Preceiving Traffic from Aerial Images
George Adaimi, Sven Kreiss, Alexandre Alahi
Drones or UAVs, equipped with different sensors, have been deployed in many places especially for urban traffic monitoring or last-mile delivery. It provides the ability to control the different aspects of traffic given real-time obeservations, an important pillar for the future of transportation and smart cities. With the increasing use of such machines, many previous state-of-the-art object detectors, who have achieved high performance on front facing cameras, are being used on UAV datasets. When applied to high-resolution aerial images captured from such datasets, they fail to generalize to the wide range of objects’ scales. In order to address this limitation, we propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images. We extend the concept of fields and introduce butterfly fields, a type of composite field that describes the spatial information of output features as well as the scale of the detected object. To overcome occlusion and viewing angle variations that can hinder the localization process, we employ a voting mechanism between related butterfly vectors pointing to the object center. We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.