During Phase I, the WP2 team focused on the development of models of the Swiss bulk energy system. This work involved the modelling of individual components, in collaboration with other WPs and SCCER, and the development of a general system framework taking into account different energy carriers. It is formulated in such a way that large-scale optimization methods could be applied and different optimization objectives could be used.
The model takes into consideration the dynamics of a system with considerably lower inertia than the existing systems and both slowly and faster varying phenomena i.e. minute and second scale. Innovative geoinformation system were used to identify locations for renewable generation and storage devices.
During Phase II, the WP2 team focuses on the tackling of specific issues of high interest of the Swissgrid, the Swiss Transmission System Operator. Through a coordinated process, associated projects have been defined and are under development in close collaboration among academics and the industrial partner.
Activities Phase II
S 2.1 Dynamic Stability Assessment
Subtask leader: 6.1 ZHAW, Prof. Korba
Description: Provide recommendations and future actions to maintain the stability of the Swiss power system as it faces future energy challenges.
M2.1.1 Definition of dynamic stability objectives and performance metrics (including dynamic model setup) | ZHAW, Prof. Korba | Dec.17 |
M2.1.2 Definition and Simulation of Scenarios leading to dynamic stability challenges | ETHZ-FEN, Dr Demiray | Dec.18 |
M2.1.3 Design of new control approaches for components as countermeasures | ZHAW, Prof. Korba; and ETHZ-FEN, Dr Demiray | Dec.19 |
M2.1.4 Quantitative studies and recommendations | ETHZ-FEN, Dr Demiray | Dec.20 |
S 2.2 Markets
Subtask leader: 2.7 ETHZ-FEN, Dr Demiray
Description: Give a theoretic benchmark for the operation of the future European power system from the Swiss perspective, to quantify: 1) the economic benefit of different market structures, 2) the economic benefit of coordination between European grid operators, and 3) the value of flexible reserve requirements for varying levels of renewable penetration.
M2.2.1 Assessment of current Swiss and European market structures | ETHZ-FEN, Dr Demiray | Dec.17 |
M2.2.2 Assessment of a centralized and co-optimized Swiss and European market structure | ETHZ-FEN, Dr Demiray | Dec.18 |
M2.2.3 Quantification of the economic potential for benchmark scenarios | ETHZ-FEN, Dr Demiray | Dec.19 |
M2.2.4 Quantitative economic evaluation of the implementation roadmap | UniBs-FoNEW, Prof. Weigt | Dec.20 |
S 2.3 System Operation
Subtask leader: 2.1 ETHZ-PSL, Prof. Hug
Description: Development of a computer simulator that can be used to study how transmission and distribution levels should be coordinated and which transmission level phenomena should be consider for the prevention of a grid collapse.
M2.3.1 Mathematical derivations for the proposed tools | ETHZ-PSL, Prof. Hug | Dec.17 |
M2.3.2 Initial Implementation and assessment of developed tools and grid coordination models/schemes | ETHZ-PSL, Prof. Hug | Dec.18 |
M2.3.3 Specification of requirements for interfaces and development of a new optimization solver | USI – ICS, Prof. Schenk | Dec.19 |
M2.3.4 Test case studies on variety of systems using simulator | ZHAW, Prof. Korba | Dec.20 |
S 2.4 System Planning
Subtask leader: 2.2 ETHZ-LEC, Prof. Abhari
Description: Quantification of the technical and economic performance of DESS solutions within the Swiss power system and optimized siting of gas power plants and simulated operation of Swiss electricity and gas networks that assess longterm network plans.
M2.4.1 Definition and set-up of models for DESS solutions for gas/electricity networks | ETHZ-LEC, Prof. Abhari; and ZHAW, Prof. Korba | Dec.17 |
M2.4.2 Definition of strategies to optimize locations and operation of DESS | ETHZ-LEC, Prof. Abhari, and ZHAW, Prof. Korba | Dec.18 |
M2.4.3 Description of scenarios and progress report on simulations of scenarios DESS operation | ETHZ-LEC, Prof. Abhari; and ZHAW, Prof. Korba | Dec.19 |
S 2.5 Risk Assessment
Subtask leader: 2.8 ETHZ- RRE, Prof. Sansavini
Description: Assessment and quantification of the risks to operations stemming from the grid dependence on real-time measurements and on the communication infrastructure and assessment of the stability of the scenarios assumed by the energy turnaround 2050 document with respect to the risks to operations.
M2.5.1 Development of the models for primary energy resources, power market, stochastic conditions and operations | ETHZ- RRE, Prof. Sansavini | Apr.18 |
M2.5.2 Development of the joint model for the communication/SCADA infrastructure and power grid operations | ETHZ- RRE, Prof. Sansavini | Aug.19 |
M2.5.3 Risk mitigation strategies for reducing the dependence of the grid security on measurements provided by the communication infrastructure | ETHZ- RRE, Prof. Sansavini | Dec.20 |
Activities Phase I
Milestones
M2.1.1 | Specification and improvement of existing models for large-scale multi-energy systems |
M2.1.2 |
Development of processes integrating the energy hub and power node concepts with respect electrical transmission grids, storage devices, and associated control |
M2.1.3 |
Advanced model for the solution of stochastic power grid optimization problems on massively parallel supercomputers; A Computational Stochastic Optimization Framework with Application for Wind Power Generation |
Leading Institute
Contributing Institutes
Industrial Partners
ABB; Swissgrid
Milestones
M 2.2.1 |
Procedures for the identification of existing transmission bottlenecks in the Swiss power grid
|
M2.2.2 |
Procedures for the identification of additional pumped-hydro storage sites in the Swiss Alps |
M2.2.3 |
Optimal planning procedures based on GIS databases |
|
Leading Institute
Contributing Institutes
Industrial Partners
Milestones
M2.3.1 |
Model of the access to an economic network model of the Swiss electricity market (SwissMod)
|
M2.3.2 |
Model of the linkage to socio-economic research results(policy and market design options) |
M2.3.3 |
Report on the feedback of technological research results obtained in SCCER 2 into economic modelling in SCCER 5 |
M2.3.4 |
Evaluate the future technical and economic Swiss energy system aspects |
Leading Institute
Contributing Institutes
Industrial Partners
Milestones
M2.4.1 |
Model of the propagation of cascading failures in power grids due to line disconnection (overload) and load/generation disconnection (voltage limits) using AC power flow
|
M2.4.2 |
Models for enabling technologies (HVDC CB, MF-transformers) within the framework for propagation of cascading failures |
M2.4.3 |
Assess the impact of several corrective actions on the mitigation of cascading failure propagation |
M2.4.4 |
Evaluate the vulnerability of the integrated electric power and gas networks in the context of propagation of cascading failures |
Leading Institute
Contributing Institutes
Industrial Partners