
Using Cohort Scheduling
to Enhance

Server Performance

James Larus
Michael Parkes

Microsoft Research
June 2001 So

ft
w

ar
e

Tools

Pr
od

uc
tiv

ity

June 2001 Cohort Scheduling — James Larus 2

ILP of Databases

[C
ve

ta
no

vi
c

&
 K

es
sl

er
, I

SC
A

 2
00

0]

June 2001 Cohort Schedule -- James Larus 3

Server

Replies
Server Software Architecture

Idle Ready Waiting Running

Thread
Process
FSM
…

Re
qu

es
ts

June 2001 Cohort Schedule -- James Larus 4

Processor Scheduling

1

2

3

4

Re
qu

es
t /

 T
hr

ea
d

Time
Processor

June 2001 Cohort Schedule -- James Larus 5

Threads and Locality
n  Short intervals have poor locality [Barroso ISCA98]

n  25K inst (TPC-B) → 7 CPI
n  1.7M inst (TPC-D) → 1.6 CPI

n  Costly context switches [Borg, ASPLOS91]

n  400K inst shadow (process)

n  Inter-processor cache conflicts and traffic
n  5-20% loads hit dirty data in another L2 cache [Keeton,

ISCA98]

June 2001 Cohort Schedule -- James Larus 6

Processor-Memory Hierarchy

L
1

C
a
c
h
e

C
P
U

L
2

C
a
c
h
e T

L
B

M
a
i
n

M
e
m
o
r
y

3 cycles
9-12 inst

7-12 cycles
21-48 insts

100-200 cycles
300-800 insts

100-200 cycles
300-800 insts

Solutions:
 Better Hardware Better Program Locality

June 2001 Cohort Schedule -- James Larus 7

Talk Outline
n  Cohort scheduling
n  Staged computation
n  StagedServer library
n  Experiments

June 2001 Cohort Schedule -- James Larus 8

Cohort Scheduling

1

2

3

4

Re
qu

es
t

Time
Processor

June 2001 Cohort Schedule -- James Larus 9

Another View of Cohorts

Time

1

2

3

4

Re
qu

es
t

Threaded Execution

Cohort Execution

June 2001 Cohort Schedule -- James Larus 10

Cohort Scheduling Experiment
WriteFileEx Call

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140

Consecutive Calls in a Cohort

C
yc

le
s

p
e

r
C

a
ll

0

300

600

900

1200

1500

1800

L
2

 M
is

se
s

p
e

r
C

a
ll

Cycles L2 Misses~19 CPI

~3 CPI

June 2001 Cohort Schedule -- James Larus 11

Aside: Cohort Schedule Thread?
n  Cohort resumes execution at same PC

n  Schedule change
n  No programmer-visible changes

n  Wrong boundaries
n  Cohort formed after system call

n  Missed opportunities
n  Data structures accessed from many locations

June 2001 Cohort Schedule -- James Larus 12

Talk Outline
n  Cohort scheduling
n  Staged computation
n  StagedServer library
n  Experiments

June 2001 Cohort Schedule -- James Larus 13

Motivation
n  Programming model to support cohort

scheduling
n  Address shortcomings of threads
n  Expensive, error-prone synchronization

June 2001 Cohort Schedule -- James Larus 14

Staged Computation
Re

qu
es

ts
 Server

Replies

Stage
State

Operation

Operation
Scheduling

Policy

June 2001 Cohort Schedule -- James Larus 15

Staged Programming Model
n  Alternative to thread, processes, FSM
n  Facilitate cohort scheduling

n  Natural abstraction for cohorts
n  Scheduling flexibility

n  Reduce synchronization
n  StagedServer library

June 2001 Cohort Schedule -- James Larus 16

Staged Computation Example

Stage-A Stage-B
op-x

op-y op-a-cont

op-a

op
-a

 c
lo

su
re

Wait for
Children

op-y done

op-x done

invoke op-y

invoke op-x

June 2001 Cohort Schedule -- James Larus 17

Stages
n  Operations

n  Asynchronous, non-preemptible computations

n  State
n  Private to stage

n  Scheduling policy
n  When and how operations execute
n  Control concurrency within stage

June 2001 Cohort Schedule -- James Larus 18

Stages, cont’d
n  Similar to object, but

n  Operations are asynchronous
n  Scheduling autonomy

n  Natural cohort
n  Group logically related computation
n  Access share code and data

June 2001 Cohort Schedule -- James Larus 19

Scheduling
n  Scheduling can supplant synchronization
n  Exclusive stage

n  Execute one operation on one processor at a time
n  Access local data without synchronization

n  Partitioned stage
n  Send operations to processor based on key
n  Processor can access local data w/o sync

n  Shared stage
n  Operations run on all processors

June 2001 Cohort Schedule -- James Larus 20

Staged File Cache

FileCache
CPU 1

CPU 2

CPU 3

IOEventServer FileCache

FileCache

I/O
Aggregator

I/O
Aggregator

I/O
Aggregator

Disk I/O

Disk I/O

Disk I/O

June 2001 Cohort Schedule -- James Larus 21

Talk Outline
n  Cohort scheduling
n  Staged computation
n  StagedServer library
n  Experiments

June 2001 Cohort Schedule -- James Larus 22

StagedServer
n  C++ library

n  Uniprocessor or SMP
n  Mechanism for staged computation
n  Aggressive cohort scheduling

n  Two parameterized classes
n  Stage
n  Closure

June 2001 Cohort Schedule -- James Larus 23

Stage

Stages and Closures

Invoke Operation Allocate Closure Enqueue Closure

Scheduler

CPU CPU

Wait

June 2001 Cohort Schedule -- James Larus 24

Stage Constructor
STAGE(const char *Name,

 STAGE_TYPE Type,
 bool BalanceLoad = false,
 int CacheSize = 0,
 int BatchThreshold = 0,
 int BatchTimer = DefaultTimer,
 bool MaintainOrder = false,
 int MaxBatchSize = StageBatchSize)

June 2001 Cohort Schedule -- James Larus 25

Operation #1
ACTIONS WEB_CLOSURE::EstablishConnection()
 {
 NetworkStage->CreateIncomingConnection(&NWCreateResult);

 return WaitForChildren(ReadRequest);
 }

June 2001 Cohort Schedule -- James Larus 26

Operation #2
ACTIONS WEB_CLOSURE::ReadRequest()
 {
 if (0 == NWCreateResult->LastError)
 {
 ConnectionNumber = NWCreateResult->ConnectionNumber;
 NetworkStage->ReadFromConnection(&NWReadWriteResult,

 ConnectionNumber,
 StrBuffer,

 sizeof(StrBuffer));
 return WaitForChildren(ParseRequest);
 }
 else
 return EstablishConnection();
 }

June 2001 Cohort Schedule -- James Larus 27

Closure
NETWORK_STAGE::CreateIncomingConnection(RESULT<CR> *Result)
 {
 static int roundRobin = 0;
 NETWORK_CLOSURE* x =

 new(NETWORK_CLOSURE::CreateIncomingConnection,
 this,
 Result,
 roundRobin ++)
 NETWORK_CLOSURE();

 x->Start();
 }

June 2001 Cohort Schedule -- James Larus 28

Aggressive Cohort Scheduling
n  Processor affinity

n  Operation and children stay on processor
n  Ex: explicit placement, partitioning, load balancing

n  Cohort scheduling
n  Per-processor, per-stage queue
n  Processor execute all operations in its queue

n  Ex: fixed cohort size

June 2001 Cohort Schedule -- James Larus 29

Processor Queues
n  Pair of ‘queues’

n  Stack for local operations
n  No synchronization

n  Queue for remote operations
n  Process stack LIFO then queue

June 2001 Cohort Schedule -- James Larus 30

Wavefront Processor Scheduling

Stage 1 Stage 2 Stage 3 Stage 5 Stage 7 Stage 6 Stage 4

Proc 1

Proc 3 Proc 4

Proc 2

June 2001 Cohort Schedule -- James Larus 31

Talk Outline
n  Cohort scheduling
n  Staged computation
n  StagedServer library
n  Experiments

June 2001 Cohort Schedule -- James Larus 32

Web Server Bandwidth
HTTP GET Responses

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1000 2000 3000 4000 5000 6000 7000 8000

UEs

GE
Ts

/S
ec

TH
SS
IIS

June 2001 Cohort Schedule -- James Larus 33

Web Server Latency
HTTP GET Latency

0

1000

2000

3000

4000

5000

6000

1000 2000 3000 4000 5000 6000 7000 8000

UEs

Av
g.

 L
at

en
cy

 (m
ill

is
ec

.)

TH
SS
IIS

June 2001 Cohort Schedule -- James Larus 34

Web Server Latency (Log Scale)
HTTP GET Latency

1

10

100

1000

10000

1000 2000 3000 4000 5000 6000 7000 8000

UEs

Av
g.

 L
at

en
cy

 (m
ill

is
ec

.)

TH
SS
IIS

June 2001 Cohort Schedule -- James Larus 35

Server CPU Usage

Time

0
200
400
600
800

1000
1200
1400
1600
1800

1000 2000 3000 4000 5000 6000 7000 8000

UEs

Ti
m

e
(s

ec
.)

TH User
SS User
IIS User

TH Kernel
SS Kernel
IIS Kernel

June 2001 Cohort Schedule -- James Larus 36

L2 Cache Misses
L2 Cache Misses

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

1000 2000 3000 4000 5000 6000 7000 8000

UEs

M
is

s
Ra

te
TH L2 Kernel
SS L2 Kernel

TH L2 User
SS L2 User

June 2001 Cohort Schedule -- James Larus 37

Future Work
n  Error/fault handling
n  System coordination language

n  Concise view of FSMs & communication
n  Verification of properties

n  Deadlock freedom, progress, don’t lose work,…

n  Extend to clusters
n  Same semantics shared/non-shared memory
n  Reconfigure without rewriting

June 2001 Cohort Schedule -- James Larus 38

Summary
n  Good performance requires good software–

not just hardware–architecture
n  Threads are a weak foundation for locality

June 2001 Cohort Schedule -- James Larus 39

Cohort Scheduling
n  Enhance locality by grouping similar

operations
n  Staged computation supports operation

n  Identifies cohorts
n  Supports cohort scheduling
n  Reduces synchronization

June 2001 Cohort Schedule -- James Larus 40

Final Thoughts
n  Research must rethink fundamentals, not just

refine widely used ideas
n  Internet/Middleware is enormous upheaval in SW
n  Opportunity for new ideas in programming

n  Twin challenges
n  Correctness
n  Performance

