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where in (%) we use the fact that the Y; are uncorrelated. Combining egs. (1) and (2)
gives
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(b) Let ¢ = [albl, R ,anbn] € R".
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where (%) is due to the Cauchy-Schwarz inequality. Plugging the above into eq. (3)
gives
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(¢) Quality ¢ is maximized when eq. (4) holds with equality, which is true if and only if ¢
and 1 are colinear, i.e.,

A
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for some constant A € R.
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As the joint distribution only depends on Y = [Y3,...,Y,] through T, the statistic is
sufficient.



PROBLEM 2. (a) A simple orthonormal basis for W = {wyg, w1, wy, w3} is

B ={yot) = 0(t),0n(t) =0t = 1)}, o(t) = Lpa(t).
Using B, the MAP optimal decision rule is given by
X 1, .o
H = argmax(Y,¢;) — = |lcill5
i€{0,1,2,3} 2

where Y = [(R,¢0), (R,v1)] € R?* and ¢; = [(ws, o), (ws, ;)] € R%. In practice we
cannot obtain Y as above since we don’t have a matched filter for ¢). Notice however
that 1 (t) = ho(t) + hi(t) such that

(R, ) = /R'% t)dt = /R Yho(t ﬁ+/R Yha(t

= (R*hy)(1)+ (R*ho)(1),
(R, ibn) — R@%@—Uﬁ_/R@%@—Uﬁ+/R@m@—Dﬁ
= (Rxh1)(2)+ (Rx*ho)(2)

Therefore the optimal MAP decoder is still achievable by choosing Y = [Yig + Yoo, Y11 + Yo1]

with th = too =1 and tll = t01 = 2.

(b) The mimimum energy signal set W = {1y, Wy, Wy, W3} is obtained by subtracting the
mean signal m(t) from the w;:
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(c) Using basis B given above, the codewords associated to W are

~ 11 . 1 1 . 11 . 1 1
= —_ - C1 = —_ — — Co = _— — Cq = _— — — .
Co 272 ) 1 27 92 ) 2 272 ) 3 27 2

Recognizing a QAM constellation with minimum codeword distance d = 1, the error
probability is given by
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(d) W and W are linked though an isometric transform, hence their error probabilities are

identical: )
—~ 1 1
P.W)=PFP.(W)=2 — | = — | .
o) = 2.0 =20 (5) - (55 )
PROBLEM 3. (a) By the Cauchy-Schwarz inequality:
(wiy wy)® < [fwill3 w5 (6)
For i # j, eq. (6) simplifies to 5% < 1, thus proving the claim.
(b) Based on the hint, we have

[wo + wy + wall5 = [[woll + [[wy + wall3 + 2(wo, wy + w2)
= |[woll5 + [lwi |2 =+ [lwall5 + 2(wo, wi) + 2(wo, wa) + 2(wy, wo)
:3+66. (7)

By the non-negativity property of ||-||,, we must have 3463 > 0, which implies § > —%.

(¢) The mimimum energy signal set W = {Wy, Wy, Wy} is obtained by subtracting the mean
signal m(t) from the w;:

1
m= - w;
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Let {w;,w;,wy} and {w;,w;, W} be some arbitrary relabeling of {wp,w;,ws} and
{Wg, w1, Wy} respectively:

~ 2 2 2 2
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ea._(7) i) + % (3+68) — % (lwill + (ws, wy) + (wy, wy))
:1+%(3+65)—§(1+25):;(1—5):]37 (8)
o2 11121
(W;, w;) = <§wi Wi T gWk T gWi + Wi~ gwk>
= _g w5 + g<wi,wj> - %(wmwﬁ - g ||wj||§ - %(wpwk) + % w5
1 eq. E
= —2(1-9) L9 -5 (9)

(d) W is related to W = {wq, wy,ws} through an isometric transform, hence they have the
same error probability P.. We will therefore consider W below.

3



Notice from item ¢ that ||@;|5 = F and % = —1 = co0s(120°), therefore W is
2112 112

indeed a 3-PSK constellation and we can quantify its error rate P. using es(-). To this
end, let us define an orthonormal basis B = {¢y, ¢, } for W:

= Wo :@ Uy = w1 — (W1, Yo)to :\/E
lwoll,  VE V7 Ty — (o, doydoll, 2

Using B, the sufficient statistic Y € R? behaves as

Y|H=0~N([\/E,o} ,%5).

Yo

Wo + Wy.

Equivalently Y = \ /N%)Y behaves as

Y|H =0~N([A,0], 1),

with A = /2E/Ny. Therefore communicating with W over an AWGN channel of

power spectral density Nf gives rise to an error rate

PROBLEM 4. (a) Conditioned on H and ty, Y follows the Gaussian distribution

Vit do A (a1 () 0 ). (10

t0+% _1\H
(wy * h) (tg) = / wy(t) dt = ( ;)

1
t0*§

Given the above, we have

PIH 1y = Q (%%) e (\/QINO> |

P, = Euy [P, to] = Q <, /2LNO) |

(b) eq. (10) still holds here, but now ||h||, = v/2 and E [Y|H, to] is given by

(i + ) (to):/to wi(t) dt = (—1)7

0—1

The error probability therefore becomes
|[(wa * h) (to)] 1
PlHto=Q | —F———=—"]=Q(\/~ |
( vV No/2 Rl No

Pe :EH,tg [Pe|H7t0] = Q (\l Nio) .
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(c) eq. (10) still holds here, but we will simplify terms differently:

0 [e)
= [ woas [Tiwa=5 -8,

—00 0

(wgr * h) (0.5) = /wH(t)h G — t) dt = (—1)" /% h (% — t) dt

The error probability therefore becomes

2
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Pt — o [ oaxh) ()]} _ QlVmEiey ) =05
=\ R, ) o (2 ,
’ ’ Q M@ 15y |0 fto=-05

P, = By [PIH.6] = 20 (\/ m) +30 (\/ m) -

A2 = </01h(t)-1dt)2g/Oth(t)dt/OIdtg/Ooth(t)dt:E+,

where the first inequality is due to the Cauchy-Schwarz theorem. A similar argument
applied to (A_, E_) also implies A2 < E_.

(© 1 A2 1 A% A? 4+ A%
Fe=30 ( (B +E+)> o0 (/\/ o (B +E+)) =@ (\/20—2 (B +E+)>
(d) 1 1
- Q( 2—) ~o(yx)

As the lower bound is achieved by the filter used in (b), the former is optimal.




