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Basic background [Cherny and Madan ’09, ’10]

I Needed: Framework to study capital conservation, risk management and
hedging in illiquid derivative markets.

V Illiquid derivative markets as competitive counterparties creating new
financial products and efficiently using liquid hedging instruments.

V Ask and bid prices reflect the cost of holding unhedgeable risk, rather than
processing, inventory or transaction costs.

I Approach: Convex cone A of acceptable cash-flows:

X ∈ A ⇔ EQ(X ) ≥ 0 for all Q ∈M (1)

for some convex set M of measures equivalent to P [Artzner et. all ’99].

I Liquid hedging instruments: Modeled as a vector space H, given a set R of
risk-neutral measures equivalent to P:

H ∈ H ⇔ EQ(H) = 0 for all Q ∈ R . (2)

I Competitive bid-ask spread: Modeled through M and R:

a(X ) = inf{a : a + H − X ∈ A for some H ∈ H} = sup
Q∈M∩R

EQ(X )

b(X ) = sup{b : −b − H + X ∈ A for some H ∈ H} = inf
Q∈M∩R

EQ(X )

Distinct, e.g., from superhedging-type approaches.



Convex cone A of market-acceptable cash flows

This is a family of convex cones of random variables containing the positive orthant L∞+

and decreasing in x. The value α(X) is then the largest number x such that X belongs

to the level-x acceptability set:

α(X) = sup{x ∈ R+ : X ∈ Ax}.

Thus, for a risk measure, all the positions are split in two classes: acceptable and not

acceptable. In contrast, for an acceptability index we have a whole continuum of degrees

of acceptability defined by the system (Ax)x∈R+, and the index measures the degree of

acceptability of a trade.

To provide a visual illustration of the relation between coherent risks, acceptability

indices, acceptability sets, and acceptability systems, we present in Figure 1 an exam-

ple for the case when Ω consists of two points ω1, ω2. Then any random variable X is

represented as a point (X(ω1), X(ω2)) on the plane. The left-hand graph illustrates the

acceptability cone A of a coherent risk measure ρ. The right-hand graph illustrates the

flow of acceptability cones Ax of an acceptability index α.
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Figure 1. (a) Acceptability cones associated with coherent risks.

(b) Acceptability cones associated with acceptability indices.

To conclude this section, let us remark that Theorem 1 provides a description of indices

satisfying the first four properties of the previous section. The law invariance and the

second order monotonicity for acceptability indices are studied in Subsection 3.6, where it

is shown that they are equivalent one to the other, and the description of corresponding

indices is provided. As for the remaining two properties of the previous section, it can be

shown that an acceptability index is arbitrage consistent if and only if the closure of
⋃

xDx

coincides with P, where (Dx)x∈R+ is the system of supporting kernels; the expectation

consistency for an acceptability index is equivalent to the property D0 = {P}.
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Concave distortions [Cherny and Madan ’09, ’10]

I Model of market acceptable cash flows: Given distribution function FX (x),

X ∈ A ⇔ EQ(X ) ≥ 0 for all Q ∈M⇔
∫

xd(Ψ ◦ FX )(x) ≥ 0

where Ψ(u) is a concave distribution on [0, 1].

V Convex set M is fully characterized in terms of Ψ [Cherny ’06].

I Density ψ(x) := (Ψ′ ◦ F )(x) with respect to original measure P:

V Ψ′ ◦ FX defines market-preferences by a ”stressed” distribution that shifts
probability mass towards negative cash flows.

V Like utility kernels, Ψ′ ◦ FX can be taken to put arbitrarily large (small) mass
on large negative (positive) cash flows [e.g., for MINMAXVAR Ψ’s]

I Parametric bid and ask:

a(X ) = inf{a : a +

∫
xd(Ψ ◦ FH−X )(x) ≥ 0 for some H ∈ H}

= inf
H∈H

−
∫

xd(Ψ ◦ FH−X )(x) (3)

b(X ) = sup{b : −b +

∫
xd(Ψ ◦ FX−H)(x) ≥ 0 for some H ∈ H}

= sup
H∈H

∫
xd(Ψ ◦ FX−H)(x) (4)



Example: Stressed densities Ψ′ ◦ FX

0

0.5

1

1.5

2

2.5

3

–3 –2 –1 1 2 3

x

5

10

15

20

25

–3 –2 –1 1 2 3

x

Figure 2. (a) Extreme measure densities for Ψ(x) = 1− (1−x)3.

(b) Extreme measure densities for Ψ(x) = x1/3.

index by

AIW (X) = sup
{
x ∈ R+ :

∫

R
yd(Ψx(FX(y))) ≥ 0

}

(we set sup ∅ = 0), where (Ψx)x∈R+ is a family of concave distortions on [0, 1] increasing

pointwise in x. Thus, we distort the distribution function of X more and more severely

and look for the largest stress level such that the expectation of X under the corresponding

distortion remains positive. Let us remark that TVARλ is a particular case of WVAR

with µ equal to the delta mass concentrated at the point λ, and, for this µ, we have

Ψµ(y) = λ−1y ∧ 1. Thus, AIT is a particular case of AIW with Ψx(y) = (1 + x)y ∧ 1.

The numerical calculation of AIW can be performed via (8).

The fact that AIW is an acceptability index follows from representation (4). It is

law invariant and consistent with second order stochastic dominance, as follows from the

same properties of WVAR (the second property for WVAR means that WVARµ(X) ≥

WVARµ(Y ) whenever Y second order stochastically dominates X), which, in turn, are

inherited from the same properties of TVAR. It is not hard to see that AIW is arbitrage

consistent if and only if Ψx(y) tends pointwise to 1 on (0, 1] as x → ∞; AIW is expectation

consistent if and only if Ψx(y) tends pointwise to y as x ↓ 0.

In order to identify the system of supporting kernels, introduce the right modification

Ψ+
x = limε↓0 Ψx+ε and define the dual functions

Φx(y) = sup
z∈[0,1]

(Ψ+
x (z) − yz), x, y ∈ R+.

It is then clear from (9) that the system

Dx = {Z : Z ≥ 0, E[Z] = 1, and E[(Z − y)+] ≤ Φx(y) ∀y ∈ R+}, x ∈ R+
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I MINVAR [Ψγ(u) = 1− (1− u)1+γ ]: implies an infinity (zero) mass
at large negative (positive) cash flows values.

I MAXVAR [Ψγ(u) = u1/(1+γ)]: implies a bounded (zero) mass at
large negative (positive) cash flows values.

I MINMAXVAR [Ψγ(u) = 1− (1− u1/(1+γ))1+γ ]: implies an infinity
(zero) mass at large negative (positive) cash flows values.



Quantile exposures and risk charges [Carr et al. ’10]

I Idea: Split the price of a contingent payoff into (i) a quantile exposure and (ii) a
charge for quantile risk.

I Bid and ask prices: Given in terms of the inverse distribution function GH(u) of
a hedged cash flow X − H with median m = GH(1/2):

a(X ) = m + inf
H∈H

∫ 1

0
[Ψ(1− u)− I(u ≤ 1/2)] dGH(u)

b(X ) = m + sup
H∈H

∫ 1

0
[I(u ≥ 1/2)−Ψ(u)] dGH(u)

I dGH(u) is the sensitivity of the cash flow to a change in the quantile:

V It gives the risk exposure of that particular quantile under distribution FH(x).

I Over interval dGH(u), the charge for ask and bid prices is:

Ψ(1− u)− I(u ≤ 1/2) ; I(u ≥ 1/2)−Ψ(u) (5)

V Equation (5) defines the Ψ−dependent risk charge per unit of quantile risk
exposure.

I Similar interpretations for bid-ask related quantities, like capital, profit, etc., see
below.



Profit, capital and leverage [Carr et al. ’10]
I Capital: Cost of unwinding a position, i.e., the bis-ask spread:

k(X ) = a(X )− b(X ) =

∫ 1

0
K(u)dG(u)

where K(u) is symmetric about 1/2.

I Profit [given fixed risk neutral probability P]:

I Market distributes half of bid-ask spread to market participants.
I Cash flow production cost is its risk neutral expectation.

π(X ) := m(X )− c(X )

:=
a(X ) + b(X )

2
− EP(X ) =

∫ 1

0
H(u)dG(u)

where H(u) is antisymmetric about 1/2.

I Rate of return:

ρ(X ) := π(X )/k(X )

I Scale: Translation-invariant measure of scale of operations (associated with
leverage to be granted for given capital k(X )):

scale(X ) := EP(|X −m(X )|) =

∫ 1

0
S(u)dG(u)



Profit and capital charges [H(u), K (u)]
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Figure 1: The pro�t charge on quantiles for MINMAXVAR at three stress levels
of 0:1; 0:25 and 0:5
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Figure 2: Capital charges for di¤erent quantile levels for MINMAXVAR at three
stress levels of 0:1; 0:25 and 0:5:
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Capital vs. scale charges
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Figure 3: Graph of Capital Charges against Scale for various settings of the
stress parameter in minmaxvar.

where Z is a standard normal variate and the cash �ow given by

X =Min(S; 80):

For this cash �ow the client takes loss and we take gain so we discount and
the values are for minmaxvar at 0:75 as follows.

b(X) = 77:4751

a(X) = 79:5226

m(X) = 78:4989

EP [X] = 78:8100

�(X) = �0:3111
�(X) = 2:0475

�(X) = 0:5812

�(X) = �:1519:

for the bid, ask, mid, expectation, pro�t, capital and return respectively.
We present the rate of return for out of the money options under geometric

Brownian motion with a 20% volatility for a variety of strikes and maturities
in Figure 4. The computations are for the distortion minmaxvar at the stress
level of 0:25: We have 41 strikes ranging from 80 to 120 in steps of a dollar and
36 maturities from a quarter to 2 years in steps of :05: These are all assets with
a gain exposure with a corresponding positive pro�t level and rate of return.
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Applications
I Variance-swap hedging: [Illiquid markets with (skewed) VG underlying]

V Standard hedge reduces bid-ask spreads and raises returns on earlier
maturities.

V Standard hedge produces losses on longer maturities, due to a larger
unhedged cash flow risk.

V A hedge minimizing first the ask and then the capital committed can avoid
the lossed of the standard hedge.

I Call option hedging: [left skewed VG underlying]

V Capital minimization is not well achieved by expected utility optimization.

I Delta hedging: [left skewed (VG) returns]

V Under concave distortion Ψ(u) downside risk is more heavily priced than
upside risk.

V To minimize capital, the optimal delta should be revised downwards in
presence of Γ exposure.

I Dynamic extensions via dynamically consistent non-linear expectations [Thm
6.1, Cohen and Elliott, ’10]:

V Solution of backward stochastic difference equation with corresponding driver:

Y j
t = Et [Y j

t+1] +

∫ ∞

−∞
xd(Ψ ◦Θj

t)(x) (6)

where Θj
t is the distribution function of Y j

t+1 − Et [Y j
t+1], j = bid , ask.



Comments (I)

Model of financial market as competitive capital optimizer:
Aspects...

I General:

I Largely based on univariate hedging problems (because of law invariance),
thus abstracting from potential portfolio dependencies ( centralized vs.
decentralized markets; exchanges vs. over-the-counter)?

I Can the approach be reconciled with demand pressure effects documented
in, e.g., index and individual option markets [Garleanu et al. ’09]?

I Concrete specifications implicitly linked to parametric assumptions on
”market-preferences” via chosen distortion Ψ(u) (i.e., cone A).
V How to identify F (x) and Ψ(u) only from cross-sectional information
without parametric assumptions?
V Not always clear in the draft whether this is with respect to risk-neutral
or physical probabilities...
V Time-series information might help to separate probabilistic cash flow
features from market-driven price distortions?

I Definition of profits related to cash flow ”replication costs” in incomplete
markets; uniquely defined?

I Deeper interpretation of (virtual) assumption that profits are evenly
redistributed in competitive markets? How could this effectively function?



Comments (II)

Model of financial market as competitive capital optimizer:
Aspects...

I Some (among many) potential applications:

I Joint explanations of bid and ask prices of, e.g., put and call option smiles?
Comparison to fit of standard approaches?

I Time variation of bid ask spreads in terms of time variation in implied
distortions:
V Joint cross-sectional and time series study!?
V Proxies of time-varying market fear, e.g., linked to time-varying
uncertainty or uncertainty aversion!?
V Deeper implied (possibly multivariate) liquidity-market depth proxies in
terms of estimated cone of acceptable cash flows?

I Overall, very interesting framework to study a variety of questions in illiquid
financial markets!



Appendix I: MINMAXVAR features [Cherny ’06]

I MINMAXVAR as weighted Tail VAR (WVAR):

WVARµ(X ) =

∫

(0,1]
TVARλµ(dλ) (7)

given measure µ on (0,1] and tail Value at Risk TVARλ = −E [X |X ≤ qλ(X )].

I Föllmer and Schied ’04: One-to-one relation between concave distortions and
measures on (0, 1]:

WVARµ(X ) = −
∫

(0,1]

(
λ−1

∫

(−∞,qλ(X )]
ydFX (y)

)
µ(dλ)

= −
∫

R
y

(∫

(FX (y),1]
λ−1µ(dλ)

)
dFX (y)

= −
∫

R
yd(Ψµ ◦ FX )(y) (8)

where Ψµ(u) :=
∫ u

0

∫
(z,1] λ

−1µ(dλ)dz.
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