Using Cohort Scheduling
to Enhance
Server Performance

James Larus
Michael Parkes
Microsoft Research
June 2001

>
=
o .2
i
B
23
o P2
0 o

ILP of Databases

tomcatv

25 30 35

Icache Misses per 1000 Retires

June 2001 Cohort Scheduling — James Larus

IPC: 21264 vs. 21164

[Cvetanovic & Kessler, ISCA 2000]

Server Software Architecture

Requests

Ll

Thread
Process
FSM

June 2001 Cohort Schedule - James Larus

Processor Scheduling

Request / Thread

1 .

|\ \
R -J
L o N

Processor

June 2001 Cohort Schedule - James Larus 4

Threads and Locality

Short intervals have poor locality saroso iscass)
25K inst (TPC-B) — 7 CP!
1.7M inst (TPC-D) — 1.6 CPI

COStly context switches o aspLoser;
400K inst shadow (process)

Inter-processor cache conflicts and traffic
5-20% loads hit dirty data in another L2 cache eeton,

ISCA98]

June 2001 Cohort Schedule -- James Larus

Processor-Memory Hierarchy

Solutions:
Better Hardware Better Program Locality

3 cycles
9-12 inst

7-12 cycles
21-48 insts

100-200 cycles
300-800 insts

P
U

100-200 cycles
300-800 insts

June 2001 Cohort Schedule - James Larus 6

Talk Outline

Cohort scheduling
Staged computation
StagedServer library
Experiments

June 2001 Cohort Schedule -- James Larus

Cohort Scheduling

A

4

3

Request

Time

Processor

June 2001 Cohort Schedule - James Larus

Another View of Cohorts

+ H N B

+—
> I I
(@)
O

. 0 N

Time

00000000

Cohort Scheduling Experiment

WriteFileEx Call

120000

—a— Cycles =+ L2 Misses

100000

80000 -

60000 -

40000

©
o
| -
)
o
)
)
o
P e
o

L2 Misses per Call

20000 -

—

O I I I
40 60 80 100

Consecutive Calls in a Cohort

June 2001 Cohort Schedule -- James Larus

Aside: Cohort Schedule Thread?

Cohort resumes execution at same PC
Schedule change
No programmer-visible changes

Wrong boundaries
Cohort formed after system call

Missed opportunities
Data structures accessed from many locations

June 2001 Cohort Schedule -- James Larus

11

Talk Outline

Cohort scheduling
Staged computation
StagedServer library
Experiments

June 2001 Cohort Schedule -- James Larus

12

Motivation

Programming model to support cohort
scheduling

Address shortcomings of threads
Expensive, error-prone synchronization

June 2001 Cohort Schedule -- James Larus

13

Staged Computation

\
\
N

) Scheduling ¥
" Policy

B

Requests

June 2001

Cohort Schedule - James Larus 14

Staged Programming Model

Alternative to thread, processes, FSM

Facilitate cohort scheduling
Natural abstraction for cohorts
Scheduling flexibility

Reduce synchronization
StagedServer library

June 2001 Cohort Schedule -- James Larus

15

Staged Computation Example

invoke op-x

invoke op-y

op-a closure

June 2001 Cohort Schedule - James Larus

16

Stages

Operations
Asynchronous, non-preemptible computations

State
Private to stage

Scheduling policy
When and how operations execute
Control concurrency within stage

June 2001 Cohort Schedule -- James Larus

17

Stages, cont d

Similar to object, but
Operations are asynchronous
Scheduling autonomy

Natural cohort
Group logically related computation
Access share code and data

June 2001 Cohort Schedule -- James Larus

18

Scheduling

Scheduling can supplant synchronization

Exclusive stage
= EXxecute one operation on one processor at a time

ﬁ/

= Access local data without synchronization

Partitioned stage
= Send operations to processor based on key
= Processor can access local data w/o sync
Shared stage

= Operations run on all processors

June 2001 Cohort Schedule - James Larus

Staged File Cache

CPU

\

: . /0
FileCache Aggregator
: . /0
FileCache Aggregator
: . /0
FileCache Aggregator
(o)
(o)
(o)

June 2001

Cohort Schedule - James Larus

IOEventServer

20

Talk Outline

Cohort scheduling
Staged computation
StagedServer library
Experiments

June 2001 Cohort Schedule -- James Larus

21

StagedServer

C++ library
Uniprocessor or SMP
Mechanism for staged computation
Aggressive cohort scheduling

Two parameterized classes
Stage
Closure

June 2001 Cohort Schedule -- James Larus

22

Stages and Closures

Invoke Operation

June 2001 Cohort Schedule - James Larus

23

Stage Constructor

STAGE(const char *Name,

June 2001

STAGE_TYPE Type,

bool BalancelLoad = false,
int CacheSize = 0,

int BatchThreshold = 0O,

int BatchTimer = DefaultTimer,
bool MaintainOrder = false,

int MaxBatchSize = StageBatchSize)

Cohort Schedule -- James Larus

24

Operation #1

ACTIONS WEB_CLOSURE::EstablishConnection()
{

NetworkStage->CreatelncomingConnection(&NWCreateResult);

return WaitForChildren(ReadRequest);
}

June 2001 Cohort Schedule -- James Larus

25

Operation #2

ACTIONS WEB_CLOSURE::ReadRequest()

{
if (O == NWCreateResult->LastError)

{

ConnectionNumber = NWCreateResult->ConnectionNumber;
NetworkStage->ReadFromConnection(&NWReadWriteResult,
ConnectionNumber,
StrBuffer,
sizeof(StrBuffer));
return WaitForChildren(ParseRequest);

}

else
return EstablishConnection();

}

June 2001 Cohort Schedule -- James Larus

Closure

NETWORK_STAGE::CreatelncomingConnection(RESULT<CR> *Result)
{

static int roundRobin = O;
NETWORK_CLOSURE* x =
new(NETWORK_CLOSURE::CreatelncomingConnection,
this,
Result,
roundRobin ++)
NETWORK_CLOSURE();

x->Start();
}

June 2001 Cohort Schedule -- James Larus

27

Aggressive Cohort Scheduling

Processor affinity
Operation and children stay on processor
= EX: explicit placement, partitioning, load balancing
Cohort scheduling
Per-processor, per-stage queue

Processor execute all operations in its queue
= EX: fixed cohort size

June 2001 Cohort Schedule -- James Larus 28

Processor Queues

Pair of ‘queues’

Stack for local operations

= NO synchronization
Queue for remote operations
Process stack LIFO then queue

June 2001 Cohort Schedule -- James Larus

29

Wavetront Processor Scheduling

June 2001 Cohort Schedule - James Larus

30

Talk Outline

Cohort scheduling
Staged computation
StagedServer library

June 2001 Cohort Schedule -- James Larus

31

Web Server Bandwidth

HTTP GET Responses

GETs/Sec

— I
Tl
rra [in |l
111

1000 2000 3000 4000 5000 6000 7000 8000
UEs

June 2001 Cohort Schedule -- James Larus

32

Web Server Latency

HTTP GET Latency
W TH
0SS
@IS

L HE K

L owl I AEEE

1000 2000 3000 4000 5000 6000 7000 8000
UEs

&)
(]
K]
E
>
(@]
c
(]
+—
@©
-
o
>
<

June 2001 Cohort Schedule -- James Larus

33

Web Server Latency (Log Scale)

wiill ‘| ||| ||| ||

1000 2000 3000 4000 5000 6000 7000 8000
UEs

HTTP GET Latency

m'lllTl

Avg. Latency (millisec.)

June 2001 Cohort Schedule -- James Larus

34

Server CPU Usage

m TH User
0SS User
@ IS User

- B TH Kernel

- O SS Kernel
B IS Kernel

|1E|||‘||| i} || ‘|I

1000 2000 3000 4000 5000 6000 7000 8000
UEs

June 2001 Cohort Schedule -- James Larus 35

[.2 Cache Misses

M TH L2 Kernel
0SS L2 Kernel

L2 Cache Misses

B TH L2 User |
0SS L2 User |—

= |
L-‘q

[}
+—
©
o
[9)]
L
=

=
Illllllllwulﬂ"ﬁlllllllll
il

1000 2000 3000 4000 5000 6000 7000 8000
UEs

June 2001 Cohort Schedule -- James Larus

36

Future Work

Error/fault handling

System coordination language
Concise view of FSMs & communication
Verification of properties

= Deadlock freedom, progress, don’ t lose work,...

Extend to clusters
Same semantics shared/non-shared memory
Reconfigure without rewriting

June 2001 Cohort Schedule -- James Larus

37

Summary

Good performance requires good software-
not just hardware-architecture

Threads are a weak foundation for locality

June 2001 Cohort Schedule -- James Larus

38

Cohort Scheduling

Enhance locality by grouping similar
operations
Staged computation supports operation

|dentifies cohorts
Supports cohort scheduling
Reduces synchronization

June 2001 Cohort Schedule -- James Larus

39

Final Thoughts

Research must rethink fundamentals, not just
refine widely used ideas
Internet/Middleware is enormous upheaval in SW
Opportunity for new ideas in programming

Twin challenges
Correctness
Performance

June 2001 Cohort Schedule -- James Larus 40

