Capital Conservation and Risk Management

Peter Carr, Dilip Madan, Juan Jose Vincente Alvarez

Discussion by Fabio Trojani

University of Lugano and Swiss Finance Institute

Swissquote Conference - EPFL, October 28-29, 2010

Basic background [Cherny and Madan '09, '10]

- Needed: Framework to study capital conservation, risk management and hedging in illiquid derivative markets.
 - ⇒ Illiquid derivative markets as competitive counterparties creating new financial products and efficiently using liquid hedging instruments.
 - ⇒ Ask and bid prices reflect the cost of holding unhedgeable risk, rather than processing, inventory or transaction costs.
- ▶ Approach: Convex cone A of acceptable cash-flows:

$$X \in \mathcal{A} \Leftrightarrow E^{Q}(X) \ge 0 \text{ for all } Q \in \mathcal{M}$$
 (1)

for some convex set \mathcal{M} of measures equivalent to P [Artzner et. all '99].

▶ Liquid hedging instruments: Modeled as a vector space H, given a set R of risk-neutral measures equivalent to P:

$$H \in \mathcal{H} \Leftrightarrow E^{Q}(H) = 0 \text{ for all } Q \in \mathcal{R}$$
 (2)

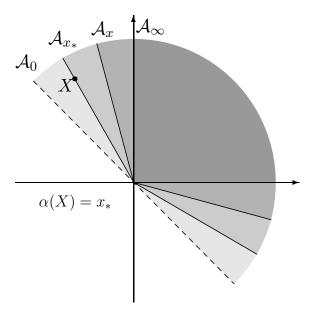
Competitive bid-ask spread: Modeled through M and R:

$$a(X) = \inf\{a : a + H - X \in \mathcal{A} \text{ for some } H \in \mathcal{H}\} = \sup_{Q \in \mathcal{M} \cap \mathcal{R}} E^Q(X)$$

$$b(X) = \sup\{b: -b - H + X \in A \text{ for some } H \in \mathcal{H}\} = \inf_{Q \in \mathcal{M} \cap \mathcal{R}} E^{Q}(X)$$

Distinct, e.g., from superhedging-type approaches.

Convex cone A of market-acceptable cash flows



Concave distortions [Cherny and Madan '09, '10]

▶ Model of market acceptable cash flows: Given distribution function $F_X(x)$,

$$X \in \mathcal{A} \Leftrightarrow E^Q(X) \geq 0$$
 for all $Q \in \mathcal{M} \Leftrightarrow \int xd(\Psi \circ F_X)(x) \geq 0$

where $\Psi(u)$ is a concave distribution on [0,1].

probability mass towards negative cash flows.

- \Rightarrow Convex set \mathcal{M} is fully characterized in terms of Ψ [Cherny '06].
- ▶ Density $\psi(x) := (\Psi' \circ F)(x)$ with respect to original measure P: ⇒ $\Psi' \circ F_X$ defines market-preferences by a "stressed" distribution that shifts
 - \Rightarrow Like utility kernels, $\Psi' \circ F_X$ can be taken to put arbitrarily large (small) mass on large negative (positive) cash flows [e.g., for MINMAXVAR Ψ 's]
- Parametric bid and ask:

$$a(X) = \inf\{a : a + \int xd(\Psi \circ F_{H-X})(x) \ge 0 \text{ for some } H \in \mathcal{H}\}$$

$$= \inf_{H \in \mathcal{H}} - \int xd(\Psi \circ F_{H-X})(x)$$

$$b(X) = \sup\{b : -b + \int xd(\Psi \circ F_{X-H})(x) \ge 0 \text{ for some } H \in \mathcal{H}\}$$

$$= \sup_{H \in \mathcal{H}} \int xd(\Psi \circ F_{X-H})(x)$$

$$(4)$$

Example: Stressed densities $\Psi' \circ F_X$

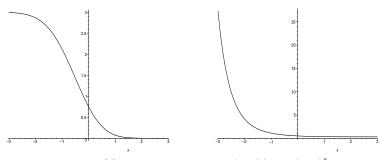


Figure 2. (a) Extreme measure densities for $\Psi(x) = 1 - (1 - x)^3$.

- (b) Extreme measure densities for $\Psi(x) = x^{1/3}$.
- ▶ MINVAR $[\Psi_{\gamma}(u) = 1 (1 u)^{1+\gamma}]$: implies an infinity (zero) mass at large negative (positive) cash flows values.
- ▶ MAXVAR $[\Psi_{\gamma}(u) = u^{1/(1+\gamma)}]$: implies a bounded (zero) mass at large negative (positive) cash flows values.
- ► MINMAXVAR $[\Psi_{\gamma}(u) = 1 (1 u^{1/(1+\gamma)})^{1+\gamma}]$: implies an infinity (zero) mass at large negative (positive) cash flows values.

Quantile exposures and risk charges [Carr et al. '10]

- Idea: Split the price of a contingent payoff into (i) a quantile exposure and (ii) a charge for quantile risk.
- ▶ Bid and ask prices: Given in terms of the inverse distribution function $G_H(u)$ of a hedged cash flow X H with median $m = G_H(1/2)$:

$$a(X) = m + \inf_{H \in \mathcal{H}} \int_0^1 \left[\Psi(1 - u) - \mathbb{I}(u \le 1/2) \right] dG_H(u)$$

$$b(X) = m + \sup_{H \in \mathcal{H}} \int_0^1 \left[\mathbb{I}(u \ge 1/2) - \Psi(u) \right] dG_H(u)$$

- ▶ $dG_H(u)$ is the sensitivity of the cash flow to a change in the quantile: ⇒ It gives the risk exposure of that particular quantile under distribution $F_H(x)$.
- Over interval $dG_H(u)$, the charge for ask and bid prices is:

$$\Psi(1-u) - \mathbb{I}(u \le 1/2)$$
 ; $\mathbb{I}(u \ge 1/2) - \Psi(u)$ (5)

- \Rightarrow Equation (5) defines the Ψ -dependent risk charge per unit of quantile risk exposure.
- Similar interpretations for bid-ask related quantities, like capital, profit, etc., see below.

Profit, capital and leverage [Carr et al. '10]

► Capital: Cost of unwinding a position, i.e., the bis-ask spread:

$$k(X) = a(X) - b(X) = \int_0^1 K(u)dG(u)$$

where K(u) is symmetric about 1/2.

- ▶ **Profit** [given fixed risk neutral probability *P*]:
 - Market distributes half of bid-ask spread to market participants.
 - ► Cash flow production cost is its risk neutral expectation.

$$\pi(X) := m(X) - c(X)$$

$$:= \frac{a(X) + b(X)}{2} - E^{P}(X) = \int_{0}^{1} H(u) dG(u)$$

where H(u) is antisymmetric about 1/2.

Rate of return:

$$\rho(X) := \pi(X)/k(X)$$

▶ Scale: Translation-invariant measure of scale of operations (associated with leverage to be granted for given capital k(X)):

$$scale(X) := E^{P}(|X - m(X)|) = \int_{0}^{1} S(u)dG(u)$$

Profit and capital charges [H(u), K(u)]

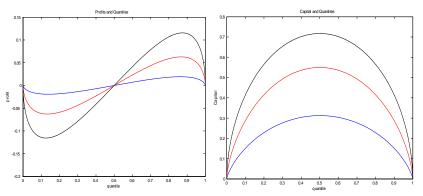


Figure 1: The profit charge on quantiles for MINMAXVAR at three stress levels of $0.1,\,0.25$ and 0.5

Figure 2: Capital charges for different quantile levels for MINMAXVAR at three stress levels of 0.1, 0.25 and 0.5

Capital vs. scale charges

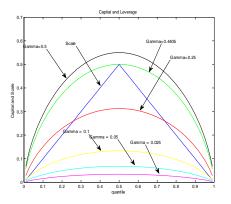


Figure 3: Graph of Capital Charges against Scale for various settings of the stress parameter in minmaxvar.

Applications

- ► Variance-swap hedging: [Illiquid markets with (skewed) VG underlying]
 - ⇒ Standard hedge reduces bid-ask spreads and raises returns on earlier maturities.
 - ⇒ Standard hedge produces losses on longer maturities, due to a larger unhedged cash flow risk.
 - ⇒ A hedge minimizing first the ask and then the capital committed can avoid the lossed of the standard hedge.
- ► Call option hedging: [left skewed VG underlying]
 - ⇒ Capital minimization is not well achieved by expected utility optimization.
- Delta hedging: [left skewed (VG) returns]
 - \Rightarrow Under concave distortion $\Psi(u)$ downside risk is more heavily priced than upside risk.
 - \Rightarrow To minimize capital, the optimal delta should be revised downwards in presence of Γ exposure.
- Dynamic extensions via dynamically consistent non-linear expectations [Thm 6.1, Cohen and Elliott, '10]:
 - ⇒ Solution of backward stochastic difference equation with corresponding driver:

$$Y_t^j = E_t[Y_{t+1}^j] + \int_{-\infty}^{\infty} x d(\Psi \circ \Theta_t^j)(x)$$
 (6)

where Θ_t^j is the distribution function of $Y_{t+1}^j - E_t[Y_{t+1}^j]$, j = bid, ask.

Comments (I)

Model of financial market as competitive capital optimizer: Aspects...

► General:

- Largely based on univariate hedging problems (because of law invariance), thus abstracting from potential portfolio dependencies (centralized vs. decentralized markets; exchanges vs. over-the-counter)?
- Can the approach be reconciled with demand pressure effects documented in, e.g., index and individual option markets [Garleanu et al. '09]?
- Concrete specifications implicitly linked to parametric assumptions on "market-preferences" via chosen distortion $\Psi(u)$ (i.e., cone \mathcal{A}).
 - \Rightarrow How to identify F(x) and $\Psi(u)$ only from cross-sectional information without parametric assumptions?
 - ⇒ Not always clear in the draft whether this is with respect to risk-neutral or physical probabilities...
 - ⇒ Time-series information might help to separate probabilistic cash flow features from market-driven price distortions?
- Definition of profits related to cash flow "replication costs" in incomplete markets; uniquely defined?
- Deeper interpretation of (virtual) assumption that profits are evenly redistributed in competitive markets? How could this effectively function?

Comments (II)

Model of financial market as competitive capital optimizer: Aspects...

- Some (among many) potential applications:
 - Joint explanations of bid and ask prices of, e.g., put and call option smiles? Comparison to fit of standard approaches?
 - Time variation of bid ask spreads in terms of time variation in implied distortions:
 - ⇒ Joint cross-sectional and time series study!?
 - ⇒ Proxies of time-varying market fear, e.g., linked to time-varying uncertainty or uncertainty aversion!?
 - ⇒ Deeper implied (possibly multivariate) liquidity-market depth proxies in terms of estimated cone of acceptable cash flows?
- Overall, very interesting framework to study a variety of questions in illiquid financial markets!

Appendix I: MINMAXVAR features [Cherny '06]

MINMAXVAR as weighted Tail VAR (WVAR):

$$WVAR_{\mu}(X) = \int_{(0,1]} TVAR_{\lambda}\mu(d\lambda) \tag{7}$$

given measure μ on (0,1] and tail Value at Risk $TVAR_{\lambda} = -E[X|X \leq q_{\lambda}(X)]$.

► Föllmer and Schied '04: One-to-one relation between concave distortions and measures on (0, 1]:

$$WVAR_{\mu}(X) = -\int_{(0,1]} \left(\lambda^{-1} \int_{(-\infty,q_{\lambda}(X)]} y dF_{X}(y)\right) \mu(d\lambda)$$

$$= -\int_{\mathbb{R}} y \left(\int_{(F_{X}(y),1]} \lambda^{-1} \mu(d\lambda)\right) dF_{X}(y)$$

$$= -\int_{\mathbb{R}} y d(\Psi_{\mu} \circ F_{X})(y)$$
(8)

where $\Psi_{\mu}(u) := \int_0^u \int_{(z,1]} \lambda^{-1} \mu(d\lambda) dz$.