Errata pour le livre "Statistique pour Mathématiciens"

Dernière mise à jour : 22 mars 2019

Chapitre 1

- 1. **Théorème 1.33, p. 28 :** il suffit que g soit injective (non bijective), et qu'elle soit définie sur un ouvert qui contient X avec probabilité 1. L'énoncé devrait donc commencer par :
 - Soit $X = (X_1, \dots, X_n)^{\top}$ un vecteur aléatoire continu ayant la densité conjointe $f_X(\boldsymbol{x})$ et soit $U \subseteq \mathbb{R}^n$ ouvert tel que $\mathbb{P}(X \in U) = 1$. Soit $g: U \to \mathbb{R}^n$ dérivable et injective. Définissons Y = g(X), $\mathcal{Y}^n = g(U)$.
- 2. Corollaire 1.34, p. 28 : X et Y sont indépendantes

Chapitre 2

- 1. Théorème 2.21 et remarque 2.22, p. 61 : il faut ajouter la condition que les Y_i sont identiquement distribuées (voir le slide 86)
- 2. **Théorème 2.25, p. 63 :** l'ensemble \mathcal{X} peut être n'importe quel ensemble sur lequel X se trouve avec probabilité 1. On peut énoncer le théorème comme suit : Soient une variable aléatoire X et une fonction $g: \mathbb{R} \to \mathbb{R}$. S'il existe un ensemble A tel que $\mathbb{P}(X \in A) = 1$ et g est continue en tout $x \in A$, alors

$$X_n \stackrel{d}{\to} X \Longrightarrow g(X_n) \stackrel{d}{\to} g(X).$$

3. Théorème 2.26, p. 63 : la conclusion devrait être :

 $X_n + Y_n \stackrel{d}{\to} X + c$ et $X_n Y_n \stackrel{d}{\to} cX$ lorsque $n \to \infty$

4. **Théorème 2.27, p. 63 :** le théorème est correcte comme énoncé, mais la preuve suppose que g' est en plus continue à θ . Alors il faut ajouter le commentaire au début de la preuve :

Nous allons démontrer le théorème en supposant que g' est en plus continue à θ pour obtenir une preuve plus directe, bien que le théorème reste valable sans faire cette supposition supplémentaire

Chapitre 3

Chapitre 4

Chapitre 5

Chapitre 6

- 1. Théorème 6.2, p. 162 : x_o devrait être x_0
- 2. Équation (6.2), p. 167 : $M_X^{(k-1)}(t_0)$ devrait être $M_X^{(k-1)}(t_0)$

Chapitre 7

1. Exercice 48, p. 215, partie 4 : la dernière égalité devrait être

$$= 1 \left\{ \widehat{\lambda}_n \le \frac{5n(\lambda_0 - \lambda_1)}{\log \left[Q\left(\frac{\lambda_0}{\lambda_1}\right)^{5n} \right]} \right\}.$$