EPFLDesign Project - SIE 2024Lab Characterization of Aerosol Samplingonto Nanoelectromechanical Resonators

Carmelle Chatterjee & Juan Pablo Martinez

Supervisor : Julia Schmale

EERI

INTRODUCTION

Atmospheric aerosols significantly influence the Earth's radiative balance by affecting cloud properties. The **Arctic region** is particularly impacted as global warming alters air circulation and aerosol scattering properties. However, due to the harsh environment, there is **limited vertical measurement data** and understanding of aerosol mixing during transport. **Unmanned aerial vehicles** (UAVs) like helikites have been used in extreme environments to collect vertical, time-resolved aerosol samples.

Nanoelectromechanical **(NEMS) resonators**, such as the **EMILIE** by Invisible-Light Labs, offer promising capabilities for detecting small masses of aerosols through shifts in resonance frequency.

OBJECTIVES

To assess the potential of EMILIE in field campaigns by evaluating its sampling efficiency and compatibility of the M1000 (1x1mm) and M500 (0.5x0.5mm) membranes with current analysis methods.

- **Characterize Detection Limits**: Study how varying aerosol concentration or sampling time affects EMILIE's sampling efficiency.
- 2

(1)

Ease of Adoption for Field Measurements: Assess the fluctuation in initial unsampled membrane mass to simplify sampling method.

) **Effect of Particle Size on Sampling Efficiency:** Determine the relationship between sampling efficiency and particle size.

METHODOLOGY

Experimental Approach:

- Ammonium sulfate solution nebulized, passed through a dryer and then to the SEMS or the FILT (containing the EMILIE membranes)
- Measured mass concentration at the SEMS compared to the mass deposited on EMILIE, determined by a change in resonance frequency

<u>Key Results</u>: M500 could follow a normal distribution, too much fluctuation in M1000

- investigated
- EMILIE membranes are very sensitive, and results highly dependent on mass calculation method

Further Work

Storage experiments and conditions testing

Mechanical tests as well as chemical tests are necessary to determine how physical shocks or exposure/handling would degrade the samples and by how much.

H. Gordon et al., "Causes and importance of new particle formation in the present-day and preindustrial atmospheres," en, Journal of Geophysical Research: Atmospheres, vol. 122, no. 16, pp. 8739–8760, Aug. 2017, issn: 2169-897X, 2169-8996. doi: 10.1002/2017JD026844. [Online]. Available: https:// agupubs.onlinelibrary.wiley.com/doi/10.1002/2017JD026844
D. Heslin-Rees et al., "From a polar to a marine environment: Has the changing Arctic led to a shift in aerosol light scattering properties?" English, Atmospheric Chemistry and Physics, vol. 20, no. 21, pp. 13 671–13 686, Nov. 2020, Publisher: Copernicus GmbH, issn: 1680-7316. doi: 10.5194/acp-20-13671-2020. [Online]. Available: https://acp.copernicus.org/articles/20/13671/2020/
N. Luhmann, R. G. West, J. P. Lafleur, and S. Schmid, "Nanoelectromechanical Infrared Spectroscopy with In Situ Separation by Thermal Desorption: NEMS-IR-TD," ACS Sensors, vol. 8, no. 4, pp. 1462–1470, Apr. 2023, Publisher: American Chemical Society.doi: 10.1021/acssensors.2c02435. [Online]. Available: https://doi.org/10.1021/acssensors.2c02435

Photos © Lionel Favre