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The optimal transport problem

Let po,pu1 € P(X) and c: X x X — R.

(MP) inf 7.7, o=y | €(x, T(x)) p0(d)
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The optimal transport problem

Let po,pu1 € P(X) and c: X x X — R.

(MP) inf 7.7, o=y | €(x, T(x)) p0(d)

(KP) infqupl(uo,m)fC(X,Y) q(dx, dy)
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The optimal Skorokhod embedding problem (SEP)

Given u € P(R), centered, find a stopping time 7 s.t.

B ~u, Barisu.i
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The optimal Skorokhod embedding problem (SEP)

Given u € P(R), centered, find a stopping time 7 s.t.
B ~u, Barisu.i
and which maximizes for a given functional

E[v((Bs)s<r, T)]-
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The SEP as a transport problem
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The SEP as a transport problem

For a stopping time 7 consider
T(dw, dt) := 6, (dt) W(dw)
— SEP is a Monge-type problem
Relax T(dw, dt) = 7,(dt)W(dw), with 7, € P(R4) (+ linear constraints)

The optimal SEP becomes:

Psep = sup /’7((Ws)s<ta t) 7(dw, dt)
TERST (1)

which is a linear optimization problem!
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The SEP as a transport problem

Theorem (BCH '14)
Setting

Deco i inf L 4 there exist 1, [ 1du = 0, nice martingale M, My = 0,
SR =1 "at Y(w(t)) + Me(w) > v(w, t), forall w,t

it holds that Psgp = Dsgp.
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Vovk's outer measure P
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Vovk's outer measure P

o Q= C[0,00),w € Q, Br(w) = w;
@ Simple strategy:

= Fal@)Lrnw)rmen (@) (t)

n>0

with stopping times 79 < 71 < 72 < ... satisfying lim, 7,(w) " oo for
all wand F, € mF.,.

— (H - B)¢(w) well defined for all w, t
@ For A > 0 the set of \- admissable strategies is defined as

Hyx={H : (H-B)¢> =X, forall t,w}.
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Vovk's outer measure P

Definition
a) For A C Q the outer measure P is defined by

P(A) :=inf{\: there exists (H,), C Hy s:t.
liminf lim mf/\ + (Hn - B)t(w) > 1a(w) for all w}.

t—oco n—

b) AC Qs called null if P(A) =
c) A property (P) holds for typical price paths if

P((P) is violated) = 0.
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Properties of P

Proposition
a) P(A) = 0 iff there exists (H,), C H1 such that

1+ liminfliminf(H - B)¢(w) > 00 - 1a(w)  for all w.

t—00 n—oo

b) Let Q be a probability measure on (2, F) such that B is a local
martingale, A € F, then Q(A) < P(A).
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Properties of P

Proposition
a) P(A) = 0 iff there exists (H,), C H1 such that

1+ liminfliminf(H - B)¢(w) > 00 - 1a(w)  for all w.

t—00 n—oo

b) Let Q be a probability measure on (2, F) such that B is a local
martingale, A € F, then Q(A) < P(A).

Theorem (Vovk)

For typical price paths there exists a quadratic variation process, denoted
by (B)¢(w).
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Vovk's very remarkable DDS Theorem

Set
T(w) :==inf{s >0 : (B)s(w) > t}

and define maps ntt: Q — Q and ntt: Q x Ry — Q x R} via

(ntt(w))e == Wryw), ntt(w,t) = (ntt(w), (B)(w)).

Martin Huesmann MIF, Vovk & insider AMaMeF 9



Vovk's very remarkable DDS Theorem

Set
T(w) :==inf{s >0 : (B)s(w) > t}

and define maps ntt: Q — Q and ntt: Q x Ry — Q x R} via

(ntt(w))e == Wryw), ntt(w,t) = (ntt(w), (B)(w)).

Theorem (Vovk)
Let F be bounded, Borel, and non-negative. Then

B[F o ntt, (B)eo = o0] = / F W(dw).
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Duality on CJ0, 1] for time invariant derivatives

Interested in
w i G((St)e<1 (@) = G((St)eca (@), (S)1(w)) = G o nitt(w, 1)

for 5
G(w, t) = y(w, 1),
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Duality on CJ0, 1] for time invariant derivatives

Interested in
w i G((St)e<1 (@) = G((St)eca (@), (S)1(w)) = G o nitt(w, 1)

for 5
G(w, t) =(w, 1),

i.e. we are interested in

?
PM = sup EP[G((St)tgl)] = DM
P: loc. mg. meas.,(S1)«P~p

Martin Huesmann MIF, Vovk & insider AMaMeF 10



Duality on CJ0, 1] for time invariant derivatives

Interested in
W G((Se)e<1(w)) = G((Se)e<a(w), (S)1(w)) = G onit(w, 1)
for 5
G(wv t) = /y(w7 t),
i.e. we are interested in

Hob: ?
Psgp = Py = sup Ep[G((St)e<1)] = D
P: loc. mg. meas.,(S1)«P~p

Martin Huesmann MIF, Vovk & insider AMaMeF 10



Duality on CJ0, 1] for time invariant derivatives

Interested in
W G((Se)e<1(w)) = G((Se)e<a(w), (S)1(w)) = G onit(w, 1)
for 5
G(wv t) = /y(w7 t),
i.e. we are interested in

Hob. ?
Dsgp = Psgp = Py := sup Ep[G((St)e<1)] = D
P: loc. mg. meas.,(S1)«P~p

Martin Huesmann MIF, Vovk & insider AMaMeF 10



Duality on CJ0, 1] for time invariant derivatives

Interested in

w i G((S)e<1(w)) = G((S)e<1(w), (S)1(w)) := G o ntt(w, 1)
for 5
G(w,t) =v(w, 1),
i.e. we are interested in

Hobson p

Dsep = Psep = Pum = sup Ep[G((S¢)<1)] Z Dy

P: loc. mg. meas.,(S1)«P~p

Task: Find the trading strategy corresponding to the martingale in the
SEP duality
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Trading via Vovk's DDS Theorem

For all a > Psgp there are 1, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w, t

Vw,t) = a = P(w(t)) < Mi(w)-
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Trading via Vovk's DDS Theorem

For all a > Psgp there are 1, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w, t

VW, 1) —a = P(w(t)) < Mi(w).

In particular, it holds for all w, t

~vontt(w,t) —a— ¢ ontt(w, t) < Montt(w, t).
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Trading via Vovk's DDS Theorem

For all a > Psgp there are 1, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w, t
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In particular, it holds for all w, t
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Trading via Vovk's DDS Theorem

For all a > Psgp there are 1, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w, t

Y(w, t) —a = Y(w(t)) < Me(w).
In particular, it holds for all w, t
v o ntt(w, t) —a — ¢ o ntt(w, t) < M o ntt(w, t).
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for t=1

1 —(w(t))
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Trading via Vovk's DDS Theorem

For all a > Psgp there are 1, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w, t

Y(w, t) — a—P(w(t)) < Me(w).
In particular, it holds for all w,t and all e > 0

v ontt(w, t) —a — ¢ o ntt(w, t) < Mo ntt(w, t)

n'g

for 11 — (1))

DDS+calc.
< e+ Iinlinf(Hn - B)¢(w).
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Trading via Vovk's DDS Theorem

For all a > Psgp there are ¢, [¢dp = 0 and a martingale M, My = 0 s.t.
for all w,t

VW, t) = a = ¥(w(t)) < Me(w).

In particular, it holds for all w,t and all € > 0

v ontt(w, t) —a — ¢ o ntt(w, t) < Mo ntt(w, t)
for:;

1 —y(w(t))
DDS+calc.

€+ |inn1>ior<1)f(H,, - B)¢(w).

In particular, this holds for t = 1 yielding the desired duality result.
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A (prototypical) n-marginal duality result

Theorem (BCHPP '15)
Let I C {1,...,n},n e l,(pj);j € | be increasing in convex order and

G(w) = y(ntt(w) o @)l W15 - - -5 (W)n)-
Set

Pp = sup{Ep[G] : PP loc. mg. meas. on C[0,n],So =0,S; ~ p; ¥V j €I}
and
D, = inf{a : aH,zpj,/wjduj —0vjelst

a4+ ij (H-S), > G((St)t<n(w))}

Jjel

Then, there is no duality gap, i.e. P, = D,,.

v
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Insider trading

Within this framework we can model insider information, yielding:
@ very general dual theory

@ connection of robust arbitrage and specific properties of solutions to
SEP, i.p. we can characterise robust arbitrage via geometric properties
of the optimal solution to the corresponding SEP

@ in certain cases: explicit optimal strategies

Martin Huesmann MIF, Vovk & insider AMaMeF 13



Thanks for your attention
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