Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

Credit Modeling after the Crisis DERIVATIVES 2009: LOOKING TOWARDS THE FUTURE

Pierre Collin-Dufresne Columbia University

NYU- November 2009

DERIVATIVES 2009: LOOKING TOWARDS THE FUTURE

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

- Motivation
- The CDS-Cash Basis
- Tranche (CDO) Markets
- Final thoughts

DERIVATIVES 2009: LOOKING TOWARDS THE FUTURE

NA 11 11	00000000	0000	000
		OOOO Markets	
Mativation	The CDC Cash Basis	Translar (CDO) Maslata	Einel ab such as

- Motivation
 - Significant disruptions in corporate credit markets:
 - Cash-CDS basis negative (-200 bps for IG; -700bps for HY)
 - Credit spreads widened (CDX-IG > 200bps)
 - Tranche Spread widened (Super Senior (30-100) > 70bps).
 - Default frequency (Bear Stearns, Lehman)
 - LIBOR-Treasury and LIBOR-OIS widened.
 - Long term Swap spreads became negative.
 - Derivative modeling widely discredited
 - "financial weapons of mass destruction" (Warren Buffett, investor)
 - "the secret formula that destroyed wall street" (Wired, news)
 - "Crime contre l'humanité" (Michel Rocard, French politician)

0	00000000	0000	000
Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts

What can/should financial engineers do?

- Should we give up (credit) derivative models (Black Swan excuse)?
- ► Certainly, there are lessons to draw (even from observing just one Black Swan):
 - ▶ Regulators (counter-cyclical risk-based capital requirements, too-big-to fail...),
 - Market structure (central clearing of OTC derivatives...),
 - Risk-management in banks (macro-hedging, incentives...)
- For (credit) derivative models, focus on:
 - Funding cost risk (market frictions)
 - Counterparty risk (and its mitigation via specific ISDA/CSA)
 - Calibration risk
 - Price taking assumption (vs. contagion risk)
- My (self-serving) conclusion: we cannot afford to give up models.
 - Internal risk-management: Credit Valuation Adjustments (CVA).
 - Accounting: Non-performing risk-adjustment (FAS157)
 - ▶ FED Bail-out: TARP, TALF, PPIP (~ CDO²).

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	●0000000	0000	000

CDS Basis

- ► A CDS is an insurance contract against a credit event of Counterparty:
 - Prior to credit event:

Upon arrival of credit event:

protection buyer	$\xrightarrow{\text{deliverable bond}}$	protection seller
protection buyer	$\stackrel{\text{notional}}{\longleftarrow}$	protection seller

Definition of credit event:

Bankruptcy Failure to pay Obligation acceleration or default Repudiation/moratorium Restructuring (Full R, Mod R, ModMod R, No R)

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	0000000	0000	000

Arbitrage Relation

- \blacktriangleright Buy XYZ bond + Buy XYZ protection \sim Earn risk-free rate
- Buy risk-free bond + Sell XYZ protection \sim Earn XYZ bond yield

 $\mathsf{CDS} \text{ spread} \approx \mathsf{Y}_{\textit{XYZ}} - \mathsf{R}_{\mathit{f}}$

• Empirical evidence **pre-crisis** on Basis = CDS spread $-(Y_{XYZ} - R_f)$.

	Basis wrt Tsy (bp)		Basis wrt Swap (bp)		implied R_f Tsy	
	Mean	S.E. (of mean)	Mean	S.E.	Mean	S.E.
Aaa/Aa	-51.30	1.97	9.55	1.31	0.834	0.0250
A	-64.33	1.82	5.83	1.59	0.927	0.0229
Baa	-84.93	3.63	2.21	2.79	0.967	0.0364
All Categories	-62.87	1.38	6.51	1.06	0.904	0.0160

source: Hull, Pedrescu, White (2006)

- \Rightarrow Appropriate funding cost benchmark (risk-free rate?) is closer to LIBOR/swap than Treasury.
- \Rightarrow Under that funding cost assumption the arbitrage relation holds pretty well.
- ⇒ Violation of 'arbitrage' mostly on positive side, explained by (i) difficulty to short bonds, (ii) cheapest to deliver option (Blanco, Brennan, Marsh (2001)).

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	0000000	0000	000

The Basis during the crisis

Basis during the crisis became tremendously negative:

- In a frictionless market, negative basis is a free lunch:
 - Borrow at Libor
 - buy the bond
 - buy protection
 - ⇒ Earn the basis risk-free!

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	0000000	0000	000

Trading the negative basis in practice

- ▶ In practice, a negative 'basis package' typically consists in:
 - Fund the haircut (hB) at your own funding cost: Libor+x where x reflects your risk
 - Borrow (1 h)B at repo rate to purchase the bond.
 - Buy protection and post initial margin (M) funded at Libor+x
- ▶ There are subtleties about how to size the trade (JtD risk versus Recovery risk).
- Return on the basis trade using (hB + m) capital is approximately:

 \sim Duration $\cdot \Delta$ Basis - B(h(Libor + x) + (1 - h)Repo) - M(Libor + x)

- \Rightarrow Exposure (conditional on trade not converging) to:
 - ▶ funding/trading cost widening (Libor, x ↑): market liquidity?
 - collateral value deteriorating $(h \uparrow)$: funding liquidity?
 - counterparty risk (affects the value of insurance purchased)
- \Rightarrow Use cross-sectional evidence on the basis to test these three hypothesis (Joint work with Jennie Bai from the NY-FED).
 - Use Markit data and PECDS method from JPM to construct basis for 500 firms from Jan 2006 to Jan 2009.
 - Match CDS data with Thomson-Reuters corporate bond data.

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	0000000	0000	000

Cross-sectional Evidence: Can we explain the negative basis?

- Build measures of:
 - Counterparty risk: $\beta_{cp}^{i} = \frac{cov(R^{i}, (R^{index} R^{mkt}))}{var(R^{index} R^{mkt})}$
 - $\blacktriangleright \text{ Funding cost risk: } \beta^i_{fl} = \frac{cov(\Delta cds^i, \Delta RepoSpread)}{var(\Delta RepoSpread)}$
 - Collateral quality: Index based on average decile sorts on bond characteristics that correlate with hair cut (Rating, Tangible assets, Leverage, CDS volatility...)
- Perform cross-sectional regressions (daily Fama-mcBeth type)

$$\textit{Basis}^{i} = \gamma_{\textit{cp}}\beta_{\textit{cp}}^{i} + \gamma_{\textit{fl}}\beta_{\textit{fl}}^{i} + \gamma_{\textit{mkt}}\beta_{\textit{mkt}}^{i} + \gamma_{\textit{collateral}}\textit{Collateral}^{i} + \gamma_{\textit{industry}}\textit{Industry}^{i} + \gamma \textit{Sign}^{i} + \epsilon_{i}$$

	(1)	(2)	(3)	(4)	(5)
γ_{cp}	-6.83*** (0.35)				-6.05 ^{***} (1.11)
$\gamma_{\it fl}$		-2.46*** (0.74)			-1.97 ^{***} (0.50)
γ_{mkt}			-3.46*** (0.21)		-0.69 (0.53)
$\gamma_{collateral}$				0.41*** (0.11)	0.39*** (0.08)
$\gamma_{industry}$					1.99 * *

DERIVATIVES 2009: LOOKING TOWARDS THE FUTURE

Time series coefficients in the Cross-sectional Regressions

Time series coefficients in the Cross-sectional Regressions

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

Explanatory power of the Cross-sectional Regressions

Variance Decomposition of independent variables

DERIVATIVES 2009: LOOKING TOWARDS THE FUTURE

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000
	2		

What do we learn?

- Counterparty risk, Collateral Quality and Funding Risk have strong explanatory power for cross-section of basis during the post Lehman collapse period.
- Collateral quality always seems to have some explanatory power to explain cross-section of basis (even pre-crisis period) albeit with different level of economic significance (suggests that capital is never completely 'unconstrained').
- Relative importance of Counterparty risk versus Funding Risk is sensitive to the proxy used for funding risk measure:
 - ► If use change in repo-Treasury spread, then counterparty risk dominates.
 - If use Libor-OIS spread, then Funding risk dominates.
 - \Rightarrow difficult to disentangle funding risk from counterparty risk when using LIBOR-OIS.

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

The CDX index

- The CDX index is an insurance contract against credit events of a portfolio of counterparties (e.g., 125 names in CDX.IG):
 - Prior to credit event:

protection buyer outstanding notional × spread protection seller

Upon arrival of credit event of XYZ:

- Following credit event outstanding notional is reduced by notional of XYZ in portfolio (i.e., 1/125 in CDX.IG).
- Contract expires at maturity or when notional exhausted.
- ► N.B.: CDX contract ≠ equally weighted portfolio of single name CDS contracts CDX spread ≠ average of single name CDS spreads

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000
Synthetic CI	DO Tranches		

- > Selling protection on CDO tranche with attachment points [L, U] (i.e., notional = U - L) written on underlying basket of 125 single names (CDX):
 - Prior to a credit event:

▶ Upon arrival of credit event (LGD = notional - deliverable bond price), if cumulative loss exceeds lower attachment point (i.e., $\mathcal{L}_t = \sum_{i=1}^{125} LGD_i \mathbf{1}_{\{\tau_i \leq t\}} > L$) then

protection buyer (*LGD*,outstanding notional) protection seller

- Following credit event outstanding tranche notional is reduced by LGD (up to exhaustion of outstanding notional).
- Also, super senior tranche notional is reduced by recovery (to satisfy 'adding up constraint').
- Contract expires at maturity or when tranche notional is exhausted.
- ▶ Tranche payoff is call spread on cumulative loss: $\max(\mathcal{L}_t L, 0) \max(\mathcal{L}_t U, 0)$.
- \Rightarrow Tranche valuation depends on entire distribution of cumulative portfolio losses and crucially on default event correlation model.

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

Tranche spreads through the crisis

The impact on tranche prices was dramatic

- Implied correlation on equity tranche hit > 40%
- Correlation on Super-Senior tranches > 1(!) with standard recovery assumption
- Relative importance of expected loss in senior tranche versus in equity tranche indicates increased crash risk.

Motivation The C	CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00 000	000000	0000	000

What does it tell us?

- Counterparty risk seems to be relatively well mitigated by current collateral/ISDA agreements.
- ▶ Else, who would want to pay 70bps to buy protection on "end-of-the-world" trade?
- Suggests that these contracts are very much marking to market trades:
 - ▶ Not clear we actually believe the counterparty will be solvent when/if the event where more than 60% of the IG firms in the US default.
 - But along the paths that lead us closer to that event, we will receive marking to market payments that are guaranteed via collateral agreements and margin calls.
 - $\Rightarrow\,$ We are really contracting on changes in the risk-neutral probability of the remote event.
- \Rightarrow The price of the senior tranches intrinsically tied to ISDA agreement and CSA:
 - Under zero counterparty risk mitigation, super senior insurance would be (close to) worthless (moral hazard).
- Alternative (complementary?) stories:
 - ▶ Scarcity of capital/insurance providers (require extra-premium to hedge against further adverse MtM move ~ Basis trade collateral risk).
 - Regulatory requirement to hedge/free balance sheet: hedging via unfunded trades is less costly.

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

Evidence from Swap markets

- What is the correct funding cost ('risk-neutral' discount rate) benchmark?
 - Consensus had shifted from Treasury to LIBOR/swap rates.
 - Many are switching to OIS based curve?

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	000

Conclusions

- We need to model explicitly:
 - Collateral costs,
 - Funding, and
 - Counterparty risk.
- The value of a specific derivative depends on:
 - The net credit risk of the counterparty relative to our own and conditional on the moneyness of the trade!
 - > The interaction (risk-neutral correlation) between market and credit risk matters.
 - The specific Credit Support Annex matters (if there is collateral or not, if there are margin calls or not...).
 - If capital is relatively scarce, then collateral 'efficiency' matters.

Motivation	The CDS-Cash Basis	Tranche (CDO) Markets	Final thoughts
00	00000000	0000	00●
M/a manal (hattan)		
vve need (better) models		

- Regulators
 - TARP (convertible preferred warrants),
 - TALF, PPIP (CDO²),
 - CCP (nth to default protection on basked of dealers)
- Internal Risk Management (Credit Valuation Adjustment)
 - Internally banks allow CVA trading across desks to manage aggregate counterparty exposure (these are effectively Contingent CDS).
- Accounting principles ('Non-performing risk-adjustment' in FSB 157):
 - First Quarter 2009, Citi declared in its Schedule B "A net \$2.5 billion positive CVA on derivative positions, excluding monolines, mainly due to the widening of Citis CDS spreads. A net \$30 million positive CVA of Citis liabilities at fair value option."
- Further challenges:
 - Calibration, model and parameter uncertainty.
 - ▶ Price taking (Black-Scholes-Merton) assumption vs. Contagion risk/feedback effects