Energetic keV electron scattering is a sensitive probe of microscopic material structure. The ultrafast electron diffractometer at LACUS expands this microscopic sensitivity to the lattice atomic position to a femtosecond time resolution, enabling for real time movies of atomic motion. This bring new insights on the fundamental couplings in a material and opens new route to control matter with light.
An UED diffractometer consists of an ultrafast photocatode, electronic lens and suitable electron detector. This basic design (Fig 1 b), does not come with a femtosecond time resolution due to unavoidable electronic wavepacket spread upon propagation form the photocatode to the sample. The UED machine at LACUS is equipped with a electronic pulse compressor, which reduces the electronic pulse duration to a few 100s fs pulse duration, which is comparable to the intrinsic time scale of lattice ionic motion.
Two forms of diffraction geometries can be performed in our machine, transmission electron diffraction and reflection high energy electron diffraction (RHEED).
The latter is sensitive to the topmost atomic layers of a materials and to adsorbed overlayers but requires special pulse front tilting schemes to preserve a good temporal resolution, due to the group velocity mismatch between light and non-relativistic electrons.
This is implemented in the LACUS machine, and we obtain a few 100s of fs temporal resolution in reflection geometry.
Learn more about the UED machinee on its webpage and on the following publications:
Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
Design and implementation of a flexible beamline for fs electron diffraction experiments
Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 2012. Vol. 691, p. 113-122. DOI : 10.1016/j.nima.2012.06.057.Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution
Structural Dynamics. 2017. Vol. 4, num. 4, p. 044032. DOI : 10.1063/1.4991483.Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.