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IPC: 21264 vs. 21164
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Server Software Architecture
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Processor Scheduling
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Threads and Locality

Short intervals have poor locality saroso iscass)
25K inst (TPC-B) — 7 CP!
1.7M inst (TPC-D) — 1.6 CPI

COStly context switches o aspLoser;
400K inst shadow (process)

Inter-processor cache conflicts and traffic
5-20% loads hit dirty data in another L2 cache eeton,

ISCA98]

June 2001 Cohort Schedule -- James Larus



Processor-Memory Hierarchy

Solutions:
Better Hardware Better Program Locality

3 cycles
9-12 inst

7-12 cycles
21-48 insts

100-200 cycles
300-800 insts
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Talk Outline

Cohort scheduling
Staged computation
StagedServer library
Experiments
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Cohort Scheduling
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Another View of Cohorts
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Cohort Scheduling Experiment

WriteFileEx Call

120000

—a— Cycles =+ L2 Misses

100000

80000 -

60000 -

40000

©
o
| -
)
o
)
)
o
P e
o

L2 Misses per Call

20000 -

—

O I I I
40 60 80 100

Consecutive Calls in a Cohort

June 2001 Cohort Schedule -- James Larus




Aside: Cohort Schedule Thread?

Cohort resumes execution at same PC
Schedule change
No programmer-visible changes

Wrong boundaries
Cohort formed after system call

Missed opportunities
Data structures accessed from many locations
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Motivation

Programming model to support cohort
scheduling

Address shortcomings of threads
Expensive, error-prone synchronization
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Staged Computation
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Staged Programming Model

Alternative to thread, processes, FSM

Facilitate cohort scheduling
Natural abstraction for cohorts
Scheduling flexibility

Reduce synchronization
StagedServer library
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Staged Computation Example

invoke op-x

invoke op-y

op-a closure
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Stages

Operations
Asynchronous, non-preemptible computations

State
Private to stage

Scheduling policy
When and how operations execute
Control concurrency within stage
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Stages, cont d

Similar to object, but
Operations are asynchronous
Scheduling autonomy

Natural cohort
Group logically related computation
Access share code and data
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Scheduling

Scheduling can supplant synchronization

Exclusive stage
= EXxecute one operation on one processor at a time

ﬁ/

= Access local data without synchronization

Partitioned stage
= Send operations to processor based on key
= Processor can access local data w/o sync
Shared stage

= Operations run on all processors
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Staged File Cache
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StagedServer

C++ library
Uniprocessor or SMP
Mechanism for staged computation
Aggressive cohort scheduling

Two parameterized classes
Stage
Closure
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Stages and Closures

Invoke Operation
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Stage Constructor

STAGE(const char *Name,

June 2001

STAGE_TYPE Type,

bool BalancelLoad = false,
int CacheSize = 0,

int BatchThreshold = 0O,

int BatchTimer = DefaultTimer,
bool MaintainOrder = false,

int MaxBatchSize = StageBatchSize)
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Operation #1

ACTIONS WEB_CLOSURE::EstablishConnection()
{

NetworkStage->CreatelncomingConnection(&NWCreateResult);

return WaitForChildren(ReadRequest);
}
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Operation #2

ACTIONS WEB_CLOSURE::ReadRequest()

{
if (O == NWCreateResult->LastError)

{

ConnectionNumber = NWCreateResult->ConnectionNumber;
NetworkStage->ReadFromConnection(&NWReadWriteResult,
ConnectionNumber,
StrBuffer,
sizeof(StrBuffer));
return WaitForChildren(ParseRequest);

}

else
return EstablishConnection();

}
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Closure

NETWORK_STAGE::CreatelncomingConnection(RESULT<CR> *Result)
{

static int roundRobin = O;
NETWORK_CLOSURE* x =
new(NETWORK_CLOSURE::CreatelncomingConnection,
this,
Result,
roundRobin ++)
NETWORK_CLOSURE( );

x->Start( );
}
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Aggressive Cohort Scheduling

Processor affinity
Operation and children stay on processor
= EX: explicit placement, partitioning, load balancing
Cohort scheduling
Per-processor, per-stage queue

Processor execute all operations in its queue
= EX: fixed cohort size
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Processor Queues

Pair of ‘queues’

Stack for local operations

= NO synchronization
Queue for remote operations
Process stack LIFO then queue
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Wavetront Processor Scheduling
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Web Server Bandwidth

HTTP GET Responses
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Web Server Latency

HTTP GET Latency
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Web Server Latency (Log Scale)
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Server CPU Usage
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[.2 Cache Misses
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Future Work

Error/fault handling

System coordination language
Concise view of FSMs & communication
Verification of properties

= Deadlock freedom, progress, don’ t lose work,...

Extend to clusters
Same semantics shared/non-shared memory
Reconfigure without rewriting
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Summary

Good performance requires good software-
not just hardware-architecture

Threads are a weak foundation for locality
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Cohort Scheduling

Enhance locality by grouping similar
operations
Staged computation supports operation

|dentifies cohorts
Supports cohort scheduling
Reduces synchronization
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Final Thoughts

Research must rethink fundamentals, not just
refine widely used ideas
Internet/Middleware is enormous upheaval in SW
Opportunity for new ideas in programming

Twin challenges
Correctness
Performance
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