	Final Thoughts
00000 00000 0000 0000	0

Roundtable on Default Risk Correlation Models

Pierre Collin-Dufresne GSAM-QIS

SOFIE- June 2008

This material is provided for educational purposes only and should not be construed as investment advice or an offer or solicitation to buy or sell securities.

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

- CDS/CDX Market
- CDO Market
- Some empirical evidence
- Final Thoughts

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	•00000	00000	0000	0

Credit markets characterized by rapid financial innovation

- Innovation in contracts,
 - from traditional *funded* securities: corporate bonds
 - to new unfunded derivatives: credit default swaps (CDS)
- And increased liquidity,
- Allow investors to express views on:
 - Single-names CDS
 - Baskets of names (CDX.IG, CDX.HV, iTraxx)
 - ▶ Correlation (Synthetic liquid CDO, Bespoke CDO, CDO²...)
 - Emerging Market Countries (EMCDS)
 - Basket of Countries (EMCDX)
 - Asset Backed Securities such as credit card receivables or Home equity loans (ABS-CDS)
 - Baskets of Asset Backed Securities (ABX)
 - Correlation (TABX)
 - Senior secured Loans (LCDS)
 - Basket of Loans (LCDX)

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	00000	00000	0000	0

CDS Contract Structure

- ► A CDS is an insurance contract against a credit event of Counterparty:
 - Prior to credit event:

Upon arrival of credit event:

protection buyer	$\xrightarrow{\text{deliverable bond}}$	protection seller
protection buyer	notional	protection seller

Definition of credit event:

Bankruptcy Failure to pay Obligation acceleration or default Repudiation/moratorium Restructuring (Full R, Mod R, ModMod R, No R)

		00000		0
	00000	00000	0000	0
Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts

- Arbitrage Relation
 - \blacktriangleright Buy XYZ bond + Buy XYZ protection \sim Earn risk-free rate
 - \blacktriangleright Buy risk-free bond + Sell XYZ protection \sim Earn XYZ bond yield

$$\mathsf{CDS} \text{ spread} \approx \mathsf{Y}_{\textit{XYZ}} - \mathsf{R}_{\textit{f}}$$

 \Rightarrow CDS allows pure unfunded play on credit risk.

• Empirical evidence on Basis = CDS spread $- (Y_{XYZ} - R_f)$.

	Basis wrt Tsy (bp)		Basis wrt Swap (bp)		implied R _f / Tsy	
	Mean	S.E. (of mean)	Mean	S.E.	Mean	S.E.
Aaa/Aa	-51.30	1.97	9.55	1.31	0.834	0.0250
А	-64.33	1.82	5.83	1.59	0.927	0.0229
Baa	-84.93	3.63	2.21	2.79	0.967	0.0364
All Categories	-62.87	1.38	6.51	1.06	0.904	0.0160

source: Hull, Pedrescu, White (2006)

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

CDS Market Statistics

Exhibit 1.1: The notional amount of credit derivatives globally is larger than the global amount of debt outstanding

E Cash Bonds E Credit Derivatives

Sources: British Bankers' Association Credit Derivatives Report 2006, Bank for International Settlements and ISDA Note: Cash bonds through June 2006.

Exhibit 7.1: Participants in the credit derivatives market. Some favor one direction over the other.

Source: British Bankers' Association Credit Derivatives Report 2008.

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

The CDX index

- The CDX index is an insurance contract against credit events of a portfolio of counterparties (e.g., 125 names in CDX.IG):
 - Prior to credit event:

Upon arrival of credit event of XYZ:

- Following credit event outstanding notional is reduced by notional of XYZ in portfolio (i.e., 1/125 in CDX.IG).
- Contract expires at maturity or when notional exhausted.
- ► N.B.: CDX contract ≠ equally weighted portfolio of single name CDS contracts CDX spread ≠ average of single name CDS spreads

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	00000	00000	0000	0

CDX Market Statistics

CDX.IG Moody's Ratings

source: BBA & White (2006)

Industry Composition of CDX.IG

End Users

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	●0000	0000	0

Synthetic CDO Tranches

- Selling protection on CDO tranche with attachment points [L, U] (i.e., notional = U - L) written on underlying basket of 125 single names (CDX):
 - Prior to a credit event:

▶ Upon arrival of credit event (LGD = notional - deliverable bond price), if cumulative loss exceeds lower attachment point (i.e., $\mathcal{L}_t = \sum_{i=1}^{125} LGD_i \mathbf{1}_{\{\tau_i < t\}} > L$) then

- Following credit event outstanding tranche notional is reduced by LGD (up to exhaustion of outstanding notional).
- Also, super senior tranche notional is reduced by recovery (to satisfy 'adding up constraint').
- Contract expires at maturity or when tranche notional is exhausted.
- ▶ Tranche payoff is call spread on cumulative loss: $\max(\mathcal{L}_t L, 0) \max(\mathcal{L}_t U, 0)$.
- \Rightarrow Tranche valuation depends on entire distribution of cumulative portfolio losses and crucially on default event correlation model.

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	0000	0000	0

Market Size

Liquid tranche market is growing steadily

- Bespoke portfolio tranche market is much larger (ten times?) than synthetic tranche market:
 - Investors sell or buy protection on a portfolio of specific names for speculative or hedging motives.
 - Dealers take the other side and turn to the synthetic tranche market to hedge their resulting net exposure (keep some basis risk).
 - Hedge funds and other dealers participate in synthetic tranche market to redistribute risks.

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	0000	0000	0

Market Model: Implied Gaussian Copula Correlation

- Market standard for quoting CDO tranche prices is the *implied correlation* of the Gaussian Copula framework.
- Intuition builds on structural model of default (CDO model due to Vasicek 1987 who combines Merton (1974) with CAPM idea):
 - Each name in basket characterized by an 'asset value' driven by two factors: a common market factor and an idiosyncratic factor $(V_i = \sqrt{\rho_i} M + \sqrt{1 - \rho_i} \epsilon_i$ with M, ϵ_i independent centered Gaussian).
 - Pairwise 'asset correlation' is the product of the individual asset betas $(\sqrt{\rho_i \rho_j})$.
 - Default occurs when asset value falls below a constant barrier (DefProb = $P(V_i \leq B_i)$).
- ▶ Market convention for quoting tranche values in terms of *implied correlation* assumes:
 - The individual beta is identical across all names in the basket.
 - The default boundary is identical and calibrated to CDX level.
 - All firms have identical LGD of 60%.
- \Rightarrow With these heroic assumptions, a single number, the *implied correlation* (= ρ), allows to match a given tranche's model price with the market price (for a given CDX level).

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

The implied correlation smile

Market Quotes on Aug. 4, 2004 (CDX index spread 63.25 bp)

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	41.38%	3.49%	1.355%	0.46%	0.14%

The market displays an implied correlation smile:

Imp Corr	21.7%	4.1%	17.8%	18.5%	29.8%
----------	-------	------	-------	-------	-------

 \Rightarrow The smile shows that the Gaussian copula model is mis-specified (\sim option skew).

Market quotes on June 1st 2005 IG4-5Y (CDX index spread of 42 bp):

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	30.5%	0.66%	.095%	.075%	0.04%
Imp Corr	9.08%	5.8%	10.02%	16.77%	27.62%

Market quotes on June 4, 2008 IG9-5Y (CDX index ref 118 bp):

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%	30-100%
CDX.IG	51.5%	4.35%	2.32%	1.3%	0.70%	0.41%
Imp Corr	40%	88.23%	4.31%	13.47%	32.06%	88.35%

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	0000●	0000	0

Correlation 'trading'

- ► Selling protection on the equity Tranche (delta-hedged) ~ long correlation:
 - Selling protection on equity is equivalent to being long a put on aggregate losses with strike equal to 3%. The value is increasing in the volatility of total losses which increases with default correlation.
 - The equity tranche is exposed to idiosyncratic Jump-to-default risk since it gets hit at the first default.
- ▶ Selling protection on the senior tranches ~ short correlation:
 - Selling protection on super senior tranche is short a call option on aggregate portfolio losses struck at 30%. Its value is decreasing in loss volatility and hence decreasing in correlation.
 - ▶ The Super senior tranche is exposed to systematic (cataclysmic?) risk: What is the probability that > 30% of investment grade default within a year?
- ► At least two reasons for the rapid development of CDS/CDX/CDO markets:
 - Credit spread puzzle
 - Rating 'arbitrage'

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	•000	0

May 2005 'repricing' of correlation risk

Events in May 2005 (widening of GM and Ford) had dramatic impact on tranche prices:

► As a result, 'repricing' in correlation markets (equity implied correlation dropped from 20% to 10%). Yet, measures of actual (e.g., spread) correlation increased:

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

Implied correlation: What does it measure?

▶ May 2005 'repricing' in correlation markets: impact of cross-sectional dispersion?

- Trading equity implied correlation \approx trading jump to default risk.
 - selling protection on IG4 equity in May 2005 essentially sells protection on first to default basket of autos.
- \blacktriangleright Trading senior tranches implied correlation \approx market crash/great depression risk.
 - What is the probability that > 30% of investment grade default in any given year?

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

The impact of Subprime on Correlation Markets

▶ Subprime hits in February 2007, then accelerates in June-July 2007.

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	0

The impact of Subprime on Correlation Markets

> The impact on tranche prices was dramatic

- Implied correlation on equity tranche hit > 40%
- Correlation on Super-Senior tranches > 1(!) with standard recovery assumption
- \Rightarrow Cheap solution: set recovery to zero! But is that realistic?

Outline	CDS/CDX Market	CDO Market	Some empirical evidence	Final Thoughts
	000000	00000	0000	•

Implications for modeling correlation

- ▶ Need a better modeling framework (beyond Gaussian Copula):
 - Implied Gaussian copula correlation is not a good indicator of correlation
 - There is no corresponding measure of 'realized correlation' (\neq implied option volatility)
 - Predicted hedges don't work well during volatile periods.
 - The model is inherently static (one-period).
- Several alternative models have been proposed:
 - Bottom-up (can be fit to individual constituents characteristics)
 - Reduced-form models (Duffie-Garleanu, Mortensen)
 - Extensions of standard Copula framework to multiple factors, non-Gaussian copula, random recovery, Implied Copula... (Andersen-Sidenius, Hull-White).
 - Top down (model aggregate losses without reference to constituents' characteristics)
 - Reduced-form approach (Longstaff-Rajan, Schönbucher)
- What one would like:
 - Predictive Model (i.e., calibrated to observables that delivers consistent pricing of all tranches).
 - Constituents' Spread dynamics should be an input (level, cross-sectional dispersion, volatility).
 - Models should deliver hedging/risk-measures of Jump-to-default risk and spread/marking-to-market risk.

(for Super-Senior, most risk comes from spread risk).