Up-to-date full list of publications of L. Zdeborová is available on Google Scholar .
Warning Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform.
The owners of these pages are invited to recreate their publication list from Infoscience .
For any assistance, please consult the Infoscience help or contact support .
× 2024 Topics in statistical physics of high-dimensional machine learning H. C. Cui / L. Zdeborová (Dir.)
Lausanne , EPFL , 2024. 2023 Multi-layer state evolution under random convolutional design M. Daniels ; C. Gerbelot ; F. Krzakala ; L. Zdeborova
Journal Of Statistical Mechanics-Theory And Experiment . 2023-11-01. Vol. 2023 , num. 11 , p. 114002. DOI : 10.1088/1742-5468/ad0220. Neural-prior stochastic block model O. Duranthon ; L. Zdeborová
Machine Learning-Science And Technology . 2023-09-01. Vol. 4 , num. 3 , p. 035017. DOI : 10.1088/2632-2153/ace60f. Theoretical characterization of uncertainty in high-dimensional linear classification L. Clarte ; B. Loureiro ; F. Krzakala ; L. Zdeborova
Machine Learning-Science And Technology . 2023-06-01. Vol. 4 , num. 2 , p. 025029. DOI : 10.1088/2632-2153/acd749. Bayesian reconstruction of memories stored in neural networks from their connectivity S. Goldt ; F. Krzakala ; L. Zdeborová ; N. Brunel
PLoS Comput Biol . 2023-01-30. Vol. 19 , p. e1010813. DOI : 10.1371/journal.pcbi.1010813. Error scaling laws for kernel classification under source and capacity conditions H. C. Cui ; B. Loureiro ; F. Krzakala ; L. Zdeborová
IOPscience . 2023. num. Mach. Learn.: Sci. Technol. 4 035033 . DOI : 10.1088/2632-2153/acf041. Bayes-optimal Learning of Deep Random Networks of Extensive-width H. C. Cui ; F. Krzakala ; L. Zdeborová
2023. International Conference on Machine Learning, Honolulu, Hawaii, USA, July 23-29, 2023. Expectation consistency for calibration of neural networks L. A. Clarte ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2023. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:443–453., Pittsburgh, PA, USA, August 31-4, 2023. On double-descent in uncertainty quantification in overparametrized models L. A. Clarte ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2023. 26th International Conference on Artificial Intelligence and Statistics (AISTATS) , Palau de Congressos, Valencia, Spain, April 25-27, 2023. p. 7089-7125. 2022 Disordered systems insights on computational hardness D. Gamarnik ; C. Moore ; L. Zdeborova
Journal Of Statistical Mechanics-Theory And Experiment . 2022-11-24. Vol. 2022 , num. 11 , p. 114015. DOI : 10.1088/1742-5468/ac9cc8. Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime* H. Cui ; B. Loureiro ; F. Krzakala ; L. Zdeborova
Journal Of Statistical Mechanics-Theory And Experiment . 2022-11-01. Vol. 2022 , num. 11 , p. 114004. DOI : 10.1088/1742-5468/ac9829. (Dis)assortative partitions on random regular graphs F. Behrens ; G. Arpino ; Y. Kivva ; L. Zdeborova
Journal Of Physics A-Mathematical And Theoretical . 2022-09-30. Vol. 55 , num. 39 , p. 395004. DOI : 10.1088/1751-8121/ac8b46. Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising A. Maillard ; F. Krzakala ; M. Mézard ; L. Zdeborová
Journal of Statistical Mechanics: Theory and Experiment . 2022-08-10. Vol. 2022 , num. 8 , p. 083301. DOI : 10.1088/1742-5468/ac7e4c. Aligning random graphs with a sub-tree similarity message-passing algorithm G. Piccioli ; G. Semerjian ; G. Sicuro ; L. Zdeborova
Journal Of Statistical Mechanics-Theory And Experiment . 2022-06-01. Vol. 2022 , num. 6 , p. 063401. DOI : 10.1088/1742-5468/ac70d2. Large deviations of semisupervised learning in the stochastic block model H. Cui ; L. Saglietti ; L. Zdeborova
Physical Review E . 2022-03-04. Vol. 105 , num. 3 , p. 034108. DOI : 10.1103/PhysRevE.105.034108. Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap L. Pesce ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans , November 28-December 9, 2022. Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks R. Veiga ; L. Stephan ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, November 28-December 9, 2022. 2021 Solvable Model for Inheriting the Regularization through Knowledge Distillation L. Saglietti ; L. Zdeborová
2021-12-16. 2nd Mathematical and Scientific Machine Learning Conference, Online, August 16-19, 2021. p. 809-846. The Gaussian equivalence of generative models for learning with shallow neural networks S. Goldt ; B. Loureiro ; G. Reeves ; F. Krzakala ; M. Mezard et al.
2021-12-16. 2nd Mathematical and Scientific Machine Learning Conference, Online, August 16-19, 2021. Generalisation error in learning with random features and the hidden manifold model* F. Gerace ; B. Loureiro ; F. Krzakala ; M. Mezard ; L. Zdeborova
Journal Of Statistical Mechanics-Theory And Experiment . 2021-12-01. Vol. 2021 , num. 12 , p. 124013. DOI : 10.1088/1742-5468/ac3ae6. Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem F. Mignacco ; P. Urbani ; L. Zdeborova
Machine Learning-Science And Technology . 2021-09-01. Vol. 2 , num. 3 , p. 035029. DOI : 10.1088/2632-2153/ac0615. Construction of optimal spectral methods in phase retrieval A. Maillard ; F. Krzakala ; l. Yue ; L. Zdeborová
2021-08-16. 2nd Conference on Mathematical and Scientific Machine Learning (MSML 2021), Lausanne, Suisse, August 16-19, 2021. p. 693-720. Epidemic mitigation by statistical inference from contact tracing data A. Baker ; I. Biazzo ; A. Braunstein ; G. Catania ; L. Dall’Asta et al.
Proceedings Of The National Academy Of Sciences Of The United States Of America . 2021-08-10. Vol. 118 , num. 32 , p. e2106548118. DOI : 10.1073/pnas.2106548118. Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed M. Refinetti ; S. Goldt ; F. Krzakala ; L. Zdeborová
2021-07-21. 38th International Conference on Machine Learning (ICML), Virtual, July 18-24, 2021. p. 8936-8947. The planted k-factor problem G. Sicuro ; L. Zdeborova
Journal Of Physics A-Mathematical And Theoretical . 2021-04-30. Vol. 54 , num. 17 , p. 175002. DOI : 10.1088/1751-8121/abee9d. Learning Gaussian Mixtures with Generalized Linear Models: Precise Asymptotics in High-dimensions B. Loureiro ; G. Sicuro ; C. Gerbelot ; A. Pacco ; F. Krzakala et al.
2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, December 7-10, 2021. Generalization Error Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime H. C. Cui ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, December 7-10, 2021. Large deviations in the perceptron model and consequences for active learning H. Cui ; L. Saglietti ; L. Zdeborová
Machine Learning: Science and Technology . 2021. Vol. 2 , num. 4 , p. 045001. DOI : 10.1088/2632-2153/abfbbb. Learning curves of generic features maps for realistic datasets with a teacher-student model B. Loureiro ; C. Gerbelot ; H. C. Cui ; S. Goldt ; F. Krzakala et al.
2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, December 7-10, 2021. p. 16-58. 2020 Machine learning and statistical physics: preface E. Agliari ; A. Barra ; P. Sollich ; L. Zdeborova
Journal Of Physics A-Mathematical And Theoretical . 2020-11-18. Vol. 53 , num. 50 , p. 500401. DOI : 10.1088/1751-8121/abca75. Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions S. Sarao Manelli ; E. Vanden-Eijnden ; L. Zdeborová
2020. Advances in Neural Information Processing Systems, Dec 6, 2020 – Dec 12, 2020. p. 13445–13455. Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization B. Aubin ; F. Krzakala ; L. Yue ; L. Zdeborová
2020. Advances in Neural Information Processing Systems, Dec 6, 2020 – Dec 12, 2020. p. 12199–12210. Phase retrieval in high dimensions: Statistical and computational phase transitions A. Maillard ; B. Loureiro ; F. Krzakala ; L. Zdeborová
2020. Advances in Neural Information Processing Systems, Dec 6, 2020 – Dec 12, 2020. p. 11071–11082. Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification F. Mignacco ; F. Krzakala ; P. Urbani ; L. Zdeborová
2020. Advances in Neural Information Processing Systems, Dec 6, 2020 – Dec 12, 2020. p. 9540–955. Generalized approximate survey propagation for high-dimensional estimation L. Saglietti ; Y. M. Lu ; C. Lucibello
Journal Of Statistical Mechanics-Theory And Experiment . 2020-12-01. Vol. 2020 , num. 12 , p. 124003. DOI : 10.1088/1742-5468/abc62c.