Design Project – SIE 2024

Comparative analysis of electrical consumptions

Matheo Godenzi & Mikael Gonzalez

INTRODUCTION

Growing environmental awareness and the necessity to ensure electricity supply compel the electric distribution manager, SIE SA, to process consumer data in a way that enables consumers to compare and monitor their electrical consumption against similar types of consumers (Art. 13c63 OApEl). This study specifically focuses on public entities in the West-Lausanne municipalities of Renens, Ecublens, Crissier, and Chavannesprès-Renens, each with an annual consumption exceeding 20,000 kWh.

Data processing

The loads are normalized and sorted into distinct infrastructure typologies to be compared

- Define methodology to compare and assess electricity consumers
- Characterize electrical loads
- Identify big consumers for which action should be prioritized
- Quantify potential energy consumption and costs savings
- Incite clients to reduce their electrical consumption

Partner : Service Intercommunal des Energies Partner Supervisors: Mathieu Veriter & Kevin Gallego EPFL Supervisor: Dr. T. Satoshi

Time frame : 2022 - 2023

Data type

- Electric load time series
- Clients' adresses Ο
- **Electric tarifs** Ο
- Building useful areas Ο

Assessed typologies

- Schools Ο
- Public works Ο
- Administrative buildings Ο
- Socio-cultural centers Ο
- Sports infrastructures Ο
- Day-cares Ο
- Bars Ο
- Parking lot Ο

RESULTS Benchmark

School benchmark (largest cohort)

Score bins

Hours

Distance to best and worst of class is used to normalize the scores of each metric and define scores from 1 to 5.

 $metrique_i - metrique_{min}$ $score_i = 100$ · · $metrique_{max} - metrique_{min}$

Consumers

- E000

- E001

- E002

- E003

- E004

- E100

— E101

— E102

- E103

- E200

— E201

— E202

- E300

- E301

- E302

- C010

- C110

- C210 - G020

- G120 — V030

V230

V330

A270

A271

B140

P250

S280

Score [percentile]	Baseload trend [%/year]	Mean monthly peak [W/m ²]	Annual mean load [kW]	Annual mean energy intensity $[W/m^2]$	Mean load trend [%/year]	Baseload ratio [% of max]
5]80,100]	≤ 51	≤ 9.2	≤ 39	$\leq 2, 8$	≤ 25.2	≤ 49
4]60,80]	≤ 36	≤ 7.8	≤ 31	≤ 2.4	≤ 16.8	≤ 41
3]40,60]	≤ 21	≤ 6.6	≤ 24	≤ 1.9	≤ 8.3	≤ 33
2]20,40]	≤ 6	≤ 5.3	≤ 17	≤ 1.5	≤ -0.2	≤ 26
1 [0,20]	≤ -9	≤ 4	≤ 10	≤ 1.1	≤ -8.7	≤ 18
0 (min)	-24	2.7	2	0.7	-17.1	11

Other consumers benchmark

Score [percentile]	Baseload trend [%/year]	Mean monthly peak $[W/m^2]$	Annual mean load [kW]	Annual meanenergy intensity $[W/m^2]$	Mean load trend [%/year]	Baseload ratio [% of max]
5]80,100]	≤ 126	≤ 36	≤ 12	≤ 3.9	≤ 68	≤ 66
4]60,80]	≤ 87	≤ 29	≤ 10	≤ 3.3	≤ 43	≤ 55
3]40,60]	≤ 49	≤ 22	≤ 8	≤ 2.6	≤ 19	≤ 44
2]20,40]	≤ 10	≤ 15	≤ 6	≤ 2.0	≤ -6	≤ 33
1 [0,20]	≤ -28	≤ 8	≤ 4	≤ 1.4	≤ -31	≤ 22
0 (min)	-67	0.9	2	0.7	-56	11

Self-assessment

Grading weighting factors

The maximum load is reduced to a variable factor : 0 to 20%, inducing reductions in maximum power and energy consumption. This method the reduction of targets network stress by lowering maximum loads.

* The figures presented illustrate the processing methods used but do not numerically represent the results.

Cost savings

Energy savings

446.5 kWh/year in average for schools

216.1 kWh/year in average for others

Such savings are obtained with a 20% peak-shaving process.

7.5 10.0 12.5 15.0 17.5 20.0 0.0 5.0 2.5 Reduction factor of monthly maxima [%]

Cost savings are composed of peak power reduction and energy consumption reduction

Key findings

Selection of statistical methods to analyze and evaluate electrical load patterns, a commonly available data type, effectively allowed the establishment of a **benchmark**, the identification of anomalies, and proposal of an energy and cost saving strategy. This constitutes a reproductible framework for electric distribution managers to process the data of their consumers.

Limitations

- The electrical load data lacks context for it to be sensibly analyzed. The refinement of analyses thus depends on the cooperation of building managers to provide contextual information.
- Limited significance of the benchmark due to limited number of consumers.

Automatization

The statistical analyses of loads can be mechanized into an accessible software to self-monitor load-curves by building or electric network managers, Thus facilitating scoring and increasing.

Environmental Sciences and Engineering