956), we define the value of
n additional units of health as the solution

wh =wh(n,Wt,Ht)

to the indifference equation

V (Wt −wh,Ht +n)=V (Wt,Ht). (41)

The following proposition relies on an expansion technique similar to that of Theorem 2 to derive
a first-order approximation for the value of health.
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Proposition 3 (Value of health). Assume that the conditions of Theorem 2 hold true and define
a pair of non-negative functions by setting

Jm(n,H)=Lm(H)−Lm(H +n),

Js(n,H)=Ls(H)P0(H)−Ls(H +n)P0(H +n).

Up to a first-order approximation the value of n additional units of health is

wh(n,Wt,Ht)=nB+λm1Jm(n,Ht)N0t +λs1Js(n,Ht), (42)

where the constant B and total wealth N0t are defined as in Proposition 1.

Proposition 3 shows that the willingness to pay for additional health (42) is the sum of three
terms. The first term is given by nB and represents the direct increase in the agent’s human
wealth triggered by an improvement in his health status in a setting with exogenous health risks.
The second and third terms are given by λk1Jk(n,H)≥0 for k ∈{s,m} and capture the beneficial,
although decreasing, effects of a higher health status on the endogenous morbidity and mortality
risks faced by the agent.

To determine the value of longevity implied by the model, we compute the amount of wealth
w� that the agent would be willing to give-up to increase his life expectancy by a fixed amount.
More precisely, if

�(W ,H)=�(W ,H;(λm0,λm1))=E[Tm]
denotes the life expectancy of an agent with wealth W , health status H, and mortality parameters
(λm0,λm1), then we define the value of n additional years of expected lifetime as the unique
solution to the indifference equation

V (W −w�,H;(λ∗
m0,λm1))=V (W ,H;(λm0,λm1)) (43)

where the modified incompressible death intensity level λ∗
m0 =λ∗

m0(n,W ,H) is computed in such
a way as to guarantee that the agent’s life expectancy after the transfer has increased by exactly
n years:

�(W −w�,H;(λ∗
m0,λm1))=n+�(W ,H;(λm0,λm1)). (44)

The following proposition relies on an expansion technique similar to that of Theorem 2 to
derive first-order approximations for both the life expectancy and the value of life implied by the
theoretical model.

Proposition 4 (Life expectancy and value of life). Assume that the conditions of Theorem 2
hold true and that

1/κ0 =λm0 −F(−ξm)>0. (45)

Up to a first-order approximation, the life expectancy and the value of n additional years of life
expectancy are given by

�(Wt,Ht;(λm0,λm1))= (1/λm0)(1−λm1κ0H−ξm
t ), (46)

w�(n,Wt,Ht)=q∗(n)N1(Wt,Ht)+λm1Q∗(n,Ht)N0(Wt,Ht) (47)

where N1(W ,H) is the first-order approximation of total wealth given in Proposition 2 and the
functions q∗(n)∈ (0,1) and Q∗(n,H) are defined in the Appendix.
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The first part of Proposition 4 shows that life expectancy is an increasing function of health
and a decreasing function of the parameters λs0, φ, and δ that determine the expected decay rate
of health. Furthermore, it shows that up to a first-order approximation an agent’s life expectancy
does not depend on his financial wealth. This property comes from the fact that the approximation
is obtained by performing an expansion around the case of exogenous health risks. Indeed, since
the optimal health investment policy for that case does not depend on the agent’s wealth due to
separation we have that the health process that is used to compute the expansion is unaffected
by wealth, and it follows that the agent’s life expectancy is independent from his wealth up to
first-order approximation.

The second part of Proposition 4 shows that the willingness to pay for a longer life expectancy
(47) can be decomposed into two terms. The first term q∗(n)N1(W ,H) captures the beneficial effect
of a lower minimal death intensity level on the agent’s indirect utility under exogenous mortality.
The second term λm1Q∗(n,H)N0(W ,H) captures the effect of a lower minimal death intensity
level in the presence of endogenous mortality. Interestingly, the definition of the function Q∗(n,H)
implies that this effect can be either positive or negative depending on the agent’s health status
and elasticity of intertemporal substitution.

4. EMPIRICAL PERFORMANCE

In order to assess the empirical performance of the endogenous health risks model we adopt a dual
approach. First, we perform in Sections 4.1 and 4.2 a structural estimation of the model and use
the resulting parameter estimates to compute predicted rules that are compared to the observed
allocations in Section 4.3. Second, we use our estimated parameters to compute the expected
longevity, and the values of health and life, and contrast these results with received estimates in
Section 4.4.

Throughout our empirical analysis, we rely on a sample of 30,961 individuals drawn from
the PSID. The construction of our sample is detailed in Appendix D and summary statistics are
presented in Table 1.

4.1. The econometric model

The structural estimation of the model is performed under the assumption that all the individuals
in the sample and the econometrician share the information provided by the approximate optimal

TABLE 1
Descriptive statistics of the PSID sample

Variable Mean Std. Dev. Min Max

Age 44.18 15.51 16 101
Health 2.79 0.54 1.5 3.5
Wealth $28,356 $79,293 $0 $1,183,728
Income $41,199 $58,502 $0 $3,290,784
Consumption $9,838 $10,126 $1 $433,838
Stocks $15,139 $70,194 $0 $1,157,273
Health insurance $522 $903 $0 $15,879
Health expenditures $541 $2,195 $0 $120,704

Notes: This table presents summary statistics for the main variables in the sample of 30,961 individuals used in our
estimation. Nominal variables are in dollars while the self-reported health status is encoded with a discrete scale between
1.5 (Poor health) and 3.5 (Excellent health) with an increment of 0.5 between two consecutive health status.
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rules in Theorem 2. Consequently, the structural econometric model can be written as:

cj =ac1 +ac2Wj +ac3Hj +ac4WjH
−ξm
j +ac5H1−ξm

j +ac6H1−ξs
j +ac7H−ξm

j +εcj

πj =aπ1 +aπ2Wj +aπ3Hj +aπ4H1−ξs
j +επ j

xj =ax1Hj +ax2WjH
−ξm
j +ax3H1−ξm

j +ax4H1−ξs
j +ax5H−ξm

j +εxj

Ij =aI1Hj +aI2WjH
−ξm
j +aI3H1−ξm

j +aI4H1−ξs
j +aI5H−ξm

j +εIj

(48)

where (εc,επ ,εx,εI ) are normally distributed error terms, and where the reduced form coefficients
(ac,aπ ,ax,aI )∈R

7 ×R
4 ×R

5 ×R
5 are related to one another and to the structural parameters of

the model by:

ac1 =a+ A

r
(y0 −a),

ac2 = ac3

B
=A,

ac4 = ac5

B
= ac7r

y0 −a
=λm1A(ε−1)Lm(1),

ac6 =−λs1ac3Ls(1)

(49)

for consumption,

aπ2 = aπ3

B
= aπ1r

y0 −a
= θ

γ σS
,

aπ4 =−λs1aπ3Ls(1)

(50)

for stock holdings,

ax1 =φB,

ax2 = ax3

B
= ax5r

y0 −a
=λm1χ (ξm)

(
1

γs
−1

)
Lm(1),

ax4 =−λs1χ (ξs −1)Ls(1)B,

(51)

for health insurance, and

aI1 =KB,

aI2 = aI3

B
= aI5r

y0 −a
=λm1

aI1

B

(
ξm

1−α
)

Lm(1),

aI4 =λs1aI1

(
ξs −1

1−α
)

Ls(1)

(52)

for health investment, where the constants A, B, K and the functions χ , Ls, and Lm are defined as
in Proposition 1, Theorem 1, and Theorem 2.
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The structural estimation of the system (48)–(52) is challenging for two reasons. First the
model is characterized by a large number of parameters: 5 budget constraint parameters, 6
preference parameters, and 10 survival and health dynamics parameters. Second, and more
importantly, the statistical identification is a non-trivial issue in our setting due to the fact that
the model is non-linear and subject to a set of non-linear constraints. In particular, some of the
explanatory variables depend on the parameters ξm and ξs, which are also present in the reduced-
form coefficients. Furthermore, the system is subject to non-linear cross-equation restrictions as
many of the reduced form coefficients (e.g. ac2 and ac3 or aπ1, aπ2, and aπ3) are expressed are
products or ratios of one another. To the best of our knowledge, there are no results that insure
the global identification of parameters in such a setting.

To circumvent this identification problem we calibrate a subset of the parameters. Specifically,
we partition the vector of structural parameters into three parts as ψ= (ψ1,ψ2,ψ3)′. The
parameters inψ1 = (r,μ,σS,ρ,a,y0,β,η) are calibrated using guidance from previous literature as
well as summary statistics and basic income regressions computed from our sample of individuals.
Given these calibrated values we then perform a constrained Maximum Likelihood estimation
of (48)–(52) subject to the restrictions (18), (24), (34), (35), (45) for each value of the vector
ψ2 = (γs,ξs,ξm) in a discrete grid spanning the cube [0,8.5]×[1,6]2. This gives us a structural
estimate ψ̂3 = ψ̂3(ψ1,ψ2) of the vector ψ3 = (ε,γ,γm,α,φ,δ,λs0,λs1,λm0,λm1) for every ψ2 in
the grid, and we then select the set of parameters that produces the best fit of the observations as
measured by the log-likelihood function.

When estimating the system (48) we scale all monetary variables by 10−4 and encode
the agents’ self-reported health status using a discrete scale from 1.5 (Poor health) to 3.5
(Excellent health) with an increment of 0.5. The calibrated and estimated parameters as well
as the corresponding standard deviations are reported in Table 2.

4.2. Parameter estimates and robustness

Let us start by discussing the calibrated values of the parameters in the vector ψ1. The value
financial parameters in Panel A are conventional. In particular, we set the riskless interest rate
to r =0.048, the expected stock return to μ=0.108 and the stock volatility to σS =0.20 so
that the market price of risk is θ=0.30, well in line with received estimates. The calibrated
value of the subjective discount rate ρ=0.05 is standard for PSID studies.20 Turning to the
income and preference parameters in Panel B, we let β=0.02 and fix the minimal consumption
a=0.69 slightly higher than health-independent revenues y0 =0.68. Finally, the value of the
maximal illness intensity is fixed at η=50 so that an agent in extremely poor health suffers
from approximately one health shock every week on average. Taking these calibrated parameter
values as given, the search procedure described above leads to γs =7.4 for the morbidity risk
aversion parameter and to ξm =1.8 and ξs =4.9 for the parameters that govern the convexity of
the health-dependent part of the arrival rates.

Our estimate for the aversion to financial risk γ =2.6 is very realistic (see e.g.
Mehra and Prescott, 1985), and much lower than the calibrated value of γs. On the other hand, our
estimate for the aversion to mortality risk γm =0.68 is lower than one as required by the model,
and implies an important penalization for mortality risk �m =γm/(1−γm)=2.16 that translates
into a threefold increase of the endogenous utility discount rate in (16). Finally, our low estimate
of the elasticity of intertemporal substitution ε=0.65 is consistent with previous estimates in

20. See Alan and Browning (2010, Tab. 7) or Alan et al. (2009, Tab. IV) for recent estimates of subjective discount
rate.
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TABLE 2
Calibrated and estimated parameters

Symbol Interpretation Calibrated Estimated
[Std. Error]

Panel A. Financial market

r Risk-free rate interest 0.048
μ Expected risky return 0.108
σS Std. error risky returns 0.20

Panel B. Preference and income

β Health dependence in income 0.020
y0 Health-independent income 0.68
a Minimal consumption 0.69
ρ Subjective discount rate 0.05
γs Aversion to morbidity risk 7.40
γ Aversion to financial risk 2.5968

[0.0292]
γm Aversion to mortality risk 0.6834

[0.0384]
ε Elasticity intertemp. subst. 0.6465

[0.0523]
Panel C. Survival and health dynamics

ξm Mortality intensity convexity 1.80
ξs Morbidity intensity convexity 4.90
η Maximal morbidity intensity 50.00
λm0 Minimal mortality intensity 0.0237

[0.0043]
λs0 Minimal morbidity intensity 1.2098

[0.1125]
λm1 Endogenous mortality intensity parameter 0.0017

[0.0008]
λs1 Endogenous morbidity intensity parameter 0.0198

[0.0012]
φ Depreciation upon health shock 0.0110

[0.0012]
δ Deterministic health depreciation rate 0.0055

[0.0013]
α Cobb-Douglas param. health process 0.7742

[0.0085]
LLF −279,130

Notes: The estimated parameters in the last column are Maximum Likelihood estimates for the system (48)–(52) subject
to the regularity conditions, (18), (24), (34), (35), (45).

the literature21 and indicates that, up to a first-order approximation, agents in our sample tend to
decrease consumption in response to an increase in mortality risk.

The estimated value of the exogenous death intensity λm0 =0.024 reproduces a maximal
remaining longevity of 42 years (see the discussion in Section 4.4), whereas the exogenous illness
intensityλs0 =1.21 corresponds to approximately one event every 10 months for perfectly healthy
agents. Our estimates for the endogenous intensity parameters λm1 =0.0017 and λs1 =0.0198 are
low, but nonetheless significant. This validates the approximation method we use to solve the

21. See Vissing-Jørgensen (2002); Saltari and Ticchi (2007); Lee (2008); Biederman and Goenner (2008);
Engelhardt and Kumar (2009) among others for recent EIS estimates.
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model, and also confirms that the model with endogenous health risks is preferable. Furthermore,
the fact that both ξm<ξs and λm1<λs1 is consistent with the intuition that mortality risk is
more difficult to adjust than morbidity risk. The estimated share of health φ=1.1% lost upon
a health shock is non-trivial, and amounts to twice the estimated depreciation rate of health
δ=0.55%. Finally, the estimated value of the Cobb–Douglas parameter α=0.77 points towards
strong convexities in the health adjustment process.

Our structural parameter estimates provide key insights into the main features of the model.
First, the parameters of the mortality and morbidity intensities allow us to gauge the relevance
of the endogenous and exogenous health risks. While a sizeable share of these risks is captured
by the incompressible part of the arrival rates, we find that agents can indeed adjust both types of
risks through health-improving investments. Second, the parameters that govern the dynamics of
health confirm that health is subject to both proportional depreciation and morbidity shocks, and
show that while agents can adjust their health through investment, they face strongly diminishing
returns in doing so. Finally, the two estimated risk aversion parameters confirm that agents have
non-time-additive preferences that display source-dependent risk aversion.

To ascertain the robustness of our estimates of the parameters in ψ3 we also conducted a
thorough analysis of their sensitivity to the values of the calibrated parameters in the vectors
ψ1 and ψ2. Specifically, we constructed a discrete grid for the convexity parameters (ξs,ξm),
the aversion to morbidity risk γs, the maximum illness intensity η, the subsistence consumption
level a, and the two income process parameters (y0,β), and re-estimated (48)–(52) subject to
(18), (24), (34), (35), (45) for each point in this grid. A sample of these alternative estimation
results is presented in Table 3 where we report the benchmark case in Column (1) followed by
the alternatives in Columns (2)–(17). Overall, the estimation results in Panel B confirm that both
our estimated parameters and the quality of the statistical inference are qualitatively robust to our
calibration choices.Anotable exception is Column (5) which shows that the aversion to morbidity
risk γs needs to be much larger than one to replicate the data.

4.3. Predicted and observed allocations

To compare the predictions of the estimated model to the observed rules we proceed as follows.
First, we use the parameter values of Table 2 to calculate the predicted consumption, portfolio,
insurance, and health investment at the observed health and wealth levels for all agents in our
sample. Second, we compute the predicted sample average in each health and wealth quintile and
contrast those with the data averages. Table 4 shows the results for consumption and portfolio
holdings while Table 5 shows the results for health insurance and health investment.

The observed consumption schedules in Panel A.1 are clearly increasing in both health and
wealth.22 The estimated consumption in Panel A.2 reproduces the signs of the gradients and
provides a reasonable fit of the empirical averages, keeping in mind the caveats for the implied
PSID consumption data.23 Similarly, the observed stock holdings in Panel B.1 are increasing in
both health and wealth.24 Both the levels of observations and the signs of the health and wealth

22. See among others Smith (1999); Gertler and Gruber (2002); Domeij and Johannesson (2006) for empir-
ical evidence on the effect of health on consumption, and Gourinchas and Parker (2002); Dynan et al. (2004);
Jappelli and Pistaferri (2010) for empirical evidence on the effect of wealth.

23. As discussed in Appendix D, the observed consumption is inputed from a small number of measures (food,
utility, and transportation) and, therefore, is likely to be measured with considerable error.

24. See among others Rosen and Wu (2004); Berkowitz and Qiu (2006); Coile and Milligan (2009) for empirical
evidence on the effect of health on portfolio holdings, and Brunnermeier and Nagel (2008); Calvet and Sodini (2010);
Wachter and Yogo (2010) for empirical evidence on the effect of wealth.
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TABLE 4
Actual and predicted financial variables

Health Wealth quintiles

1 2 3 4 5

Panel A.1 Consumption: Data

Poor 3635 4899 8374 9328 12,048
Fair 4441 6084 9603 11,475 13,764
Good 5919 7109 9702 12,139 14,327
Very good 6403 7299 10,057 11,815 15,065
Excellent 6697 7130 10,284 12,164 15,516

Panel A.2 Consumption: Predicted

Poor 6801 6803 6836 7080 10,661
Fair 6955 6958 6993 7246 10,287
Good 7031 7035 7072 7327 10,347
Very good 7087 7091 7130 7395 10,579
Excellent 7137 7141 7181 7444 10,739

Panel B.1 Stock holdings: Data

Poor 0 3 30 1687 54,529
Fair 0 2 83 2261 64,712
Good 0 2 186 3062 60,876
Very good 0 4 170 3310 70,450
Excellent 0 8 201 3893 82,408

Panel B.2 Stock holdings: Predicted

Poor −1809 −1750 −995 4572 86,380
Fair 1277 1347 2093 7566 73,278
Good 2780 2857 3640 9018 72,591
Very good 3892 3978 4784 10,289 76,350
Excellent 4876 4962 5791 11,184 78,949

Notes: The observed rules are sample averages using pooled data from PSID (30,961 individuals) described inAppendix D.
Predicted rules are sample averages of the optimal rules of Theorem 2 evaluated at the parameter values of Table 2 and
using individual PSID data on wealth and health. All reported values are expressed in dollars.

gradients are well captured by the estimated model in Panel B.2. Interestingly, the estimated model
predicts negative stock holdings positions for poor and unhealthy agents and large stock holdings
for poor but healthy agents. While the former may indicate that poor and unhealthy agents engage
in risk-shifting activities, the latter is likely a reflection of the well-known participation puzzle
according to which low-wealth individuals do not take active positions in stock markets (e.g.
Vissing-Jørgensen, 2002; Brav et al., 2002; Gormley et al., 2010). Health-related risks alone are
apparently unable to account for this salient feature of the data.

Turning to health-related variables, Panel C.1 of Table 5 shows that in accordance with
previous studies the observed health insurance levels increase in wealth but are non-monotonic
in health.25 The predicted insurance levels in Panel C.2 correctly capture these features but are
lower than observed. This underestimation of the actual amounts of insurance coverage might
indicate that other elements that we abstracted from, such as employer-provided health plans,
are possibly at stake. Finally, the observed health investment levels in Panel D.1 fall sharply

25. See among others Cardon and Hendel (2001); Kaestner and Kaushal (2003); Barros et al. (2008); Yang et al.
(2009) and Khwaja (2010) for empirical evidence and a discussion of health and wealth effects on the demand for health
insurance.
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TABLE 5
Actual and predicted health-related variables

Health Wealth quintiles

1 2 3 4 5

Panel C.1 Health insurance: Actual

Poor 260 279 560 818 1192
Fair 209 226 573 897 1112
Good 223 280 445 689 1040
Very good 244 280 448 660 958
Excellent 213 262 429 556 917

Panel C.2 Health insurance: Predicted

Poor 315 316 324 382 1245
Fair 163 164 168 203 616
Good 132 132 136 158 426
Very good 130 131 133 150 350
Excellent 139 139 141 153 309

Panel D.1 Health expenditures: Data

Poor 951 655 2368 1933 5218
Fair 448 440 789 808 1746
Good 306 322 402 616 1001
Very good 215 271 362 503 915
Excellent 176 198 277 343 612

Panel D.2 Health expenditures: Predicted

Poor 610 611 613 782 2990
Fair 249 250 262 350 1407
Good 152 153 161 219 903
Very good 120 121 127 169 681
Excellent 109 110 115 146 544

Notes: The observed rules are sample averages using pooled data from PSID (30,961 individuals) described inAppendix D.
Predicted rules are sample averages of the optimal rules of Theorem 2 evaluated at the parameter values of Table 2 and
using individual PSID data on wealth and health. All reported values are expressed in dollars.

with health and increase with wealth.26 Once again the estimated model in Panel D.2 performs
reasonably well in reproducing both the range of observations and the signs of gradients.

4.4. Additional performance measures

To further assess the performance of our estimated model, we now investigate its predictions
concerning the value of health, the expected longevity of agents and the value that they attribute
to additional years of life expectancy. Taking the parameter estimates of Table 2 as given, we
compute the value of health (42), remaining expected lifetime (46), and the value of one year
of additional life expectancy (47) for all agents in our sample at the observed health and wealth
levels. The sample averages are then computed per wealth quintiles and health status and are
reported in Table 6. We report comparisons with other estimates in the literature in Table 7.

26. See among others Smith (1999); Wu (2003); Gilleskie and Mroz (2004); Smith (2007); Barros et al. (2008);
Yang et al. (2009); and Marshall et al. (2010) for empirical evidence and a discussion of health and wealth effects on
health expenditures.
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TABLE 6
Predicted life expectancy and values of health and life

Health Wealth quintiles

1 2 3 4 5

Panel A. Value of health (in $)

Poor 5699 5713 5898 7263 27,324
Fair 2882 2890 2979 3634 11,491
Good 2143 2149 2202 2566 6868
Very good 1878 1881 1915 2148 4937
Excellent 1758 1761 1784 1936 3847

Panel B. Remaining life expectancy (in years)

Poor 27.76
Fair 33.53
Good 36.35
Very good 37.84
Excellent 38.93

Panel C. Value of longevity (in $)

Poor 445 476 877 3837 47,322
Fair 729 754 1021 2976 26,458
Good 834 855 1068 2533 19,849
Very good 900 919 1100 2335 17,153
Excellent 959 975 1136 2184 15,352

Notes: The value of health in Panel A is the willingness to pay for n=0.5 additional units of health computed according
to (42). The remaining life expectancy in Panel B is computed according to (46) and the value of longevity in Panel C is
the willingness to pay for one year of additional life expectancy computed according to (47). All the reported quantities
are sample averages evaluated at the parameters of Table 2 using PSID data on individual wealth and health.

TABLE 7
Comparison with other estimates

Panel A. WTP to avoid health reduction (in % of income)

κ Smith (2005) Estimated median wh/Y

6.0% 1.8% 2.2%
13.0% 3.4% 4.9%
22.0% 9.4% 8.9%
28.0% 14.5% 11.9%
40.0% 18.8% 19.7%

Panel B. Expected conditional longevity

Health Lubitz et al. (2003) Estimated mean
(base age 70) (base age 44.18)

Poor 79.2 71.9
Fair 81.3 77.7
Good 82.6 80.5
Very Good 83.4 82.1
Excellent 83.8 83.1

Notes: Panel A: Smith (2005, Tab. 2 and 3, pp. 518 and 521) and the estimated median of wh(αHe,W ,(1−α)He)/Y
conditional upon non-zero income and base health He =3.5. Panel B: Lubitz et al. (2003, Fig. 2, p. 1052) and the
estimated mean of the sum of the base age and the expected remaining lifetime �(H) calculated from (46).
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The first panel of Table 6 shows that the willingness to pay for an additional unit of health is
non-trivial, with an average value between 4% of mean annual income for an healthy agent and
68% for an unhealthy agent. Consistent with economic intuition, the value of health increases in
wealth and falls rapidly as the agent’s health improves. When compared with our estimates for
the marginal value of health B= $3066, the reported values of health indicate that between 25%
and 76% of the value of health can be attributed to its effect on the arrival rates of shocks. The
implied values that we obtain are also realistic in view of estimates in the literature. For example,
Smith (2005) uses survey data to compute the willingness to pay in percent of annual income
to prevent a given relative reduction in health from an excellent health state. In our model, this
willingness to pay can be computed as

wh (κHe,W ,(1−κ)He)

Y

where κ is a given percentage reduction in health, He =3.5 denotes the benchmark state of
excellent health, and Y denotes the observed annual income level. As shown by Panel A of
Table 7, the implied values obtained from the model provide a close match of both the observed
levels and the observed gradients.

The remaining life expectancies reported in Panel B of Table 6 are also very realistic. Indeed,
the average age in our sample is 44 and, when restricted to the 789 agents of that age, the
unconditional expected lifetime27 is 80.84 years, halfway between the national values of 78.22
years for males and 82.17 for females aged 44 (Social Security Administration, 2007). Moreover,
we find that longevity is independent of the wealth level, and increases when health improves,
consistent with previous empirical findings.28 The fact that stock holdings and life expectancy both
increase with the agent’s health implies that, in accordance with the horizon effects documented by
Campbell and Viceira (2002) among others, stock holdings and longevity are positively related.
Finally, we note that the magnitude of the health gradient implied by our estimated parameters is
realistic. In particular, Panel B of Table 7 compares our estimates of longevity to those obtained
by Lubitz et al. (2003) for agents aged 70 and shows that the estimated health gradients provide
a close match of the observations.

Panel C of Table 6 shows that the willingness to pay for an additional year of life expectancy
is significant, with an average value of 12% of annual income. Interestingly, our results indicate
that while the value of life is increasing in wealth, it is either increasing or decreasing in health
depending on whether agents are poor or rich. Intuitively, an improvement in health raises the
agent’s total wealth and, therefore, increases the resources available to pay for reductions in
exogenous mortality risk. However, it simultaneously lowers the endogenous mortality rate and,
thereby, reduces the willingness to pay for exogenous decreases in mortality. At low net worth,
the wealth effect dominates and the healthier agent is willing to pay more. At high wealth, the
substitution effect dominates and the willingness to pay for additional longevity falls as health
improves. In comparison, an increase in wealth generates no such substitution effects so that
wealthier agents are always willing to pay more for longevity.

Overall, we conclude that the model with endogenous health risks offers a remarkable
empirical performance. In particular, the optimal rules implied by our estimates are plausible, both
in terms of levels and of comparative statics, and the model also generates accurate predictions
for life expectancy and the values of life and longevity.

27. The expected lifetime of an agent is obtained by summing the agent’s age and his remaining life expectancy
computed according to (46).

28. De Nardi et al. (2009) document that longevity increases in health and permanent income. See also Hurd et al.
(2001, Table 20) and Benitez-Silva and Ni (2008, Table 4) for positive health gradients and wealth independence.
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5. CONCLUSION

This article shows that the complex interactions between financial and health-related statuses and
allocations can be captured by a parsimonious model that combines two baseline frameworks
from the Health and Financial Economics literature with a novel specification of health-related
risks, and preferences.

The analytical solutions that we derive and estimate are easy to interpret and indicate that
endogenous health risks, a positive health elasticity of labour income as well as convex health
adjustment costs, and recursive preferences with source-dependent risk aversion are all key
ingredients in better understanding how risks and resources condition financial and health-related
choices.

APPENDIX

A. PROOFS

To simplify the presentation of the proofs we assume throughout this appendix that the agent’s subsistence consumption
a and the health independent part of his income y0 are both equal to zero. Since the agent faces complete markets when
solving the modified problem (15), the general case can be obtained from this one by adding a to the optimal consumption
and adding the present value

Et

∫ ∞

t
mt,τ (y0 −a)dτ= y0 −a

r

of the corresponding cash flow streams to the agent’s financial wealth.

Proof of Proposition 1. Let Q denote the risk neutral measure defined by

dQ

dP

∣∣∣∣
t
=ertmt .

where m is the state price density process of Equation (17). Using the independence between market and morbidity shocks
it is immediate to show that the function P0 is given by

P0(Ht)=sup
I≥0

EQ
∫ ∞

0
e−rs(βHτ− −Iτ )dτ=sup

I≥0
E
∫ ∞

0
e−rs(βHτ− −Iτ )dτ

and satisfies the HJB equation

rP0 =βH +λs0(P0((1−φ)H)−P0)+max
I≥0

(((I/H)α−δ)HP0H −I)

subject to the transversality condition
lim

t→∞EQ[e−rtP0(H0t)]=0

where H0 denotes the path of the agent’s health under the optimal strategy. The dynamics of H and the linearity of the
objective function imply that P0 is increasing and homogenous of degree one with respect to health so that the value
function and optimal investment policy are given by

P(H)=BH,

I0(H)=H(αP0H (H))
1

1−α =H(αB)
1

1−α ,

for some non-negative constant B that solves

0=β−(r+δ+φλs0)B+max
x≥0

(
xαB−x

)

=β−(r+δ+φλs0)B−(1−1/α)(αB)
1

1−α =g(B),

subject to the transversality condition
lim

t→∞E[e−rtBH0t]=0,

where
dH0t =H0t−

(
(αB)

α
1−α −δ

)
dt−φH0t−dNt
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denotes the path of the agent’s health under the candidate optimal strategy. Using the above dynamics in conjunction with
basic properties of Poisson processes we obtain

E[e−rtBH0t]=eg′(B)tBH00, t ≥0,

and it follows that the transversality condition is equivalent to g′(B)<0. Straightforward analysis shows that g satisfies
g(0)=r+δ+φλs0>0 as well as

g′(0)=−(r+δ+φλs0)<0

and attains a unique minimum over the positive real line whose value is given by

min
x≥0

g(x)=β−(r+δ+φλs0)
1
α .

Under condition (18), this minimal value is negative and it follows that there exists a unique non-negative B such that
g(B)=0 and g′(B)<0. ‖
Proof of Theorem 1. When the intensity of Poisson shocks is health independent, the agent’s problem is equivalent to
that of Equation (23) with initial capital N0t =N0(Wt,Ht). In particular, the value function and optimal controls are
given by

V0(W ,H)=G(N0(W ,H))

and

c0t =k∗
t ,

π0t =p∗
t N0t,

x0t =x∗
t +φP0(Ht−),

I0t = (αB)
1

1−α ,

where (p∗,x∗,k∗) denote the optimal portfolio proportion, optimal insurance coverage and optimal consumption for the
problem defined by

G(Nt)= sup
(p,x,k)

Ut(k)

subject to
dNt = (rNt− −kt)dt+ptNt−σ (dZt +θdt)+xtdMst . (A.1)

Following Svensson (1989) and Duffie and Epstein (1992a,b) among others we have that the HJB equation associated
with the latter problem is

0= max
(p,x,k)

D(p,x,k)
N G(N)+f (k,G(N))− γ (pNσSGN (N))2

2G(N)

−λs0G(N)(u(1;γs)−u(b(x,N);γs))−νm0G(N)

subject to the transversality conditions

lim
t→∞E[e−νm0 tG(N0t)]= lim

t→∞EQ[e−rtN0t]=0 (A.2)

where N0 denotes the path of the process N under the optimal strategy, the second order differential operator

D(p,x,k)
N = ((pNσS)2/2)∂NN +(rN +pNσSθ−k−xλs0(H))∂N

is the continuous part of the infinitesimal generator of the process N under the portfolio, insurance and consumption
strategy (p,x,k) and we have set

b(x,N)= G(N +x)

G(N)
.

The specification of the agent’s preferences and the dynamics of the controlled process in Equation (A.1) imply that G is
increasing and homogenous of degree one. Using these properties in conjunction with the HJB equation, we obtain that
the value function and the optimal strategy are explicitly given by G(N)=�N and

p∗
t =θ/(γ σS),

x∗
t =0,

k∗
t =ρε�1−εN0t−,
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for some non-negative constant such that

ρε�1−ε=ερ+(1−ε)
(

r−ν0m +θ2/(2γ )
)
.

This equation admits a well-defined solution if and only if the constant A of Equation (24) is strictly positive. In this case,

�=ρ(A/ρ)
1

1−ε and substituting this into the definition of the optimal consumption plan we conclude that

c0t =AN0t−,

π0t = (θ/(γ σS))N0t−,

x0t =φP0(Ht−)

as required. To complete the proof we need to show that under condition (24) the above solution satisfies (A.2). Using
Equation (A.1) and the definition of the candidate optimal strategy we obtain that the agent’s disposable wealth evolves
according to

dN0t =N0t(r−A)dt+N0t(θ/γ )(dZt +θdt)

=N0t(r−A)dt+N0t(θ/γ )dẐt

where Ẑ is a risk neutral Brownian motion. Combining this expression with well-known results on the expectation of the
geometric Brownian motion gives

EQ[e−rtN0t]=e−AtN00,

E0[e−ν0mtG(N0t)]=e(r−νm0−A+θ2/γ )t�N00,

and it follows that condition (24) is necessary and sufficient for both the feasibility of c0 and the validity of the transversality
conditions. ‖
Proof of Theorem 2. The HJB equation associated with the agent’s optimization problem is given by Equation (29) subject
to

lim
t→∞EQ[e−rtW∗

t ]=0, (A.3)

and
lim

t→∞E
[
e−∫ t

0 νm(H∗
τ−)dτV (W∗

τ ,H
∗
τ )
]
=0, (A.4)

where the processes (W∗,H∗) denote the agent’s wealth and health status under the optimal strategy. Maximizing the
HJB equation gives the candidate optimal strategy of Equations (30)–(33) and substituting these back into Equation (29)
shows that the HJB equation can be written as

νm(H)V =D∗V +f (c,V )− γ θ2VV4
W

2(γV2
W −VVWW )2

−λs(H)(u(1;γs)−u(κ(x∗,W ,H);γs))V (W ,H)

where

D∗ = ((I∗/H)α−δ)H∂H + 1

2
(π∗σS)2∂WW

+(rW +π∗σSθ+y0 +βH −c∗ −I∗ −x∗λs(H))∂W

is the continuous part of the differential operator associated to the process (H,W ) under the candidate optimal strategy,
and x∗ is implicitly defined by

κ(x∗,W ,H)−γs = VW (W +x∗,(1−φ)H)

VW (W ,H)
. (A.5)

Let λk1 =ελ̄k1 for some strictly positive constants λ̄m1, λ̄s1 and consider the first-order approximations given by

V (W ,H)≈V1(W ,H)=V0(W ,H)+εVε (W ,H) (A.6)

and
x∗(W ,H)≈x1(W ,H)=x0(W ,H)+εxε (H,W ) (A.7)

where V0 is the value function for the case of health independent mortality and morbidity, and the unknown functions

(xε ,Vε )(W ,H)=
(

x(1),V (1)
)

(W ,H)= ∂(x∗,V )

∂ε
(W ,H)

∣∣∣∣
ε=0
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are the first-order corrections induced by the presence of health-dependent mortality and morbidity. Substituting these
approximation into Equation (A.5) and expanding the resulting expression to the first-order in ε shows that the first-order
correction to the optimal insurance coverage is given by

xε= 1

�

(
Vε−Vε (W +x0,H(1−φ))+ N0

γs
(VεW (W +x0,H(1−φ))−VεW )

)
.

On the other hand, substituting the approximations (A.6), (A.7) into the HJB equation and expanding the result to the
first-order in ε shows that the first-order correction to the value function solves

νm0Vε=D0Vε+fV (c0,V0)Vε+ θ2

2γ
(Vε−2N0(W ,H)VεW )− ν̄m1H−ξm Vε (A.8)

− λ̄s1�(η−λs0)φBH1−ξs +λs0(Vε (W +x0,H(1−φ))−Vε )

where

D0 = ((I0/H)α−δ)H∂H + 1

2
(π0σS)2∂WW

+(rW +π0σSθ+y0 +βH −c0 −I0 −x0λs0)∂W

is the continuous part of the differential operator associated to the optimal strategy of the health-independent intensity
case, and we have set

ν̄m1 = λ̄m1

1−γm
.

Similarly, substituting the approximations (A.6), (A.7) into Equations (30)–(32) and expanding the resulting expressions
shows that up to a first-order approximation

π∗ =π0 + εθ

γ 2σS�
(γVε+N0(VεWW N0 −γVεW )) (A.9)

c∗ =c0 +ε(ρ/�)ε(Vε−εVεW N0), (A.10)

I∗ = I0 + ε

(1−1/α)�
Iα0 H1−α(BVεW −VεH ) (A.11)

where the functions π0, c0 and I0 are defined as in Proposition 1 and Theorem 1. An educated guess suggests that the
first-order correction to the agent’s value function should be of the form

Vε (W ,H)=−Cm1N0(W ,H)H−ξm −Cs1P0(H)H−ξs

for some constants Cm1, Cs1. Substituting this ansatz into Equation (A.8), matching terms and solving for the constants
shows that

Ck1 =�L̄k(1), k =m,s,

where we have set L̄k = λ̄k1Lk and the functions Lk are defined as in the statement. Using these constants together with
Equations (A.9), (A.10), (A.11) then gives the approximate optimal policy reported in the statement and it only remains
to show that a suitable approximation of the transversality conditions is satisfied.

Consider first the transversality condition for the value function in Equation (A.4) and expand the quantity inside the
expectation to the first-order in ε. This gives

e−∫ t
0 νm(H∗

s−)dsV (W∗
t ,H

∗
t )≈e−νm0 t�N0t (A.12)

+εe−νm0 t
(

Vε (W0t,H0t)+�∇N0t + ν̄m1�N0t

∫ t

0
H−ξm

0τ− dτ

)

where the processes (W0,H0) denote the agent’s wealth and health under the optimal strategy of the benchmark case in
which ε=0, and

∇N0t = lim
ε→0

N0(W∗
t ,H

∗
t )−N0(W0t,H0t)

ε

denotes the derivative of the process N0(W∗
t ,H

∗
t ) with respect to ε at the origin. Using the definition of the approximate

optimal strategy in conjunction with straightforward (but lengthy) algebra it can be shown that

d∇N0t =∇N0t
dN0t

N0t
+(A−r+F(1−ξs))L̄s(H0t−)P0(H0t−)dt

+A(1−ε)L̄m(H0t−)N0tdt−(θ/γ )L̄s(H0t−)P0(H0t−)(dZt +θdt)+dMt
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for some discontinuous martingale M with initial value equal to zero. Integrating this equation and using the fact that

dN0t

N0t
= (r−A)dt+(θ/γ )(dZt +θdt) (A.13)

we find that
∇N0t

N0t
=
∫ t

0

L̄s(H0τ−)P0(H0τ−)

N0τ
(C1dτ+C2dZτ )−

∫ t

0
C3L̄m(H0τ−)dτ+M̂t

where M̂ is a discontinuous martingale with initial value equal to zero and

C1 =−(r−A−F(1−ξs)+(θ2/γ )(1−1/γ )),

C2 =−θ/γ,
C3 =−(1−ε)A. (A.14)

Taking expectations on both sides and using Equation (A.13) together with basic properties of Poisson processes, the
definition of F and the fact that

E

[
N0t

∫ t

0
(Xτ dτ+Yτ dZτ )

]
=E

∫ t

0
e(r−A+θ2/γ )(t−τ )N0τ (Xτ +Yτ (θ/γ ))dτ

for any sufficiently integrable predictable processes, we obtain

e−νm0 tE[∇N0t]= C3N00L̄m(H00)

F(−ξm)
e(r−νm0−A+θ2/γ )t

(
eF(−ξm)t −1

)

−L̄s(H00)P0(H00)
(

e(r−νm0−A+θ2/γ )t −e−(νm0−F(1−ξs))t
)
.

Similarly, using the definition of the functions N0 and Vε together with Equation (A.13) and basic properties of Poisson
processes we obtain

e−νm0 tE [N0t]=e(r−νm0−A+θ2/γ )tN00

e−νm0 tE [Vε (W0t,H0t)]=−e−(νm0−F(1−ξs))t�L̄s(H00)P0(H00)

−e(r−νm0−A+θ2/γ+F(−ξm))t�N00L̄m(H00)

e−νm0 tE

[
N0t

∫ t

0
H−ξm

0τ− dτ

]
= N00H−ξm

00

F(−ξm)
e(r−νm0−A+θ2/γ )t

(
eF(−ξm)t −1

)
and it now follows from Equation (A.12) that the transversality condition for the approximate value function holds if and
only if

r−νm0 −A+θ2/γ <0, (A.15)

r−νm0 −A+θ2/γ +F(−ξm)<0, (A.16)

F(1−ξs)−νm0<0. (A.17)

Let us now turn to the agent’s wealth. To verify that an approximate version of the transversality condition (A.3) holds
we start by observing that

W∗
t =N0(W∗

t ,H
∗
t )−P0(H∗

t ). (A.18)

Expanding both sides of this identity as ε approaches zero shows that up to a first-order approximation the agent’s optimal
wealth is given by

W∗
t ≈N0t −P0(H0t)+ε(∇N0t −B∇H0t)

where the process defined by

∇H0t = lim
ε→0

(
H∗

t −H0t

ε

)
=H0t

∫ t

0

(
C4

N0τ L̄m(H0τ−)

H0τ
+C5

L̄s(H0τ−)P0(H0τ−)

H0τ−

)
dτ

with

C4 =ξmK/((1−α)B),

C5 = (ξs −1)K/((1−α)B),
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represents the directional derivative of the agent’s health process along the optimal strategy as ε→0. Taking expectations
under the risk neutral probability measure on both sides of Equation (A.18) and using the fact that

∇N0t

N0t
=
∫ t

0

L̄s(H0τ−)P0(H0τ−)

N0τ
((C1 −θC2)dτ+C2dẐτ )−

∫ t

0
C3L̄m(H0τ−)dτ+M̂t

for some risk neutral Brownian motion Ẑ and some discontinuous risk neutral martingale M̂ with initial value zero together
with the same arguments as above we deduce that

EQ[e−rtW0t]=EQ[e−rt(N0t −BH0t)]=e−AtN00 −e−(r−F(1))tBH00,

EQ[e−rt∇N0t]=−L̄s(H00)P0(H00)
(

e−At −e−(r−F(1−ξs))t
)

−C3
N00L̄m(H00)

F(−ξm)

(
e−(A−F(−ξm))t −e−At

)
,

EQ[e−rt∇H0t]=C′
4N00L̄m(H00)

(
e−(A−F(−ξm))t −e−(r−F(1))t

)

+C′
5L̄s(H00)P0(H00)

(
e−(r−F(1−ξs))t −e−(r−F(1))t

)
for some constants C′

4, C′
5 and it follows that the approximate transversality condition for wealth holds if and only if

A>0, (A.19)

r−F(1)>0, (A.20)

r−F(1−ξs)>0, (A.21)

A−F(−ξm)>0. (A.22)

Combining the restrictions (A.15), (A.16), (A.17), (A.19), (A.20), (A.21), (A.22) with those imposed in Theorem 1 and
using the fact that (A.16) is equivalent to (18) produces the restrictions of the statement and completes the proof. ‖
Proof of Proposition 2. Under the conditions of the statement the agent’s total wealth is given by

N∗
t =W∗

t +Et

∫ ∞

t
mt,τ (βH∗

τ− −I∗
τ )dτ=EQ

t

∫ ∞

t
e−r(τ−t)c∗

τ dτ .

Expanding both sides of the above expression as ε approaches zero we find that up to a first-order approximation the
agent’s total wealth is given by

N∗
t ≈N0t −εA

∫ ∞

t
e−r(τ−t)EQ

t [∇N0τ ]dτ (A.23)

+εA
∫ ∞

t
e−r(τ−t)EQ

t [(1−ε)N0τ L̄m(H0τ−)+L̄s(H0τ−)P0(H0τ−)]dτ .

Using the same arguments as above we obtain

−EQ
t [e−r(τ−t)∇N0τ ]= L̄s(H0t)P0(H0t)

(
e−A(τ−t) −e−(r−F(1−ξs))(τ−t)

)

+C3
N0t L̄m(H0t)

F(−ξm)

(
e−(A−F(−ξm))(τ−t) −e−A(τ−t)

)
and

EQ
t [e−r(τ−t)N0τ L̄m(H0τ−)]=e−(A−F(−ξm))(τ−t)N0t L̄m(H0t),

EQ
t [e−r(τ−t)L̄s(H0τ−)P0(H0τ−)]=e−(r−F(1−ξs))(τ−t)N0t L̄s(H0t)P0(H0t)

where the constant C3 is defined as in (A.14). Substituting these expressions into (A.23) and computing the resulting
integrals then shows that the agent’s total wealth satisfies

N∗
t ≈N0t −εL̄s(H0t)P0(H0t)=N0t −λs1Ls(H0t)P0(H0t)

and completes the proof. ‖
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Proof of Proposition 3. Consider an agent with wealth W , health H, and intensity parameters (λm0,λs0,ελm1,ελs1) and
denote by

wh(ε)=wh(n,W ,H,ε)

the value to this agent of n additional units of health. Expanding Equation (41) to the first-order as ε decreases to zero
and using the definition of V0 we obtain

0≈�(nB−wh(0))+ε�(Vε (W −wh(0),H +n)−Vε (W ,H)−w′
h(0)).

Setting both terms on the right to zero and using the definition of Vε shows that up to a first-order approximation the
value of n additional units of heath is

wh(n,W ,H,ε)≈nB+Jm(n,W ,H)N0(W ,H)+Js(n,W ,H)

and completes the proof. ‖
Proof of Proposition 4. Consider first the computation of the expected lifetime. Using basic properties of point processes
we have that

�(W ,H)=E
∫ ∞

0
e−∫ τ0 λm(H∗

s−)dsdτ

where H∗ denotes the agent’s health along the optimal path. Expanding both sides of the above expression to the first-order
as ε approaches zero gives

�(W ,H)≈E
∫ ∞

0
e−λm0τ

(
1+ελ̄m1

∫ τ

0
H−ξm

0s ds

)
dτ= 1−κ0λm1H−ξm

λm0

where H0 denotes the agent’s health under the optimal strategy of the benchmark case with health independent intensities
and the second equality follows from the assumptions of the statement and basic properties of Poisson processes.

Let us now turn to the computation of the value of life. Consider an agent with intensity parameters
(λm0,λs0,ελm1,ελs1), denote by

w�(ε)=w�(n,W ,H,ε)

the value to this agent of n units of additional life expectancy and by

λ∗
m0(ε)=λ∗

m0(n,W ,H,ε)

the solution to Equation (43). Expanding Equations (43) and (44) to the first-order and using the approximation of the
life expectancy derived in the first part gives

0≈n+1/λm0 −1/λ∗
m0(0)−ε

−ε
(

d

dε
(1/λ∗

m0(ε))

∣∣∣∣
ε=0

+ κ0λ̄m1H−ξm
λm0

− λ̄m1H−ξm
λ∗

m0(0)(λ∗
m0(0)−F(−ξm))

)
,

and

0≈�∗(W −wl(0)+P0(H))−V0(W ,H)−ε(Vε (W ,H)+�∗w′
l(0)

)
+ε

(
d�∗

dλ∗
m0(0)

dλ∗
m0(ε)

dε

∣∣∣∣
ε=0

+�∗(W −wl(0)+P0(H))L̄m(H)+�∗L̄s(H)P0(H)

)
,

where we have set

�∗ =ρ ε
1−ε A∗(n)

1
1−ε =ρ ε

1−ε
[
ερ+(1−ε)

(
r− λ∗

m0(0)

1−γm
+ θ2

2γ

)] 1
1−ε
.

Setting the terms on the right to zero and using the definition of Vε allows to solve for the unknowns w�(0), w′
�(0), λ∗

m0(0),
(λ∗

m0)′(0) and simplifying the resulting expansion of the value of life gives the formula reported in the statement with

q∗(n)=1−(A/A∗(n)
) 1

1−ε ,

Q∗(n,H)= (1−q∗(n))(Lm(H)−L∗
m(n,H)+R∗(n)),

where

R∗(n)= nλ2
m0(κ0 +κ0λm0(n+κ0))

A∗(n)(1−γm)(1+nλm0(1−κ0λm0))(1+nλm0)2

and the non-negative function L∗
m(n,H) is defined as in Equation (36) but with the function A∗(n) in place of the strictly

positive constant A. ‖
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B. AGE-DEPENDENT PARAMETERS

In this appendix, we briefly discuss a generalization of the model in which the intensity parameters λm0, λs0 , λm1, λs1,
η, the depreciation rate of health δ, the fraction of health φ that is lost upon experiencing a health shock, and the health
sensitivity β of labour income are allowed to vary with the agent’s age.

The difference between such a model and the one we considered in the text is that instead of depending only on wealth
and health the value function and optimal strategy now also depend on the agent’s age. Despite this added dependence
the model can still be solved using an first-order approximation but the functions P0, Lm, and Ls will now be age and
health dependent rather than just health dependent. In particular, the analogue of Theorem 1 is given by:

Theorem 3. Let λm1 =λs1 =0, define
νm0(t)=λm0(t)/(1−γm)

and assume that there exist strictly positive solutions A and B to the ordinary differential equations

A′(t)=A(t)2 −
(
ερ+(1−ε)

(
r−νm0(t)+θ2/(2γ )

))
A(t), (B.1)

B′(t)= (r+δ(t)+φ(t)λs0(t))B(t)+(1−1/α)(αB(t))
1

1−α −β. (B.2)

such that

lim
t→∞(r−νm0(t)+θ2/(2γ )−A(t))<0, (B.3)

lim
t→∞((αB(t))

α
a−α −r−δ(t)−φ(t)λs0(t))<0. (B.4)

Then the indirect utility function of an alive agent is

V0(t,W ,H)=�(t)N0(t,W ,H)=�(t)

(
W +B(t)H + y0 −a

r

)
,

and generates the optimal consumption, portfolio, health insurance, and health investment strategies given by

c0t =a+A(t)N0(t,Wt−,Ht−),

π0t = (θ/(γ σS))N0(t,Wt−,Ht−),

x0t =φ(t)B(t)Ht−,

I0t = (αB(t))
1

1−α Ht−

with �(t)=ρ ε
1−ε A(t)

1
1−ε .

Proof The proof is similar to that of Theorem 1 and therefore is omitted. ‖

Theorem 4. Let

χ (t,x)=1−(1−φ(t))−x,

F(t,x)=x(αB(t))
α

1−α −xδ(t)−λs0(t)χ (t,−x),

assume that there exist strictly positive solutions A, B to the ordinary differential Equations (B.1), (B.2) such that (B.3),
(B.4) and

lim
t→∞(F(t,1−ξs)−min(r,ν0m(t)))<0,

lim
t→∞(F(t,−ξm)−max(0,r−ν0(t)+θ2/(2γ ))−A(t))<0,

hold true and define

Lm(t,H)=
∫ ∞

t
e−∫ τt (A(s)−F(s,−ξm))dsλm1(τ )H−ξm/(1−γm)dτ ,

Ls(t,H)=
∫ ∞

t
e−∫ τt (r−F(s,1−ξs))dsλs1(τ )φ(τ )B(τ )(η(τ )−λs0(τ ))H1−ξs .
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Up to a first-order approximation the indirect utility of an alive agent is

V1(t,W ,H)=V0(t,W ,H)−�(t)Lm(t,H)N0(t,W ,H)−�(t)Ls(t,H)

and generates the approximate optimal consumption, portfolio, health insurance, and health investment strategy given by

c1t =c0t −A(t)(1−ε)Lm(t,Ht−)N0(t,Wt−,Ht−)−A(t)Ls(t,Ht−),

π1t =π0t −(θ/(γ σS))Ls(t,Ht−),

x1t =x0t −χ (t,ξm)(1−1/γs)Lm(t,Ht−)N0(t,Wt−,Ht−)

−χ (t,ξs −1)Ls(t,Ht−)

I1t = I0t +(ξmK(t)/(1−α))Lm(t,Ht−)N0(t,Wt−,Ht−)

+((ξs −1)K(t)/(1−α))Ls(t,Ht−)

with K(t)=α 1
1−α B(t)

α
1−α .

Proof The proof is similar to that of Theorem 2 and therefore is omitted. ‖

C. ARGUMENTS OMITTED FROM THE TEXT

C.1. Construction of the utility index

Fix a lifetime consumption and health investment plan (c,I) and denote by H the path of the agent’s heath status under
this plan. Let Mt ∈R

3 with

M1t =Zt,

M2t =Qst −
∫ t

0
λs(Ht−)dt,

M3t =Qmt −
∫ t∧Tm

0
λm(Ht−)dt

denote the vector of sources of risk in the economy and let us accordingly relabel morbidity and mortality risks by k =2
and k =3, respectively. To define the agent’s preferences we start by writing the continuation utility process in the form

dUt =1{Tm>t}

(
μtdt+

3∑
i=1

�itdMit

)
=1{Tm>t}

(
μtdt+��

t dMt
)

(C.1)

where the predictable process � captures loadings on each of the three risk factors present in the economy. Furthermore,
we require the agent’s utility to drop to zero after death and it follows that we must have �3t =�mUt =−Ut−.

Given this decomposition the continuation utility process is then defined heuristically by requiring that over a
sufficiently short time interval

Ut =a(�,ct,mt(�))=
((

1−e−ρ�)(ct −a)1− 1
ε +e−ρ�mt(�)1− 1

ε

) 1
1− 1

ε . (C.2)

In this equation, the constants ρ,ε are as in the main text and the random function m is the source dependent certainty
equivalent defined by

W (mt(�),0)=Et

[
W

(
Ut +

∫ t+�

t
μτ dτ ,

∫ t+�

t
diag(�τ )dMτ

)]
with the aggregator function

W (v,x)=u(v+x1;γ )+u′(v;γ )
3∑

k=2

[
u(v+xk;γk)−u(v;γk)

u′(v;γk)

]

and the same constants γ,γ2 =γs, and γ3 =γm as in the main text. The difference between this formulation of preferences
and the usual formulation of recursive preferences is that the aggregator function depends on each of the components of
the utility process and not only on their sum (see Skiadas (2008, Section 4.3) for details).
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Subtracting the continuation utility from both sides of the recursion (C.2) and assuming sufficient smoothness for an
application of the chain rule then gives

0= lim
�→0

a(�,ct,mt(�))−Ut

�
=a�(0,ct,Ut)+am(0,ct,Ut)m

′
t(0). (C.3)

Now, a straightforward modification of the arguments in Skiadas (2008) shows that the conditional certainty equivalent
m satisfies

m′
t(0)=μt − γ�2

1t

2Ut−
−

m∑
k=s

Fk(Ut−,Ht−,�kUτ ).

Substituting this expression into the restriction (C.3) and solving the resulting equation shows that on the set {Tm> t} the
drift of the continuation utility process is

μt =μ(ct,�t,Ut−,Ht−)≡−f (ct,Ut−)+ γ�2
1t

2Ut−
+

m∑
k=s

Fk(Ut−,Ht−,�kUτ )

where the aggregator function f is defined as in Equation (11) of the main text. Combining this restriction with
Equation (C.1) and the fact that the continuation utility process vanishes after death then implies

Ut =−
∫ Tm

t∧Tm

μ(cτ ,�τ ,Uτ−,Hτ−)dτ−
∫ Tm

t∧Tm

��
τ dMτ .

Finally, taking conditional expectations on both sides and assuming sufficient integrability so that the local martingale
part vanishes we obtain

Ut =−Et

∫ Tm

t∧Tm

μ(cτ ,�τ ,Uτ−,Hτ−)dτ

=1{Tm>t}Et

∫ Tm

t

(
f (cτ ,Uτ−)− γ�2

1τ

2Uτ−
−

3∑
k=2

Fk(Uτ−,Hτ−,�kτ )

)
dτ

which is the recursive integral Equation (10) that we took as our definition of the agent’s continuation utility process in
the main text.

C.2. Properties of the penalty functions

Using the assumed concavity of the utility functions u(x;γk) that appear in the definition (12) of the penalty functions we
immediately obtain that

Fk(v,h,�)

λk(h)v
= �

v
−u

(
1+�

v
;γk

)
−u(1;γk)≥ �

v
−u′(1;γk)

�

v
=0

and since both v and λk(h) are non-negative it follows that the penalization for jumps of type k is non-negative. On the
other hand, differentiating the penalty function with respect to the risk aversion parameter gives

∂

∂γk

(
Fk(v,h,�)

v

)
= ϑ((1+�/v)1−γ )

(1−γk)2

where we have set ϑ(x)=1+x[log(x)−1]. Since this function is non-negative and attains a global minimum that is equal
to zero at the point x=1 we obtain

∂

∂γk

(
Fk(v,h,�)

v

)
≥min

x≥0

(
ϑ(x)

(1−γk)2

)
=0

and it follows that the penalization for jumps of type k increases with the agent’s relative risk aversion to that risk. Finally,
differentiating the penalty function with respect to the jump size gives

∂Fk(v,h,�)

∂�
=1−

(
1+�

v

)−γk

and it follows that the penalty function is U-shaped with respect to the jump size with a global minimum of zero at the
point �=0.
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C.3. Proof of Equations (14) and (15)

Fix a consumption and investment plan (c,I) define the corresponding continuation utility process by (10) and assume
that

E0

∫ Tm

0

(
|f (cτ ,Uτ )|+ γ στ (U)2

2|Uτ | +
m∑

k=s

|Fk(Uτ−,Hτ−,�kUτ )|
)

dτ <∞ (C.4)

for otherwise the continuation utility process cannot be well defined. Since the process Qm is a single jump process and
Ut ≡0 on the set {Tm ≤ t} it follows from a well known result of Dellacherie (1970) that we have

Ut =1{Tm>t}Ut (C.5)

for some process R that is adapted to the filtration G= (Gt)t≥0 generated by the Brownian motion and the point process
Qs. Let

hτ = f (cτ ,Uτ )−Fs(Uτ−,Hτ−,�sUτ )− γ στ (U )2

2Uτ ,

gτ =hτ −Uτ�mλm(Hτ ).

where the aggregator function f and the penalty functions Fs, Fm are defined as in Equations (11) and (12). Since U
is adapted to G we have that the processes (h,g) are also adapted to G and it thus follows from the definition of the
continuation utility process, the law of iterated expectations and the definition of the death time as the first jump of the
process Qm that

Ut =1{Tm>t}Ut

=1{Tm>t}Et

∫ Tm

t
gτ dτ=1{Tm>t}Et

∫ ∞

t
1{Tm>τ }gτ dτ

=1{Tm>t}Et

∫ ∞

t
Et
[

1{Tm>τ }
∣∣G∞

]
gτ dτ=1{Tm>t}Et

∫ ∞

t
e−∫ τt λm(Hu)dugτ dτ .

Since the decomposition of the continuation utility process in Equation (C.5) is almost surely unique this in turn implies
that

Ut =Et

∫ ∞

t
e−∫ τt λm(Hu)dugτ dτ=EGt

∫ ∞

t
e−∫ τt λm(Hu)dugτ dτ

and it follows that the process

Lt =e−∫ t
0 λm(Hu)duUt +

∫ t

0
e−∫ τ0 λm(Hu)dugτ dτ

is a G−martingale over any finite horizon. Using this property in conjunction with Itô’s lemma and the definition of g
then shows that

Kt =e−∫ t
0 νm(Hu)duUt +

∫ t

0
e−∫ τ0 νm(Hu)duhτ dτ=U0 +

∫ t

0
e−∫ τ0 �mλm(Hu)dudLτ

is a G−local martingale and since �mλm(Ht)≥0 it follows from Emery’s inequality (see e.g. Protter (2004, Theorem
V.3)) that this local martingale is in fact a martingale over any finite horizon. In particular, we have

Ut =e
∫ t

0 νm(Hu)duM̌t −
∫ t

0
e−∫ t

τ νm(Hu)duhτ dτ

= lim
T→∞

(
e
∫ t

0 νm(Hu)duEGt [KT ]
)
−
∫ t

0
e−∫ t

τ νm(Hu)duhτ dτ

= lim
T→∞EGt

[
e−∫ T

t νm(Hu)duUT +
∫ T

0
e−∫ τ0 νm(Hu)duhτ dτ−

∫ t

0
e−∫ τ0 νm(Hu)duhτ dτ

]

= lim
T→∞EGt

[
e−∫ T

t νm(Hu)duUT +
∫ T

t
e−∫ τ0 νm(Hu)duhτ dτ

]

and the desired result now follows from Equation (C.4), the law of iterated expectations and the dominated convergence
theorem.
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C.4. Separation with exogenous health risks

Since markets are dynamically complete it follows from standard results that the agent’s optimization problem can be
rewritten as

V (Wt,Ht)= sup
q,I≥0

Ut(a+q,I,H) (C.6)

subject to Et

∫ ∞

t
mt,sqsds≤Wt +�t(I,Ht)

where q represents excess consumption, the non-negative process mt,s =ms/mt is the pricing kernel between dates t and
s≥ t as defined in (17) and

�t(I,Ht)=Et

∫ ∞

t
mt,s(Ys −a−Is)ds= y0 −a

r
+Et

∫ ∞

t
mt,s(βHs −Is)ds

gives the present value of the agent’s net income under the health investment plan I . If health risks are exogenous (i.e. if
λm1 =λs1 =0) then

Ut(a+q,I,H)=Ut(a+q)

depends neither on the agent’s health status nor on his health investment and, since the set of feasible consumption plans
in (C.6) increases with the present value of the agent’s net income, we conclude that

V (Wt,Ht)=sup
q≥0

Ut(a+q)

subject to Et

∫ ∞

t
mt,sqsds≤Wt +sup

I≥0
�t(I,Ht)=N0(Wt,Ht)

This shows that under exogenous health risks the choice of the optimal health investment plan is separated from the
agent’s other choices and completes the proof.

C.5. Marginal value of health

Define R=r+δ+φλs0 and let b∈{α,β,r,δ,λs0,φ} denote a parameter that is relevant for the determination of the
marginal value of health B=B(b) as the unique strictly positive solution to the algebraic equation

g(b,B(b))=β−R(b)B(b)−(1−1/α)(αB(b))
1

1−α =0, (C.7)

such that gB(b,B(b))<0. Totally differentiating (C.7) gives B′(b)=−gb/gB and it follows that sign(B′(b))=
sign(gb(b,B(b))). Since gβ =1 it follows that B is an increasing function of β. Similarly, since gR =−B(R) is strictly
negative we have that B is a decreasing function of R and consequently also of its components r, δ, λs0, andφ. Furthermore,
letting

Z(α,B(α))= (1/α−1)(αB(α))
1

1−α >0

in (C.7) we obtain

gα(α,B(α))=Zα(α,B(α))=Z(α,B(α))

(
log(αB(α))

(1−α)2

)
which is negative when B(α)<1/α and positive otherwise. Finally, since x0(b)=φB(b) the optimal amount of health
insurance coverage inherits the comparative static properties of B(b) with respect to {α,β,r,λs0,δ} and since

x′
0(φ)= B(φ)

|gB(φ,B(φ))|
(

r+δ−(αB(φ))
α

1−α
)

we conclude that it increases with the size of morbidity shocks if r+δ≥ (αB(φ))
α

1−α and decreases otherwise.

C.6. Separation with exogenous mortality

Let λm1 =0 and λs1 �=0 so that the agent faces exogenous mortality risk and endogenous morbidity risk. We claim that in
this case the approximate indirect utility and optimal rules are the same as those of Proposition 1 and Theorem 1 except
that the zero order human wealth P0(H) is replaced by its first-order counterpart P1(H).
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For the indirect utility, optimal consumption, and optimal portfolio the conclusion follows from (25), (26), (27), (37),
(38), (39), and the definition of P1(H). For the optimal insurance the result follows by replacing P0(Ht) by P∗

t in the first
equality in (28) and noting that up to a first-order approximation

−�sP∗
t ≈−�sP1(Ht)=−�sP0(Ht)+λs1�s(Ls(Ht)P0(Ht))

=−�sP0(Ht)−λs1 [Ls(Ht−)P0(Ht−)−Ls((1−φ)Ht−)P0((1−φ)Ht−)]

= (φ−λs1χ (ξs −1)Ls(Ht−))P0(Ht−)=x1t

where the second equality follows from Proposition 2. Similarly, replacing P0(Ht) by P∗
t in the first equality of (20) and

expanding the result gives

(
α
∂P∗

t

∂Ht−

) 1
1−α

Ht− ≈(αP0H (Ht−))
1

1−α Ht−
{

1+ 1

1−α
(

P1H (Ht−)

P0H (Ht−)
−1

)}

= I0t

{
1+ λs1(ξs −1)

1−α Ls(Ht−)

}
= I1t

where the second equality follows again from Proposition 2.

D. DATA

We rely on a sample of 30,961 U.S. individuals obtained by pooling the 1999, 2001, 2003, 2005, and 2007 waves of the
Institute for Social Research’s Panel Study of Income Dynamics (PSID, http://psidonline.isr.umich.edu/).

All nominal variables correspond to per-capita values (i.e. household values divided by household size) scaled by
10−4. The explanatory variables used in the estimation of the model are the agents’ wealth and health that are constructed
from the PSID data according to the following rules:

Health: We associate values of 1.5 (poor health), 2.0 (fair), 2.5 (good), 3.0 (very good), and 3.5 (excellent health) to the
self-reported health variable corresponding to the household head.

Wealth: We use financial wealth defined as risky plus riskless assets. Risky assets are stocks in publicly held corporations,
mutual funds, investment trusts, private annuities, IRA’s, or pension plans. Riskless assets are checking accounts
plus bonds plus remaining IRA’s and pension assets.

The observed portfolios, consumption, health expenditure, and health insurance used in the estimation are constructed
from the PSID data as follows:

Portfolio: Value of financial wealth held in risky assets.

Consumption: The consumption measure that we rely on is inferred from the food, utility, and transportation
expenditures available in PSID, using the Skinner (1987) method with the updated shares of Guo (2010).

Health expenditures: Total out-of-pocket expenditures paid by household on hospital, nursing home, doctor, outpatient
surgery, dental expenditures, prescriptions in-home medical care.

Health insurance: Total amount paid for health insurance premium.
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