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Processor Scheduling 
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Threads and Locality 
n  Short intervals have poor locality [Barroso ISCA98] 

n  25K inst (TPC-B) → 7 CPI 
n  1.7M inst (TPC-D) → 1.6 CPI 

n  Costly context switches [Borg, ASPLOS91] 

n  400K inst shadow (process) 

n  Inter-processor cache conflicts and traffic 
n  5-20% loads hit dirty data in another L2 cache [Keeton, 

ISCA98] 
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Processor-Memory Hierarchy 
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Talk Outline 
n  Cohort scheduling 
n  Staged computation 
n  StagedServer library 
n  Experiments 
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Cohort Scheduling 
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Another View of Cohorts 
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Cohort Scheduling Experiment 
WriteFileEx Call
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Aside: Cohort Schedule Thread? 
n  Cohort resumes execution at same PC 

n  Schedule change 
n  No programmer-visible changes 

n  Wrong boundaries 
n  Cohort formed after system call 

n  Missed opportunities 
n  Data structures accessed from many locations 
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Talk Outline 
n  Cohort scheduling 
n  Staged computation 
n  StagedServer library 
n  Experiments 
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Motivation 
n  Programming model to support cohort 

scheduling 
n  Address shortcomings of threads 
n  Expensive, error-prone synchronization 
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Staged Programming Model 
n  Alternative to thread, processes, FSM 
n  Facilitate cohort scheduling 

n  Natural abstraction for cohorts 
n  Scheduling flexibility 

n  Reduce synchronization 
n  StagedServer library 
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Staged Computation Example 
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Stages 
n  Operations 

n  Asynchronous, non-preemptible computations 

n  State 
n  Private to stage 

n  Scheduling policy 
n  When and how operations execute 
n  Control concurrency within stage 
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Stages, cont’d 
n  Similar to object, but 

n  Operations are asynchronous 
n  Scheduling autonomy 

n  Natural cohort 
n  Group logically related computation 
n  Access share code and data 
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Scheduling 
n  Scheduling can supplant synchronization  
n  Exclusive stage 

n  Execute one operation on one processor at a time 
n  Access local data without synchronization 

n  Partitioned stage 
n  Send operations to processor based on key 
n  Processor can access local data w/o sync 

n  Shared stage 
n  Operations run on all processors 
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Staged File Cache 
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Talk Outline 
n  Cohort scheduling 
n  Staged computation 
n  StagedServer library 
n  Experiments 
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StagedServer 
n  C++ library 

n  Uniprocessor or SMP 
n  Mechanism for staged computation 
n  Aggressive cohort scheduling 

n  Two parameterized classes 
n  Stage 
n  Closure 
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Stage 

Stages and Closures 

Invoke Operation Allocate Closure Enqueue Closure 

Scheduler 

CPU CPU 

Wait 
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Stage Constructor 
STAGE(const char *Name, 

   STAGE_TYPE Type, 
   bool BalanceLoad = false, 
   int CacheSize = 0, 
   int BatchThreshold = 0, 
   int BatchTimer = DefaultTimer, 
   bool MaintainOrder = false, 
   int MaxBatchSize = StageBatchSize)  
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Operation #1 
ACTIONS WEB_CLOSURE::EstablishConnection() 
   { 
    NetworkStage->CreateIncomingConnection(&NWCreateResult); 
 
    return WaitForChildren(ReadRequest); 
    } 
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Operation #2 
ACTIONS WEB_CLOSURE::ReadRequest() 
    { 
    if (0 == NWCreateResult->LastError) 
        { 
         ConnectionNumber = NWCreateResult->ConnectionNumber; 
         NetworkStage->ReadFromConnection(&NWReadWriteResult, 

         ConnectionNumber, 
                                                                  StrBuffer, 

         sizeof(StrBuffer)); 
        return WaitForChildren(ParseRequest); 
        } 
    else 
        return EstablishConnection(); 
    }  
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Closure 
NETWORK_STAGE::CreateIncomingConnection(RESULT<CR> *Result) 
    { 
    static int roundRobin = 0; 
    NETWORK_CLOSURE* x = 

 new(NETWORK_CLOSURE::CreateIncomingConnection, 
          this, 
          Result, 
          roundRobin ++) 
 NETWORK_CLOSURE( ); 

 
    x->Start( ); 
    } 



June 2001 Cohort Schedule -- James Larus 28 

Aggressive Cohort Scheduling 
n  Processor affinity 

n  Operation and children stay on processor 
n  Ex: explicit placement, partitioning, load balancing  

n  Cohort scheduling 
n  Per-processor, per-stage queue 
n  Processor execute all operations in its queue 

n  Ex: fixed cohort size 
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Processor Queues 
n  Pair of ‘queues’ 

n  Stack for local operations 
n  No synchronization 

n  Queue for remote operations 
n  Process stack LIFO then queue 
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Wavefront Processor Scheduling 
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Talk Outline 
n  Cohort scheduling 
n  Staged computation 
n  StagedServer library 
n  Experiments 
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Web Server Bandwidth 
HTTP GET Responses
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Web Server Latency 
HTTP GET Latency
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Web Server Latency (Log Scale) 
HTTP GET Latency
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Server CPU Usage 
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L2 Cache Misses 
L2 Cache Misses
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Future Work 
n  Error/fault handling 
n  System coordination language 

n  Concise view of FSMs & communication 
n  Verification of properties 

n  Deadlock freedom, progress, don’t lose work,… 

n  Extend to clusters 
n  Same semantics shared/non-shared memory 
n  Reconfigure without rewriting 
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Summary 
n  Good performance requires good software– 

not just hardware–architecture 
n  Threads are a weak foundation for locality 
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Cohort Scheduling 
n  Enhance locality by grouping similar 

operations 
n  Staged computation supports operation 

n  Identifies cohorts 
n  Supports cohort scheduling 
n  Reduces synchronization 
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Final Thoughts 
n  Research must rethink fundamentals, not just 

refine widely used ideas 
n  Internet/Middleware is enormous upheaval in SW 
n  Opportunity for new ideas in programming 

n  Twin challenges 
n  Correctness 
n  Performance 


