CO2 Monitoring and Reduction in Food Systems Through a Circular Economy

Josie Hughes, Arnuad Klipfel, Hung (Paul) Cheng CREATE Lab

Quick Introduction CREATE Lab, IGM, STI

Robots for Science & Sustainability

Expertise in Robotics for & Optimization for:

- Agriculture
- Intelligent Automation
- Previously have worked with anerobic digesters

Industry/Research Partners

- Agroscope
- Anero Technologies (Anaerobic Digesters)
- Clear Greens
- Nestlé

Life Cycle Analysis: Food Generation

'Conventional' Arable Agriculture

- Agriculture contributes to 12.4% of greenhouse gas emissions in Switzerland (IPCC)¹.
- For Food production, this increases to ~25%².

- Leaky, inefficient, wasteful system
- Significant losses from waste and food miles
- Significant green house gas creation (Methane, nitrous oxide, CO2)
- Significant water and fertilizer resource use

¹IPCC Report (via. Agroscope) ² BAFU Swiss Climate Reporting

Solution: Closing and optimizing the food system in an urban environment

Food

Automation & data-driven optimization

Aeroponics. Grow plans with roots exposed which are exposed to a mist for watering.

Life Cycle Analysis: Food Generation

Proposed 'Closed' Food Generation

Aeroponics: Current State of the Art

Aeroponics. Grow plans with roots exposed which are exposed to a mist for watering.

- High Yield, minimal waste.
- Growth accelerated by x3
- Water Use reduced by 80-90%
- Crops grow in a highly uniform way (easy to predict yield)
- Fertilizer use reduced by 60-80%

Currently Primarily focused on Horizontal Growth

Vertical Aeroponics

Example Crops well suited for aquaponics: salads, beetroots, tomatoes, herbs, kale, peppers

Leverage vertical aeroponics and gantry robots for:

- Control of moisture
- Automated data-collection and harvest

Automation of Aeroponics

Modular Units (recyclable materials)

- Plant electrophysiology for health monitoring (real time)
- Modular growth units
- Computer vision based analysis
- Low-powered robotic harvesting system.

Anerobic Digestors

Open Research Questions & The Need for Robotics

- Need for continuous feed, closed-loop control and automation to optimized gas production
- Currently, there is limited data sets, and analysis of output gas

Anerobic Digestor Automated, sensorized & data-driven

- 10 parallel digesters with 2 different feeding rates
- Agitators
- Mixers (mixing rate and occurrence)
- Heating jackets

Anerobic Digestion Data Generation

Data-Driven Predictive models:

- Optimize gas composition and volume
- Optimize digestate composition and volume
- \rightarrow Dynamically respond to substrate and needs of agriponics

Anerobic Digestion Data Generation

Substrate (Food Waste, Alpine Food Labs) Homogenization

Pasturization

Feeding Digester

We're starting to generate bio-gas and data!

Next steps...

Vertical Aeroponics

Anerobic Digestion

Optimization & Monitoring

Data collection, analysis and modelling

- Demonstration of individual components early summer 2024
- Integration and optimization of each of the sub-systems
- Life cycle analysis and system wide optimization

CO2 Monitoring and Reduction in Food Systems Through a Circular Economy

Arnuad Klipfel, Hung (Paul) Cheng CREATE Lab