Questions	Outline	The CDS/CDX Market	The CDO Market	Advantages and Potential Dangers	Future Developments & Challenges
0		00000	0000	0	0

Credit Risk Markets: Opportunities and Challenges

Pierre Collin-Dufresne GSAM and UC Berkeley

Gutman Center Symposium - June 2007

Josef's Questions

- ▶ What are the most important trends & innovations in Credit Risk Markets?
- How can asset managers and investors use these instruments?
- Do you see dangers arising from these new markets?
- What do you see as future developments in the area of credit?

Questions	Outline	The CDS/CDX Market	The CDO Market	Advantages and Potential Dangers	Future Developments & Challenges
0		00000	0000	0	0

- Questions
- The CDS/CDX Market
- The CDO Market
- Advantages and Potential Dangers
- Future Developments & Challenges

Rapid evolution of credit markets

- Innovation in contracts,
 - from traditional *funded* securities: corporate bonds
 - to new unfunded derivatives: credit default swaps (CDS)
- And increased liquidity,
- Allow investors to express views on:
 - Single-names CDS
 - Baskets of names (CDX.IG, CDX.HV, iTraxx)
 - Correlation (Synthetic liquid CDO, Bespoke CDO, CDO²...)
 - Emerging Market Countries (EMCDS)
 - Basket of Countries (EMCDX)
 - Asset Backed Securities such as credit card receivables or Home equity loans (ABS-CDS)
 - Baskets of Asset Backed Securities (ABX)
 - Correlation (TABX)
 - Senior secured Loans (LCDS)
 - Basket of Loans (LCDX)

CDS Contract Structure

- ► A CDS is an insurance contract against a credit event of counterparty:
 - Prior to credit event:

Upon arrival of credit event:

Definition of credit event:

Bankruptcy Failure to pay Obligation acceleration or default Repudiation/moratorium Restructuring (Full R, Mod R, ModMod R, No R)

Arbitrage Relation

- \blacktriangleright Buy XYZ bond + Buy XYZ protection \sim Earn risk-free rate
- \blacktriangleright Buy risk-free bond + Sell XYZ protection \sim Earn XYZ bond yield

$$\mathsf{CDS} \text{ spread} \approx \mathsf{Y}_{\textit{XYZ}} - \mathsf{R}_{\textit{f}}$$

 \Rightarrow CDS allows pure unfunded play on credit risk.

• Empirical evidence on Basis = CDS spread $- (Y_{XYZ} - R_f)$.

	Basis wrt Tsy (bp)		Basis wrt Swap (bp)		implied R _f / Tsy	
	Mean	S.E. (of mean)	Mean	S.E.	Mean	S.E.
Aaa/Aa	-51.30	1.97	9.55	1.31	0.834	0.0250
А	-64.33	1.82	5.83	1.59	0.927	0.0229
Baa	-84.93	3.63	2.21	2.79	0.967	0.0364
All Categories	-62.87	1.38	6.51	1.06	0.904	0.0160

source: Hull, Pedrescu, White (2006)

The CDX index

- The CDX index is an insurance contract against credit events of a portfolio of counterparties (e.g., 125 names in CDX.IG):
 - Prior to credit event:

Upon arrival of credit event of XYZ:

- Following credit event outstanding notional is reduced by notional of XYZ in portfolio (i.e., 1/125 in CDX.IG).
- Contract expires at maturity or when notional exhausted.
- ► N.B.: CDX contract ≠ equally weighted portfolio of single name CDS contracts CDX spread ≠ average of single name CDS spreads

Questions	Outline	The CDS/CDX Market	The CDO Market	Advantages and Potential Dangers	Future Developments & Challenges
0		00000	0000	0	0

Market Overview

CDX.IG Moody's Ratings

source: BBA & White (2006)

Industry Composition of CDX.IG

End Users

Questions	Outline	The CDS/CDX Market	The CDO Market	Advantages and Potential Dangers	Future Developments & Challenges
0		00000	0000	0	0

Synthetic CDO Tranches

- Selling protection on CDO tranche with attachment points [L, U] (i.e., notional = U - L) written on underlying basket of 125 single names (CDX):
 - Prior to a credit event:

▶ Upon arrival of credit event (LGD = notional – deliverable bond price), if cumulative loss exceeds lower attachment point (i.e., L_t = ∑¹²⁵_{i=1} LGD_i1_{τi<t} > L) then

protection buyer min(*LGD*,outstanding notional)
protection seller

- Following credit event outstanding tranche notional is reduced by LGD (up to exhaustion of outstanding notional).
- Contract expires at maturity or when tranche notional is exhausted.
- ▶ Tranche payoff is call spread on cumulative loss: $\max(\mathcal{L}_t L, 0) \max(\mathcal{L}_t U, 0)$.
- ⇒ Tranche valuation depends on entire distribution of cumulative portfolio losses and crucially on default event correlation model.

Market Size

Liquid tranche market is growing steadily

- Bespoke portfolio tranche market is roughly ten times the size of the synthetic tranche market:
 - Investors sell or buy protection on a portfolio of specific names for speculative or hedging motives.
 - Dealers take the other side and turn to the synthetic tranche market to hedge their resulting net exposure (keep some basis risk).
 - Hedge funds and other dealers participate in synthetic tranche market to redistribute risks.

Market Model: Implied Gaussian Copula Correlation

- Market standard for quoting CDO tranche prices is the *implied correlation* of the Gaussian Copula framework.
- Intuition builds on structural model of default (CDO model due to Vasicek 1987):
 - Each name in basket characterized by an 'asset value' driven by two factors: a common market factor and an idiosyncratic factor $(V_i = \sqrt{\rho_i} M + \sqrt{1 - \rho_i} \epsilon_i \text{ with } M, \epsilon_i \text{ independent centered Gaussian}).$
 - Pairwise 'asset correlation' is the product of the individual asset betas $(\sqrt{\rho_i \rho_j})$.
 - Default occurs when asset value falls below a constant barrier (DefProb = $P(V_i \leq B_i)$).
- Market convention for quoting tranche values in terms of *implied correlation* assumes:
 - The individual beta is identical across all names in the basket.
 - The default boundary is identical and calibrated to average CDS level (or index level)
 - All firms have identical LGD of 60%.
- \Rightarrow With these heroic assumptions, a single number, the *implied correlation* (= ρ), allows to match a given tranche's model price with the market price (for a given index CDS level).

Questions	Outline	The CDS/CDX Market	The CDO Market	Advantages and Potential Dangers	Future Developments & Challenges
0		00000	0000	0	0

The implied correlation smile

Market Quotes on Aug. 4, 2004 (CDX index spread 63.25 bp)

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	41.38%	3.49%	1.355%	0.46%	0.14%

> The market displays an *implied correlation smile*:

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	21.7%	4.1%	17.8%	18.5%	29.8%

- \Rightarrow The smile shows that the Gaussian copula model is mis-specified (analogous to the implied option smile).
- Market quotes on June 1st IG4-5Y (CDX index spread of 42 bp):

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	30.5%	0.66%	.095%	.075%	0.04%

The current implied correlation smile:

Tranche	0-3%	3-7%	7-10%	10-15%	15-30%
CDX.IG	9.08%	5.8%	10.02%	16.77%	27.62%

What are Advantages and Potential Dangers of these Products

- Practical advantages:
 - Reduced funding costs
 - Access to leverage
 - Take long and short position more easily
 - Simplifies hedging of Counterparty risk
- Economic benefits:
 - Completes markets
 - Leads to wider Risk-sharing
 - Better transmission of information (as prices reflect information of both long and short) and allocation of resources
- Potential Dangers:
 - May promote excessive risk-taking (moral hazard)
 - Complexity may lead to risks being held by agents for wrong reasons (e.g., leveraged super-senior, CPDO)
 - Diffusion of risks may lead to increased complexity/opacity of economic linkages and more difficult measurement of counterparty risk
 - Combined with increased leverage may lead to increased exposure to liquidity risk and possibly to higher systemic risk

- Continued rapid growth in new products:
 - Leveraged Super-Senior tranches
 - CPDO, CPPI
 - CDOs of Long-short portfolios
 - ▶ IO, PO, Zero-coupon tranches, Tranchlets.
 - Forward starting CDOs.
 - LCDX
- Some maybe very useful, but market participants need to see through complexity and marketing/rating game (e.g., AAA rated products offering LIBOR + 100/200bps!).
- In need of better modeling framework (beyond Gaussian Copula) to tackle new (and older!) products:
 - Implied Gaussian copula correlation is not a good indicator of correlation
 - There is no corresponding measure of 'realized correlation' (\neq implied option volatility)
 - Predicted hedges don't work well during volatile periods.
 - The model is inherently static (one-period).
- Microstructure: towards increased transparency (exchange-traded cds or credit futures?)
- Operational challenges (netting/collateral management, settlements, assignments, and order processing).
- Credit Risk premia (spread and default dynamics) may be very different going forward than historical levels suggest.