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Abstract

This semester project addresses the challenge of building a structure connecting two supports

across a gap, using reinforcement learning from human preferences. This approach involves

learning a reward predictor from human feedback between pairs of demonstrations of the con-

struction task. After presenting the algorithm used to train the agent with human feedback,

the report begins by experimentally validating the methodology. A comparison between the

effectiveness of two reward models follows: one based on a linear combination of handcrafted

features and another on a convolutional neural network. Subsequently, the report assesses

the impact of a query selection strategy based on the disagreement among an ensemble of re-

ward predictors. The report concludes with tests comparing an agent trained with a reward

derived from human preferences with a benchmark forward reinforcement learning agent,

demonstrating the promise of the proposed reward shaping strategy.
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1 Introduction
1.1 Motivation

The present project continues the work on learning to build self-supporting structures in sim-

ulation by [1], which showed the potential of reinforcement learning (RL) in the achievement

of this complex task shown in Figure 1. A serious challenge they faced and left open for

further investigation is the problem of reward shaping. Solely rewarding the eventual success

or failure of their task doesn’t provide sufficient feedback for the agent to effectively learn.

Instead, they resorted to the manual design and tuning of a simple reward function. This

procedure has two major drawbacks, however. First, the tuning process is time-consuming.

Second, there is a risk that the reward is not well aligned with the actual objective: the agent

maximizing its rewards might be diverted from its actual objective [2].

To address the issue of reward shaping, several approaches have been tried in the literature.

Some of these methods, such as inverse reinforcement learning [3] or imitation learning [4], [5]

learn a reward from human demonstrations. These demonstrations can, however, be complex.

Building a self-supporting arch spanning a large gap can be a difficult task for an untrained

human, especially in simulation. It is indeed hard to grasp the effect of friction and properly

assess the stability of the structure for simulated blocks.

Instead, we therefore opted for reinforcement learning from human preferences (RLHF)

[2], [6], [7]. In this framework, the RLHF algorithm selects pairs of demonstrations of the

agent performing the task and submits them to the human’s review. The reward function is

then learned from the human’s preferences.

Figure 1: Demonstration of the successful construction of a structure spanning a gap of size

5 in the simulated environment used throughout this project.

1.2 Related Work

Several recent works on RLHF, including [2], [8], show the promise of learning from human

preferences for a range of tasks such as simulated robotics and Atari games. In [2], humans

were queried on a range of simulated robotic tasks implemented in MuJoCo [9]. Their

experiments showed that a feedforward neural network reward model trained with human

feedback could outperform standard RL in certain tasks when human raters were given hints

such as preferring episodes where the Ant robot is “standing upright”. The same researchers

also queried humans on Atari tasks such as Breakout or Pong [10]. For these tasks, reward

models based on convolutional neural networks failed to beat standard RL agents trained
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with the real rewards of the Atari games, except in the game of Enduro. In this endurance

racing video game, in which the purpose is to pass a certain number of cars to stay in the

race, humans proved better at identifying driving behaviors that are more likely to pass a

car, thus outperforming standard RL.

Past work on RLHF has focused on learning rewards that can be expressed as a linear

combination of handcrafted features [11], [12]. In this semester project, as a first step, we

consider such a linear reward class. On the one hand, we consider this class of rewards

since the underlying reward in the work of [1] belongs to this class, allowing us to compare

our results. On the other hand, the coefficients of each feature are easily interpretable

and solid theoretical foundations [12] exist. Recently, however, several works including [2],

[8], [13] use neural networks to parametrize their reward model. In particular, [2] use a

convolutional neural network (CNN) architecture to model their reward for Atari games.

The CNN is particularly well-suited to the task of extracting hierarchical and spatial features

from data [14], enabling it to more effectively learn complex patterns and relationships in

an environment with a grid structure, such as the Atari games, than a linear combination of

features. The bridge-building application that we are tackling takes place in a simulated 2D

grid in which state encoding with CNNs has proved effective for policy networks [1]. As a

next step we therefore switch to the more complex class of rewards parameterized by CNNs in

the hope of better capturing human preferences We then compare the performance of linear

and CNN-based reward models.

Figure 2: Schematic illustation of the RLHF algorithm from [2]: a reward predictor is trained

with human feedback while a policy learns to optimize the predicted reward.

Several works on RLHF (theoretical and implementation-based), such as [2], [12], have

proposed algorithms for reward learning from human preferences. In particular, [2] proposes

an algorithm in which a reward model is trained from human preferences while an RL policy

is trained to optimize the reward being learned. Their algorithm is illustrated in Figure

2. This semester project builds on their RLHF algorithm and connects it with the task of

building self-supporting bridges that [1] tackled with forward RL. In [2]’s work, humans are

asked to compare the performance of the agent on two segments of demonstrations of the

task, to efficiently make use of human time. As the bridge-building task that this semester

project tackles only takes a few seconds to complete, we queried comparisons of complete
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demonstrations rather than segments. Also, we modified the algorithm to take into account

the fact that we deal with finite state spaces, whereas [2] only addressed continuous state

spaces.

For RLHF to be applicable to real-world application such as the construction of a self-

supporting spanning structure, sample efficiency is essential [2], [13]. Namely, the purpose

of RLHF is to learn an effective reward function with minimimal human feedback. In a

first step, we randomly sample pairs of demonstrations of two robots building a spanning

structure, and query a human on which demonstration they prefer. We then compare this

naive approach with a querying strategy based on disagreement [2], [15]. In this approach,

an ensemble of reward models is maintained and a human is queried on their preference for

pairs of trajectories for which the preference predictions have the highest variance among the

ensemble of rewards.

1.3 Contribution

The main contributions of this semester project are:

• A maintainable and modular code for reinforcement learning from human feedback on

the application of constructing a self-supporting spanning structure,

• An experimental study of learning to build a bridge with RLHF, benchmarked against

forward Soft Actor-Critic RL,

• An experimental comparison of RLHF with two reward models for the task of building

a bridge: linear with handcrafted features and CNN-based,

• An experimental assessment of the impact of disagreement-based querying strategies on

the speed of convergence of RLHF,

• An experimental study of the effect of real human feedback, compared with synthetic

feedback derived from an underlying handcrafted reward.
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2 Background

The purpose of this semester project is to complement the work by [1] on building self-

supporting bridges using reinforcement learning with reward shaping from human feedback.

Before diving into RLHF, the present section therefore summarizes the key points in the work

by [1] that are required to understand the contributions of the present project. It starts with

a theoretical background on the regularized MDP framework used throughout this work and

a brief presentation of the forward RL algorithm used. Subsequently, the task, state space,

action space, transition matrix and reward of the bridge-building application are defined.

2.1 Regularized Markov Decision Process

We consider a regularized Markov decision process (MDP) defined by the tuple (S,A, p, r, γ, α),

where S and A denote a finite state and action space, respectively, p : S × S × A → [0, 1]

is a state transition probability distribution with p(st+1|st, at) describing the probability of

transitioning to state st+1 when taking action at in state st, r : S × A → R is a reward,

γ ∈ (0, 1) is a discount factor, and α is the temperature of the regularized MDP.

The goal of entropy-regularized reinforcement learning is to find a Markov policy π : S →
∆A, where ∆A is the probability simplex over A, that maximizes the following expected

entropy-regularized discounted cumulative reward J(π):

J(π) := Eπ

[
∞∑
t=0

γt (r(st, at) + αH(π(·|st)))

]
, (1)

where Eπ denotes the expectation over the trajectory distribution induced by the policy π,

and H(π(·|s)) denotes the Shannon entropy of the policy π(·|s), defined as

H(π) = −
∑
a∈A

π(a|s) log(π(a|s)). (2)

The effect of entropy is to regularize the policy towards a uniform distribution and therefore

to enforce some exploration.

2.2 Reinforcement Learning Algorithm

For standard reinforcement learning, which is used as a baseline and is also part of the RLHF

algorithm (see Subsection § 3.2), the Soft Actor-Critic (SAC) [16] method is used.

SAC is an actor-critic method based on the maximization of an entropy-regularized dis-

counted return (1). The purpose of the entropy bonus is to boost exploration. The SAC

alternates between a soft policy evaluation and a soft policy improvement step.

As shown by [1], SAC performs well on the task of building a bridge, which this project

addresses. In addition, the algorithm is well-suited for the reinforcement learning from human

preferences framework, as demonstrated by [8]. As the focus of this semester project is on

RLHF, we will from hereon consider SAC as a black-box forward RL algorithm.
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2.3 Application: Building a Bridge

2.3.1 Task Description

For the task of building a bridge we consider the discretized environment depicted in Figure

3. In particular, we assume that the environment is a simulated 2D grid subject to gravity,

in which the elementary shapes are equilateral triangles.

Figure 3: Illustration of the grid structure of the simulated environment used in this work,

adapted with permission from [1].

In this environment, two simulated robots are tasked with building a spanning structure

connecting two supports. We model the supports as downward-pointing triangles (the grey

triangles in Figure 3) referred to as grounds. By self-supporting, we mean that the structure

holds with friction and compression forces only.

To connect the two supports, the two robots are assumed to be centrally controlled. They

alternately place and hold one hexagon-shaped block (represented in dark blue in Figure 3)

at the time. The task is complete when the bridge connects the supports and holds without

the assistance of the two robots as illustrated in Figure 3, where an arch connects the two

supports. Note that for a successful completion of the construction, the bridge should not

collapse at any point during the process. To add complexity to the task, several gap sizes

separating the two supports have been tested.

2.3.2 State Space

The state st of the environment at time t contains the following information about both the

grounds and the supports of the spanning structure:

• The block type: triangle/hexagon,

• The position of the block in the grid,

• An indicator which signals whether the block is being held by a robot.

Given the combinatorial complexity of encoding the state described above, a convolutional

neural network (CNN) is used to encode the state. The CNN’s input consists of seven

channels, depicted in Figure 4, which identify:
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• The sides of the block,

• Whether the blocks are grounds,

• The ID of the robot holding the blocks,

• An identifier of the region the block belongs to, i.e., whether the block is connected to

the left or the right support,

• A last channel to identify the last block, against which new blocks have to be placed.

Figure 4: Illustration of the seven channels given as input to the CNN state encoder, taken

from [1]. Note that the hourglass-shaped blocks shown in the picture were not used in this

project.

2.3.3 Action Space and Transition Matrix

To build the bridge the agent can take the following action:

• Drop the block currently being held (if any), then place and hold the following hexagonal

block against the block that was placed last.

Relative positioning is used to describe where the new block should be placed. Thus, choosing

an action means choosing against which side of the existing structure to place the new block

rather than giving its absolute coordinates.

The transition matrix is then defined as either adding a block to the structure or going to

the terminal state. An episode terminates when one of the following events occurs:

• The structure collapses,

• Blocks collide, i.e. whether some blocks intersect each other,
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• The two supports are successfully connected by a stable structure.

2.3.4 Reward

Fundamentally, the objective of the present task is to connect the two supports with a stable

structure. However, merely rewarding the final success results in a too sparse reward which

is difficult to optimize. To mitigate the problem of a too sparse reward, [1] designed a reward

function r : S × A → R which is a linear combination of six features ϕi : S × A → R with

i = 1, .., 6. Their reward can be expressed as

r(st, at) = wTϕ(st, at), (3)

where w ∈ R6 is a vector of coefficients and ϕ(st, at) ∈ R6 is the vector of features for state

st and action at. In particular, rather than hand-tuning the vector of weights in this project,

we aim to learn it from human feedback.

The six features correspond to the following:

• Action: a binary flag set to true every time an action is taken,

• Closer: a binary flag set to true if the latest action reduced the distance between the

two sides of the bridge,

• Success: a binary flag set to true if the two supports are successfully connected by a

stable structure,

• Failure: a binary flag set to true if a collapse or collision occurs,

• Number of Sides: the number of new interfaces created by adding a new block,

• Number of Opposing Sides: the number of opposing sides created by placing a new

block.
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3 Method

Now that the necessary background on the bridge-building task and its theoretical founda-

tions have been introduced, this section presents the methodology employed to apply RLHF

to the construction of self-supporting spanning structures. The section starts with a formal

definition of the problem of learning rewards from human preferences. The RLHF algorithm

adapted from [2] and its practical implementation for this project are subsequently detailed

in the remaining subsections.

3.1 Problem Definition

As explained in Subection § 2.1, in the traditional reinforcement learning framework, we

consider an agent that, at each time step t, makes an observation of its state st ∈ S, takes

an action at ∈ A, and receives a reward r(st, at) ∈ R. The agent’s goal is to maximize its

expected regularized discounted reward (1).

In reinforcement learning from human preferences, we consider that, instead of a reward

signal, the agent receives feedback from a human. This feedback is expressed as a preference

between a pair of trajectories σ, where a trajectory is defined as a sequence of state-action

pairs σ = ((s0, a0), . . . , (sk−1, ak−1)) ∈ Sk × Ak made when the agent plays an episode in

its environment. We write σ1 ≻ σ2 to denote that the human expressed a preference for

trajectory σ1 over trajectory σ2. The objective of our agent is to generate trajectories which

are preferred by the human while minimizing the number of human queries made.

In practice, preferences over a pair of trajectories can be produced in two fashions:

• Quantitatively: We assume that preferences are generated by an underlying reward

function r : S × A → R if

((s10, a
1
0), . . . , (s

1
k−1, a

1
k−1)) ≻ ((s20, a

2
0), . . . , (s

2
k−1, a

2
k−1)) (4)

whenever

r(s10, a
1
0) + . . .+ r(s1k−1, a

1
k−1) > r(s20, a

2
0) + . . .+ r(s2k−1, a

2
k−1) (5)

Normally, the agent receiving preferences from a reward function should obtain high

rewards under this r. From now on, preferences generated this way will be referred to

as synthetic feedback. This form of feedback is interesting to validate our methodology,

• Qualitatively: A human expresses its preference between two trajectories which are

shown to them in the form of a short video. This setting, in the absence of underlying

reward function r, is the most interesting in practice.

From hereon, the human or synthetic feedback will be referred to as the feedback-givers.

10



3.2 Reinforcement Learning from Human Feedback: the Algorithm

The algorithm for reinforcement learning from human feedback (RLHF) is shown in Figure

5. During the RLHF process, a policy π and a reward estimate r̂ : S × A → R are updated

according to the following steps, which are iteratively executed after randomly initializing

the reward:

1. Train the policy π with standard reinforcement learning using the trained estimate r̂ as

a reward signal,

2. Generate a set of trajectories {σ0, . . . , σK−1} with the policy π and regroup these tra-

jectories by pairs (the strategies for pairing up will be discussed in Subection § 3.4),

3. Query the human (in the human feedback setting, query the underlying reward r in the

synthetic feedback setting) to obtain preferences for each trajectory pair generated at the

previous point. Store the resulting comparisons in a replay buffer R storing elements of

the form (σ1, σ2, µ), where µ is a distribution over {1, 2} indicating the human/synthetic

preference,

4. Update the reward model r̂ with supervised learning to fit the last N comparisons

collected in R.

These steps are iterated over sequentially for a certain number of rounds. The four steps are

discussed in more detail in the following subsections.

Figure 5: Schematic illustration of the RLHF algorithm used in this work. A policy is

optimized using reward estimates from a reward predictor. This reward predictor is trained

on batches of human preferences between pairs of trajectories generated by the policy being

learned.
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3.3 Policy Improvement

As explained in Subsection § 3.2, the steps of the RLHF algorithm are run sequentially. This

means that during the policy training step, the reward estimate r̂ remains constant and can

be used as a reward signal for running standard reinforcement learning. The most conclusive

algorithm for the bridge application according to [1], Soft Actor-Critic, was used for this

policy improvement step. Besides, this RL algorithm has already been successfully applied

by others [8] in the RLHF framework. The same hyperparameters as [1] were used for the

policy and value networks (see Annex A.2 for the detailed hyperparameters). Research by [2]

has empirically shown that the hyperparameters of policy networks trained with traditional

RL are effective in RLHF too, despite the non-stationarity of the reward estimate r̂.

3.4 Trajectory Generation and Query Selection

As explained in step 2 of the RLHF Algorithm (§3.2), the first step to generate comparisons

for querying our feedback-giver is to generate a number K of trajectories {σ0, . . . , σK−1}.
Two pairing strategies were tested in this project to generate pairs from this set: random

and disagreement-based sampling.

The random sampling strategy simply consists in uniformly sampling pairs without re-

placement from the set of trajectories. This naive approach has nonetheless proved effective

for other researchers [2].

The disagreement-based sampling is a strategy to query the feedback-giver more efficiently,

i.e. reduce the number of queries for the RLHF algorithm to converge. The sample complexity

of RLHF is indeed one of its major drawbacks [7], [8]. With this strategy, an ensemble of

L reward predictors (r̂0, . . . , r̂L−1) is maintained. These reward predictors are independently

initialized (see Section § 3.6 for more details about the initialization) and trained. The queries

are then generated with the following procedure:

1. Similarly to the random sampling strategy, uniformly sample f · K/2 pairs without

replacement from a set of generated trajectories, where f ∈ R+ is an oversampling

coefficient,

2. The reward predictors (r̂0, . . . , r̂L−1) each return their preference for all the trajectory

pairs previously generated, resulting in a set of elements of the form (σ1, σ2, (µ̂0, ..., µ̂L−1)),

where µ̂i is an estimate of the human preference µ over the trajectory pair (σ1, σ2) gen-

erated by r̂i (see Subsection § 3.5 for more details about the preference signal µ),

3. For each trajectory pair, the variance of the preferences (µ̂0, ..., µ̂L−1) is then computed:

this is what we will hereon call the disagreement,

4. The f ·K/2 trajectory pairs are then sorted in decreasing order of disagreement. The

top K/2 pairs are then returned: they are the most efficient queries according to the

disagreement metric.
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The reasoning behind this disagreement-based sampling is pretty intuitive: it is more efficient

to query the human for trajectories on which the predictions made by the reward estimates

diverge the most.

3.5 Preference Elicitation

The trajectory pairs generated at the previous step are then compared by the feedback-giver,

as illustrated in Figure 6. This feedback produces a set of comparisons of the form (σ1, σ2, µ),

which are stored in a first-in, first-out (FIFO) replay buffer R of maximum size N . The value

of the preferences µ are set the following way:

• If the human prefers the first trajectory µ = 1,

• If they prefer the second µ = 0,

• If both trajectories look as good µ = 0.5,

• If the feedback-giver doesn’t know which trajectory they prefer, the preference is not

included in the buffer.

Figure 6: Illustration of the interface used for querying human feedback on a pair of trajec-

tories. The feedback provider can choose between four options to express their preference:

Top, Same, Bottom, and Not Sure.

3.6 Fitting the Reward Function

The reward function estimate r̂ : S×A → R can now be updated from the human preferences

collected at the previous point. This reward estimate r̂ can be seen as a predictor of the

feedback-giver’s preference.
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According to the Bradley-Terry model [17], human preference can be modeled by the

following expression:

P̂ (σ1 ≻ σ2) =

exp
∑
t

γt r̂(s1t , a
1
t )

exp
∑
t

γt r̂(s1t , a
1
t ) + exp

∑
t

γt r̂(s2t , a
2
t )
, (6)

where P̂ (σ1 ≻ σ2) is the probability that the human will prefer trajectory 1 over the other

according to our preference model, and γ is the discount factor of the MDP (see Subsection

§ 2.1).

The reward estimate r̂ is learned by minimizing the cross-entropy loss between the model’s

predictions and actual human preferences, sampled uniformly in batches from the replay

buffer R:

loss(r̂) = −
∑

(σ1,σ2,µ)∈R

µ(1)logP̂ [σ1 ≻ σ2] + µ(2)logP̂ [σ2 ≻ σ1]. (7)

The reward fitting is performed using the Nadam Optimization Algorithm [18].

Two reward models were implemented and tested in this project: a linear and a convolu-

tional neural network (CNN) model.

In the linear model, the reward function estimate r̂ is expressed as a linear combination of

the set of 6 features ϕi : S×A → R, i = 1, .., 6 handcrafted by [1] and presented in Subsection

§ 2.3.4:

r̂(st, at) = wTϕ(st, at), (8)

where w ∈ R6 is a vector of coefficients (the parameters to be learned) and ϕ(st, at) ∈ R6 is

the vector of features for state st and action at. The coefficients w are randomly initialized

using values sampled from a Gaussian distribution with zero mean and unit standard devi-

ation, a standard procedure in machine learning [2]. At every training step, the vector w is

normalized to have zero mean and the same Euclidean norm as the handcrafted reward of

[1]. As explained by [2], this is a typical processing step as the reward learning problem is

underdetermined. Also, we chose to make the learned reward have the same norm as in [1] to

speed up hyperparameter tuning. Indeed, the performance of the Soft Actor-Critic algorithm

(see Subection § 2.2) is particularly sensitive to the hyperparameter α, the entropy bonus,

which dictates the relative weight of the reward and entropy terms in the return of Equation

(1) [16]. To effectively reuse the hyperparameter values of [1], particularly their learning rate

for α, it is therefore beneficial to make the coefficients w of the reward predictor r̂ have the

same norm.

The CNN -based model, on the other hand, is of a similar format to the policy and value

networks of the SAC algorithm used for forward RL (see Subection § 2.2). It uses the same

CNN-based encoder architecture (independently trained, however) and is also followed by

a few fully connected layers (see Annex A.2 for the detailed hyperparameters). The main

difference is that there is only one final output: the reward estimate for this particular

configuration of the environment.
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4 Experimental Results

The present part shows and discusses the experimental results obtained when applying the

method developed in the previous section. It starts with a brief description of the experimen-

tal set-up. Next, the dynamics of learning with RLHF using a linear reward model trained

with synthetic feedback are studied. The purpose of this first experimental study is to vali-

date the methodology used. Subsequently, the performance of RLHF with synthetic feedback

using a linear reward model (with and without disagreement for optimizing query selection)

and a CNN reward model is benchmarked against forward RL with the handcrafted reward

found by [1]. Finally, the results of RLHF with synthetic feedback are compared with RLHF

using real human feedback.

4.1 Set-up

All the experiments that follow were carried out in a grid of size 15× 15, with the objective

of building a bridge crossing gaps of sizes 1 to 7. The friction coefficient employed is of 0.7,

which approximately amounts to sticking the hexagonal building blocks together with mortar

in the real world [1]. The work by [1] found that the tasks in this medium-sized environment

and with this high friction coefficient are simple enough for forward RL, although gaps of

sizes 6 and 7 start to be challenging. Figure 7 illustrates the successful construction of a

bridge spanning a gap of size 7 in this 15×15 grid environment. As the main purpose of this

project was to validate the methodology for RLHF described in the previous Section (§ 3),

we chose to start by conducting tests in this environment of medium-low difficulty. Refer to

Annex A.2 for detailed specifications of the environment used for the following experiments.

Figure 7: Successful and most efficient construction of a bridge spanning a gap of size 7.

4.2 Dynamics of Learning with a Linear Reward Model

4.2.1 The learned reward model converges towards the reward underlying the

synthetic preferences.

In this first experiment, the RLHF algorithm was run with a linear reward model, as defined in

Subsection § 3.6, and random query selection. This first RLHF training used synthetic human

feedback, i.e. preferences derived from an underlying reward model. For the underlying
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reward, we used a linear model with the coefficients found empirically by [1]. The demeaned

values of these coefficients are given in Table 1.

The initial coefficients of the reward model to be learned, also in Table 1 and initialized

as described in Subsection § 3.6, were normalized to have a Euclidean norm of 5.40 (the

same norm as the underlying reward model). The coefficients learned by running the RLHF

algorithm over 20 rounds (see Annex A.2 for the detailed hyperparameters of the run) are

given in Table 1.

Action Closer Success Failure Sides Opposing sides

RLHF linear, initial coefficients -2.80 3.46 0.51 -1.37 1.22 -1.01

RLHF linear, after learning -0.84 0.74 3.44 -2.80 -0.18 -0.361

Underlying reward [1] -0.74 -0.14 4.46 -2.54 -0.49 -0.54

Table 1: Coefficients of the underlying feedback-giving reward model taken from [1] and

the linear reward model being learned with synthetic feedback (at initialization and after

learning). Note how the values of the learning reward predictor converged towards the

underlying reward.

One can see that overall the values of the learned coefficients got fairly close to those of

the underlying reward model that gave synthetic feedback. In particular, the sign of all the

coefficients except that associated with the feature “Closer” are the same as those of the

underlying reward. Given the high initial value of this particular coefficient (3.46, compared

with −0.14 for the underlying reward), it is, however, no surprise that this coefficient is

further off than most others. For the feature “Success”, the coefficient is probably still a

bit off because successes in the first few RLHF rounds were pretty rare. This coefficient

stagnated for some time before finally increasing from round 10 onward.

Note that 20 rounds were not enough for the values of the coefficients to converge: some

coefficients were clearly still on an upward or downward trend when the training finished. Un-

fortunately, only one GPU was available to run all the experimental results for this semester

project. The length of the trainings run was adapted accordingly: the aim of the present

results is therefore to highlight learning trends, rather than to study values at convergence.

4.2.2 The average return under the feedback-giving reward model increases

during the RLHF training.

During the RLHF training rounds, we also tracked the evolution of the average discounted

return under the feedback-giving reward model obtained by the agent being trained with the

RLHF reward. The empirical average discounted return Ĵ(π) over n episodes is given by the

following formula:

Ĵ(π) =
1

n

n∑
i=1

T∑
t=0

γtr(si,t, ai,t), (9)
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where T is a final time step.

As the purpose of RLHF is to learn a reward that matches the preferences of the synthetic

feedback given, this return should increase over the course of the training. Figure 8 confirms

this trend and thus seems to validate our methodology: the average return steadily increases

towards 5. Table 2 shows that this value is close enough to the average return of 6 obtained

by an agent trained directly with forward RL using the feedback-giving reward, as in [1].

Figure 8: Evolution of the average return (9) under the feedback-giving reward from [1]

during the RLHF training with linear reward model and synthetic feedback.

4.2.3 An agent trained with the learned reward performs almost as well as one

trained with forward RL.

Finally, Table 2 summarizes the success rates in the bridge-building task for policies trained

using forward RL with the feedback-giving reward and the learned reward. Both models

appear to perform equally well, achieving a 100% success rate across all gap sizes when

acting greedily based on the learned policy. The training curves in Figure 9 show, however,

that under the softmax strategy used in training, the agent trained with the feedback-giving

reward performs manifestly better, especially for the harder task of building a bridge crossing

gaps of sizes 6 and 7.

A closer look at some sample constructions (see Figure 10) shows that a too high value for

the coefficient associated with the feature “Closer” (see Table 1) might be at fault. Rewarding

actions that reduce the distance with the opposing support seem to be beneficial in the first

1000 rounds of the policy training, as Figure 9b shows, but seem to hurt the learned policy

in the long run. Indeed, the success rate under the feedback-giving reward converges to 90%,

compared with only around 60% for the learned reward.

4.3 Study of Enhancement Techniques

The present subsection experimentally studies the effect of two improvements to our current

RLHF algorithm suggested in the literature: optimizing query selection using disagreement

(see Subsection § 3.4) and replacing the linear reward model by a convolutional neural network
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Average return Success rate

Forward RL 6.03 1.0

RLHF Linear 6.17 1.0

RLHF Disagreement 6.05 1.0

RLHF CNN -1.32 0.0

RLHF Human* 5.00 1.0

Table 2: Average success rates and returns under the benchmark reward from [1] over 100

episodes (mean over the 7 gap sizes) for the forward RL agents trained with the various

rewards learned in this work and the benchmark reward found by [1].

* the RLHF training was interrupted after 11 rounds out of 20 due to technical issues. The

forward RL training with the learned reward was carried out over as many episodes as the

other agents, however.

(see Subsection § 3.6). Both tests of this subsection are carried out using synthetic feedback

from the reward handcrafted by [1].

4.3.1 Effect of Disagreement on Learning

For the RLHF algortihm with disagreement-based sampling, pairs of trajectories were over-

sampled by a factor of 2 (see Subsection § 3.4) compared with the random sampling strategy

of the previous point. Only half of the generated trajectories (those for which disagreement

was the highest) were then used to query the synthetic feedback-giver. Disagreement was

computed as the variance of the preferences predicted by an ensemble of 3 linear reward

models trained independently.

Table 3 shows that the coefficients learned also seemed to converge toward the feedback-

giving reward. The values are slightly more off, however, than with the random sampling

strategy. In particular, the coefficient rewarding “Success” is substantially lower than that

learned without optimizing queries using disagreement.

Similarly, Figure 9 shows that the evolution of the success rates during policy training

with the learned reward follows practically the same evolution as when not optimizing query

selection.

On the other hand, querying with disagreement significantly lengthened trainings. Run-

ning the RLHF algorithm took 2 days and 13 hours when sampling queries randomly, com-

pared with 3 days and 13 hours using disagreement-based sampling. Given the small benefits

of the method in practice, which corroborate the findings by [2], we therefore chose to run

the following experiments without optimizing queries.
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(a) Evolution of the success rates for gaps

of sizes 1 to 5.

(b) Evolution of the success rates for gaps

of sizes 6 and 7.

Figure 9: Evolution of the success rates when running forward reinforcement learning with the

benchmark handcrafted reward found by [1] and the rewards learned in the various RLHF

trials of this section. The hyperparameters of the runs can be found in Annex A.2. The

shaded areas correspond to standard errors.

Action Closer Success Failure Sides Opposing sides

RL [1] -0.74 -0.14 4.46 -2.54 -0.49 -0.54

RLHF Linear -0.84 0.74 3.44 -2.80 -0.18 -0.361

RLHF Disagreement -0.40 0.51 2.28 -2.22 -0.10 0.05

RLHF Human* 0.41 0.76 3.07 -3.78 -1.25 0.78

Table 3: Coefficients of the linear reward models learned with RLHF in this work’s experi-

ments, compared with those of the handcrafted benchmark reward found by [1].

* this RLHF training was interrupted after 11 rounds out of 20 due to technical issues.

4.3.2 Linear vs CNN Reward Model

Next, taking inspiration from [2] among other works on Deep RLHF, we trained a CNN

reward to model synthetic preferences, while randomly sampling queries. The average return

under the feedback-giving reward (see Table 2) and the evolution of the success rates during

forward RL training with the learned reward (see Figure 9) show, however, that the CNNs

failed to match the performance of linear reward models. It is quite likely that the complex

CNN we used (see Subsection 3.6) required many more episodes to converge. Given the

duration of a complete run of the RLHF algorithm with this deep learning model (5 days

and 8 hours on a GPU), we chose to leave further exploration of the effect of switching to

CNN reward models for future work.

4.4 Human Feedback

Finally, we ran an RLHF training with linear reward model using real human feedback, while

randomly sampling queries. Table 3 shows the reward coefficients learned. Interestingly, these
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Figure 10: Rewarding actions that reduce the distance with the opposing side can result

in constructions as the one shown here. The superfluous block on top of the structure was

probably placed because it took the bridge closer to the other side, but it is of no use for the

successful construction of a stable structure.

coefficients are quite similar to the empirical values found by [1]: successes are generously

rewarded, whereas failures are heavily penalized (in fact, they are penalized even more). The

main difference lies in the coefficients associated with the features “Action” and “Opposing

sides”. The learned reward gives a slight bonus for those features, rather than penalizing

them. It is quite likely that the early interruption of the RLHF algorithm is partly at fault.

Taking more actions and creating opposing sides implies building more complex structures,

which the human feedback-giver clearly preferred in the early phases of training, when most

attempted constructions failed at the first or second block (see Figure 11). As the training

progressed, however, both coefficients were clearly on a downward trend, getting closer to

the values found empirically by [1].

Interestingly, Figure 9 shows that a policy trained with the reward derived from human

feedback slightly outperforms agents trained with synthetic feedback on more difficult tasks.

Excessively rewarding the features “Action” and “Opposing sides” clearly hurts the agent’s

performance on simpler tasks, however. The complex structures these features encourage

seem to be detrimental to the construction of a bridge crossing small gaps. This RLHF

agent was not able to match the benchmark foward RL agent by [1] either, but the evolution

of the reward coefficiens during training suggests that better performance might have been

achieved if the RLHF algorithm had not been interrupted halfway. Overall, this first result

using real human feedback is encouraging: rather than hand-tuning coefficients, deducing a

reward model from human preferences seems to show some promise.
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Figure 11: In the first rounds of the RLHF training, most demonstrations failed very early,

as shown on top of this illustration. The human feedback provider therefore tended to

favor relatively complex structures like the one below, even if several blocks were placed in

nonsensical positions.

5 Conclusion

In conclusion, the successful completion of learning a reward from human preferences was

achieved in the context of building a bridge with blocks in simulation. An experimental ex-

amination of the learning dynamics, employing a linear reward model and synthetic feedback,

revealed the convergence of the learned reward predictor towards the underlying feedback-

giving reward. Furthermore, a policy trained with this learned reward demonstrated per-

formance nearly equivalent to that of a forward RL agent trained with the true underlying

reward.

Moving forward, an experimental study investigating the impact of optimized query se-

lection using the disagreement among an ensemble of independently trained reward models

indicated minimal benefits to the training process. While the training duration increased,

the rate of convergence was very similar to that of RLHF with random query selection.

Subsequent tests revealed the suboptimal performance of an RLHF agent trained with

a CNN reward model compared to its linear RLHF counterparts. The complex network

architecture probably requires more episodes to converge and achieve performance levels

comparable to the simpler linear models, particularly on tasks of medium-low difficulty.

Finally, evaluations demonstrated that an RLHF agent trained with human feedback

slightly surpasses RLHF agents trained with synthetic feedback on difficult tasks, although

it does not match the performance of our benchmark forward RL agent. These first results

are still encouraging and clearly show the potential of RLHF for efficient reward shaping,

hopefully eliminating the need for manual fine-tuning of rewards in the future.

Please note that due to limited GPU capacity, most experimental tests were conducted
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only once. Consequently, both the results and the explanations provided above should be

interpreted with caution. Ideally, these experiments should be replicated with different seeds

to validate their repeatability.

6 Outlook
6.1 Challenges

The positive outcomes of this semester project have also highlighted a major challenge in

RLHF. The training process is extended, with interruptions occurring at the end of each

round, awaiting human input. This approach was time-consuming and impractical, especially

when dealing with complex reward models like CNNs, potentially requiring a continuous

human presence for days. To address this issue in the future, a possible solution could

involve enabling feedback with a smartphone. This would allow training to proceed without

waiting for the feedback provider to return to their office, speeding up the whole process.

6.2 Next Steps

While the present research has highlighted the potential of reward shaping from human

preferences, there are areas where future improvements could be beneficial.

Firstly, the optimization of query selection strategies deserves further exploration. It

would be valuable to reevaluate the use of disagreement-based sampling by testing it with a

larger ensemble of reward models, perhaps 10 instead of the original 3. Additionally, various

other strategies mentioned in the literature, such as information directed reward learning

as discussed in [19] or using the disagreement among an ensemble of reward models as an

intrinsic reward for the policy optimization step of the RLHF algorithm as in [13], should be

considered and compared against the sampling approaches employed in this study.

Secondly, additional tests with CNN-based reward models should be conducted. Insights

from the literature on deep Reinforcement Learning with Human Feedback (RLHF), as refer-

enced in [2], [8], suggest that prolonged training periods are essential for optimal performance

when using deep learning reward models. It is plausible that linear reward models may not

capture enough complexity to address more challenging tasks. For example, [1] showed that

building a bridge across a gap of size 7 with a lower friction coefficient of 0.5 is challenging

for a linear reward model. The agent needs to understand the need for building small vertical

towers to increase friction with the supports before proceeding with the construction of the

bridge, as illustrated in Figure 12. Repeating longer experiments with CNN rewards guided

by human expertise may outperform the manually crafted linear reward model proposed by

[1].
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Figure 12: When the friction coefficient between the blocks is reduced, small vertical towers

need to be built at the supports before constructing the bridge, as shown here (the lower

the friction coefficient, the higher this tower should be). Otherwise, the structure collapses

because it slips on the support.
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A Annexes
A.1 Code Architecture

The full RLHF code1, which was built as a complement to the modules written by [1], similarly

follows an object-oriented approach. The following main modules, which take inspiration

from the code of the imitation library [20], were added with the permission of [1]:

• Gym module: this module written by [1], which combines the RL policy and the envi-

ronment, was modified to fit the other RLHF modules,

• Pair Generator: this module implements the sampling of pairs of trajectories, either

randomly or using the disagreement among an ensemble of reward models,

• Preference Gatherer: this modules includes classes for synthetic and human feedback

querying,

• Reward trainer: this module implements the various reward models used in this project,

as well as a trainer class to facilitate the adjustment of trainings,

• Preference Comparison: this is the main class coordinating the modules above to run

the RLHF algorithm.

Note that the modular and hierarchical structure with classes used in this code enables a user

to independently modify the components above by inheriting the provided template abstract

classes.

A.2 Hyperparameters

Grid size 15× 15

Blocks available hexagons

Gap range 1 to 7

Gap position random gap

Friction coefficient 0.7

Robot max torque 0

Robot max force 1000

Max blocks 15

Table 4: Hyperparameters of the set-up of all the experimental results of Section § 4.

1the code is available on the following GitHub repository: https://github.com/Sabri2001/SycamoreProject
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Dueling Q table Yes

Fully connected layers 3

Number of neurons in the fully connected layer 64

Convolution layers 4

Kernel size 3

Number of internal channels (CNN) 64

Convolution stride 1

Last block only Yes

Gamma 0.9

Batch size 512

Learning rate 0.0001

Target entropy 0.5

Tau 0.0005

Weight decay 0.0001

Initial alpha 1

Learning rate alpha 0.001

Lower bound on V -2

Optimizer NAdam

Number of training episodes 20000

Length of replay buffer 1000000

Table 5: Hyperparameters of the agent’s state encoder (for both the actor and the critic

network) and the SAC learning algorithm used for forward RL policy training.
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Fully connected layers (CNN) 3

Number of neurons in the fully connected layer (CNN) 64

Convolution layers (CNN) 4

Kernel size (CNN) 3

Number of internal channels (CNN) 64

Convolution stride (CNN) 1

Learning rate (Linear) 0.0001

Learning rate (CNN) 0.00003

Weight decay (CNN) 0.0001

Batch size 32

Length of replay buffer 100

Optimizer NAdam

Number of rounds 20

Policy training episodes per round 1000

Reward training episodes per round 1000

Number of queries 400

Query schedule hyperbolic

Reward models in ensemble (Disagreement) 3

Table 6: Hyperparameters of the reward models (both linear and CNN) and the RLHF

learning algorithm.
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