





### **Motivation**

- Data centers (DCs) use 2% of global energy and will reach 10% by 2030.
- Switzerland is one of the European countries with the highest number of DCs (77).
- IT and energy supply represents today
   44% of the EPFL CO2eq emissions.
- The DCs expansion is associated with key energy and climate-related challenges:
  - (a) impact on the power grid;
  - (b) inefficient energy usage;
  - (c) electricity-end-use carbon footprint.





### **Goals of the project**

- Develop a solution to improve DCs' energy efficiency while reducing their carbon footprint with special focus on the new EPFL DC
- Validate this solution in a first-of-itskind demonstrator benefiting the entire EPFL campus leveraging EPFL research and tech transfer towards our startups.
- Scale up through the EPFL EcoCloud to industry-grade DCs operated by Amazon, Google, Microsoft, Meta.

### Overview of the proposed system



ŀ

# **Activity 1: heat recovery and heat-derived electricity generation (PowerLab)**

**Aim: innovative on-chip cooling technology** to efficiently remove heat from data center CPUs by flowing liquids on the chips, much closer to their hot spots providing:

- a) large cooling capacity
- b) high temperature coolant (75°C) for subsequent energy recuperation.



### Ongoing activities:

- power map measurement and topology optimization of cold-plate
- benchtop evaluation of microfluidic cooling for a single CPU
- blade- and rack-level cooling circuit design and integration



Benchtop setup (being built)



Rack for integrating tests





### **Activity 2: Waste heat to electricity (LAMD)**

Aim: generation of power from the heat extracted from CPUs with the use of thermodynamic potential via power cycle (Organic Rankine Cycle)

First fully oil-free small-scale ORC:

- Operational 4-5kW oil-free ORC (vs state-ofthe art oil-lubricated volumetric ORC)
- with gas-bearing supported turbine and
- single-stage turbopump able to operate on wide part-load range





### **Activity 2: Waste heat to electricity (LAMD)**

### Organic Rankine Cycle (ORC) design and optimization

- Working fluids (pure & mixtures) studied to optimize efficiency & respect environmental and safety criteria.
- Cycle output power maximized for data center requirements
- Optimization shows R1233zd(E) (GWP=1) is optimal fluid:
  - Net power output ~4.7 kW
  - Thermal efficiency ~9%
  - Exergy efficiency ~60%





### **Activity 2: Waste heat to electricity (LAMD)**

#### **Turbine 1D optimization**

- Optimized turbine maximizes power output for varying data center load
- Fast 1D model validated against CFD





#### **Turbine 3D optimization**

- Maximizing power output for design and off-design requires variable geometry nozzles
- Ideal nozzle design identified through
   POD-based shape optimization



Heating Bits



### Activity 3: DC power consumption and distribution prediction of applications running inside the VMs (ESL)

#### **Aim**

- 1. **Predict the workloads** of virtualized DCs to be executed
- 2. Develop new **hardware accelerators** use on reconfigurable hardware for EPFL key workloads

#### **Expected outcomes**

- 1. Maximize racks' energy efficiency and minimize DCs carbon footprint (target: 50% savings vs 2019)
- 2. Recycle EPFL servers to maximize DCs sustainability at EPFL (target: 7y vs. 3y)





### **Activity 3: DC power consumption and distribution** prediction of applications running inside the VMs (ESL)

#### **Workload Characterization**



- Various Applications
- Various Workloads
- Various Scenarios
- Linux Perf
- Intel Top-down analysis
- Time-Series Analysis
- Transformer-based Models



## Activity 3: DC power consumption and distribution prediction of applications running inside the VMs (ESL)

Performance Degradation Prediction
Leveraging the Workload Characterization to accurately forecast performance

declines, addressing a variety of application scenarios effectively
Testing Framework:

- Seen Applications for familiar contexts.
- Unseen Applications for model's generalization capabilities across novel scenarios.

| Test        | Mean error (%) | Max error (%) | Avg Std (%) |
|-------------|----------------|---------------|-------------|
| Seen apps   | 3.64           | 66.97         | 3.51        |
| Unseen apps | 8.36           | 81.64         | 9.66        |

With **less than a 10% mean error**, the model reliably forecasts performance degradation across diverse application types, demonstrating robust predictive accuracy.



## Activity 3: DC power consumption and distribution prediction of applications running inside the VMs (ESL)

**Power Prediction & Management - EFPL RCP** 



This case illustrates a **clear power and cost savings opportunity** through our workload characterization scheme, optimizing resource allocation and utilization.

Heating Bits

### **EPFL**

### **Activity 4: Power distribution and conversion**

architectures for DCs (PEL)

Aim: improve the efficiency and reliability of power delivery in the Data Centers by

- Moving from AC to DC distribution
- Reducing number of conversions
- Integrating devices operating in DC (e.g., batteries and PVs)





Source. J. Huber et al. PES, ETHZ



# **Activity 4: Power distribution and conversion architectures for DCs (PEL)**

Future data denters will have a DC electric sistribution  $_{
m AC}$  System  $_{
m Grid}$ 

#### **DC Distribution System**

- ± 380 V<sub>DC</sub> Distribution
- 760 V<sub>DC</sub> pole-to-pole (interface of BESS and HERS)
- 12 V<sub>DC</sub> for Point-of-Load

### Role of PEL in the project:

- Design and realization of the main HVDC power distribution supply (AC/DC stage Solid-State Transformer)
- Design and realization of the Server Supplies (DC/DC stages 4 units × each server blade)





## **Activity 4: Power distribution and conversion architectures for DCs (PEL)**

Modularized Bridge Rectifier Solid-State Transformer



- Modular Design
- Galvanic insulation
- AC/DC conversion with DC/DC stages

### Frequency-Doubling LLC Resonant Converter





- Based on resonant converter topology
- High-frequency magnetic insulation
- Soft-switching capability

**EPFL** 

## Activity 5: Multi-energy system integration and CO<sub>2</sub>eq \* content assessment (DESL-IPESE)

Aim: optimal system operation to supply electricity, heating and cooling services while minimizing the overall CO<sub>2</sub> emissions.

- Design level → Definition of technologies' sizes and opportunities for services' provision.
- Operational level → Development and demonstration of the strategic optimal system operation based on the CO₂ content forecast of the electrical grid.







### Carbon-aware dispatcher: formulation

- Day-ahead schedule of the power at the grid connection point to minimize the expected carbon emissions (CE) caused by
  - consuming electricity from the grid (considering dynamic and stochastic carbon intensity, load, and PV generation)
  - using the battery (LCA based, considering the calendar and cycling aging of the battery)
- Subject to operational constraints
  - Battery state-of-charge
  - Battery efficiency

$$\min E(C_e^{pcc}) + E(C_e^{ess})$$

$$C_{\text{e}}^{\text{ess}} \geq \frac{T \cdot C_{\text{i}}^{\text{ess}}}{M} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} (|\mathbf{P}_{\text{ess}}^{\text{charge}}[k][j]| + |\mathbf{P}_{\text{ess}}^{\text{discharge}}[k][j]|) + E_{\text{ess}}^{\text{rated}} \frac{W \cdot C_{\text{e, LCA}}^{\text{ess}}}{L_{\text{ess}}^{\text{calendar}}}$$



### Carbon-aware dispatcher: results

- Dispatch the experimental facility in the CCT
  - Servers (50 kW)
  - Battery Li-Ion (60 kW, 100 kWh)
  - PV (58.5 kWp)
- 400 days simulated (50+1 scenarios per day)

|                                                               | Servers only | Servers, PV<br>No dispatch | Servers, PV, BESS<br>Dispatched |
|---------------------------------------------------------------|--------------|----------------------------|---------------------------------|
| Average daily emissions [kgCO2eq]                             | 53.82        | 40.51                      | 38.97                           |
| Average emissions reductions compared to server only case [%] | -0           | -24.7                      | -27.6                           |

#### Carbon-aware ESS&PV sizing: formulation

- Scenario based carbon and cost aware sizing of energy storage and photovoltaic generation
  - considering dynamic and stochastic grid carbon intensity, load, and PV generation
  - subject to operational constraints
- Minimize the objective function  $F_{obj}$ , over user-selected typical days

| $F_{\rm obj}(P_{\rm ess}^{\rm rated}, E_{\rm ess}^{\rm rated}, P_{\rm gen}^{\rm rated})$ | $() = C_{\rm e}^{\rm pcc} + C_{\rm e}^{\rm ess}$ | $+ C_{\rm e}^{\rm gen} + w(c_{\rm ess})$ | $+ c_{\text{gen}} + c_{\text{el}}^{\text{ener}}$ | $c^{\text{rgy}} + c^{\text{power}}_{\text{el}}$ |
|------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------|
|------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------|

| Carbon costs                            | Financial costs                                  |
|-----------------------------------------|--------------------------------------------------|
| Emissions from grid electricity imports | Electricity bill                                 |
| ESS equivalent emissions                | ESS investment, operation and maintenance        |
| Generation equivalent emissions         | Generation investment, operation and maintenance |

Table 1. Summary of the multi-objective function

Note: the weight w [gCO<sub>2</sub>eq/\$] can be interpreted as the amount of CO<sub>2</sub> emissions for a CAPEX+OPEX increase of 1\$. Or,  $\frac{1}{W}$  [\$/gCO<sub>2</sub>eq] the economical value (CAPEX+OPEX) of one gram of CO<sub>2</sub>eq saved.



### Carbon-aware sizing: results

- Sizing for a load comparable to the CCT servers
  - Servers (500 kW)
  - Swiss case study (e.g., for electricity prices, carbon intensities, GHI, ...)
- 28 typical days (7 per season), 20 scenarios per typical day
  - Expected daily CE of servers alone is 550 kgCO<sub>2</sub>eq, expected daily cost is 300\$.

| Weight<br>[gCO₂eq/\$] | Optimal sizing:<br>Expected daily CE<br>[kgCO2eq] | Optimal sizing:<br>Expected daily cost<br>[\$] |
|-----------------------|---------------------------------------------------|------------------------------------------------|
| 1                     | 370 (-32%)                                        | 1000                                           |
| 315                   | 420 (-26%)                                        | 390                                            |
| 1100                  | 431 (-22%)                                        | 355                                            |
| 3000                  | 540 (-9%)                                         | 308                                            |





**Energy services characterisation for EPFL campus** 





### EPFL

### **EcoCloud sustainable-computing experimental facility** at EPFL's CCT

- ~100 m² of flexible space for experiments on sustainable computing
  - Independent regulation of water flow per rack
  - Separate room for UPS, batteries, and direct current (DC) equipment
  - Monitoring of energy consumption
- Server fleet with modern and decommissioned EPFL machines
  - 200 nodes received from SCITAS
  - Can be used to install cold plates and run workloads



