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Problem 1. (a)

mi = E

[∑
j

bjYj

∣∣∣∣H = i

]
=
∑
j

bjE [Yj|H = i] = si
∑
j

ajbjE [Zj] = si
∑
j

ajbj, (1)

vi = Var

[∑
j

bjYj

∣∣∣∣H = i

]
(?)
=
∑
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b2j Var [Yj|H = i] = s2i
∑
j

a2jb
2
j Var [Zj] = s2i

∑
j

a2jb
2
j ,

(2)

where in (?) we use the fact that the Yj are uncorrelated. Combining eqs. (1) and (2)
gives

q =
(m0 −m1)

2

v0 + v1
=

(s0 − s1)2

s20 + s21

(∑
j ajbj

)2∑
j a

2
jb

2
j

. (3)

(b) Let c = [a1b1, . . . , anbn] ∈ Rn.(∑
j

ajbj

)2

=

(∑
j

cj

)2

= |〈c,1〉|2
(?)

≤ ‖c‖22 ‖1‖
2
2 = n

∑
j

a2jb
2
j ,

where (?) is due to the Cauchy-Schwarz inequality. Plugging the above into eq. (3)
gives

q ≤ n
(s0 − s1)2

(s20 + s21)
. (4)

(c) Quality q is maximized when eq. (4) holds with equality, which is true if and only if c
and 1 are colinear, i.e.,

bj =
λ

aj
, (5)

for some constant λ ∈ R.

(d)

fY |H(y|i) =
n∏

j=1

fYj |H(yj|i) =
n∏

j=1

fZj

(
yj
siaj

)
= exp

(
− 1

si

n∑
j=1

yj
aj

)
eq. (5)

= exp

(
− T

λsi

)
.

As the joint distribution only depends on Y = [Y1, . . . , Yn] through T , the statistic is
sufficient.



Problem 2. (a) A simple orthonormal basis for W = {w0, w1, w2, w3} is

B = {ψ0(t) = ψ(t), ψ1(t) = ψ(t− 1)} , ψ(t) = 1[0,1[(t).

Using B, the MAP optimal decision rule is given by

Ĥ = arg max
i∈{0,1,2,3}

〈Y, ci〉 −
1

2
‖ci‖22 ,

where Y = [〈R,ψ0〉, 〈R,ψ1〉] ∈ R2 and ci = [〈wi, ψ0〉, 〈wi, ψ1〉] ∈ R2. In practice we
cannot obtain Y as above since we don’t have a matched filter for ψ. Notice however
that ψ(t) = h0(t) + h1(t) such that

〈R,ψ0〉 =

∫
R(t)ψ0(t) dt =

∫
R(t)h0(t) dt+

∫
R(t)h1(t) dt

= (R ∗ h1)(1) + (R ∗ h0)(1),

〈R,ψ1〉 =

∫
R(t)ψ0(t− 1) dt =

∫
R(t)h0(t− 1) dt+

∫
R(t)h1(t− 1) dt

= (R ∗ h1)(2) + (R ∗ h0)(2).

Therefore the optimal MAP decoder is still achievable by choosing Y = [Y10 + Y00, Y11 + Y01]
with t10 = t00 = 1 and t11 = t01 = 2.

(b) The mimimum energy signal set W̃ = {w̃0, w̃1, w̃2, w̃3} is obtained by subtracting the
mean signal m(t) from the wi:

m =
1

4

∑
i

wi =
1

2
ψ0 +

1

2
ψ1

w̃0 = w0 −m =
1

2
ψ0 +

1

2
ψ1, w̃1 = w1 −m =

1

2
ψ0 −

1

2
ψ1,

w̃2 = w2 −m = −1

2
ψ0 +

1

2
ψ1, w̃3 = w3 −m = −1

2
ψ0 −

1

2
ψ1.

w̃0(t)

t

1
2

2

w̃1(t)

t

1
2

−1
2

2

w̃2(t)

t

1
2

−1
2

2

w̃3(t)

t

−1
2

2

(c) Using basis B given above, the codewords associated to W̃ are

c̃0 =

[
1

2
,
1

2

]
, c̃1 =

[
1

2
,−1

2

]
, c̃2 =

[
−1

2
,
1

2

]
, c̃3 =

[
−1

2
,−1

2

]
.

Recognizing a QAM constellation with minimum codeword distance d = 1, the error
probability is given by

Pe(W̃) = 2Q

(
1√
2N0

)
−Q

(
1√
2N0

)2

.
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(d) W and W̃ are linked though an isometric transform, hence their error probabilities are
identical:

Pe(W) = Pe(W̃) = 2Q

(
1√
2N0

)
−Q

(
1√
2N0

)2

.

Problem 3. (a) By the Cauchy-Schwarz inequality:

〈wi, wj〉2 ≤ ‖wi‖22 ‖wj‖22 . (6)

For i 6= j, eq. (6) simplifies to β2 ≤ 1, thus proving the claim.

(b) Based on the hint, we have

‖w0 + w1 + w2‖22 = ‖w0‖22 + ‖w1 + w2‖22 + 2〈w0, w1 + w2〉
= ‖w0‖22 + ‖w1‖22 + ‖w2‖22 + 2〈w0, w1〉+ 2〈w0, w2〉+ 2〈w1, w2〉
= 3 + 6β. (7)

By the non-negativity property of ‖·‖2, we must have 3+6β ≥ 0, which implies β ≥ −1
2
.

(c) The mimimum energy signal set W̃ = {w̃0, w̃1, w̃2} is obtained by subtracting the mean
signal m(t) from the wi:

m =
1

3

∑
i

wi.

w̃0 = w0 −m = +
2

3
w0 −

1

3
w1 −

1

3
w2,

w̃1 = w1 −m = −1

3
w0 +

2

3
w1 −

1

3
w2,

w̃2 = w2 −m = −1

3
w0 −

1

3
w1 +

2

3
w2.

Let {wi, wj, wk} and {w̃i, w̃j, w̃k} be some arbitrary relabeling of {w0, w1, w2} and
{w̃0, w̃1, w̃2} respectively:

‖w̃i‖22 = ‖wi −m‖22 = ‖wi‖22 + ‖m‖22 − 2〈wi,m〉

= ‖wi‖22 +

∥∥∥∥1

3
wi +

1

3
wj +

1

3
wk

∥∥∥∥2
2

− 2〈wi,
1

3
wi +

1

3
wj +

1

3
wk〉

eq. (7)
= ‖wi‖22 +

1

9
(3 + 6β)− 2

3

(
‖wi‖22 + 〈wi, wj〉+ 〈wi, wk〉

)
=1 +

1

9
(3 + 6β)− 2

3
(1 + 2β) =

2

3
(1− β) = E, (8)

〈w̃i, w̃j〉 = 〈2
3
wi −

1

3
wj −

1

3
wk,−

1

3
wi +

2

3
wj −

1

3
wk〉

= −2

9
‖wi‖22 +

5

9
〈wi, wj〉 −

1

9
〈wi, wk〉 −

2

9
‖wj‖22 −

1

9
〈wj, wk〉+

1

9
‖wk‖22

= −1

3
(1− β)

eq. (8)
= −E

2
. (9)

(d) W̃ is related toW = {w0, w1, w2} through an isometric transform, hence they have the

same error probability Pe. We will therefore consider W̃ below.
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Notice from item c that ‖w̃i‖22 = E and
〈w̃i,w̃j〉
‖w̃i‖2‖w̃j‖2

= −1
2

= cos(120◦), therefore W̃ is

indeed a 3-PSK constellation and we can quantify its error rate Pe using e3(·). To this

end, let us define an orthonormal basis B = {ψ0, ψ1} for W̃ :

ψ0 =
w̃0

‖w̃0‖2
=

w̃0√
E
, ψ1 =

w̃1 − 〈w̃1, ψ0〉ψ0

‖w̃1 − 〈w̃1, ψ0〉ψ0‖2
=

√
E

2
w̃0 + w̃1.

Using B, the sufficient statistic Y ∈ R2 behaves as

Y |H = 0 ∼ N
([√

E, 0
]
,
N0

2
I2

)
.

Equivalently Ỹ =
√

2
N0
Y behaves as

Ỹ |H = 0 ∼ N ([A, 0] , I2) ,

with A =
√

2E/N0. Therefore communicating with W over an AWGN channel of
power spectral density N0

2
gives rise to an error rate

Pe = e3

(√
2E

N0

)
= e3

√4(1− β)

3N0

 .

Problem 4. (a) Conditioned on H and t0, Y follows the Gaussian distribution

Y |H, t0 ∼ N
(

(wH ∗ h) (t0) ,
N0

2
‖h‖22

)
, (10)

(wH ∗ h) (t0) =

∫ t0+
1
2

t0− 1
2

wH(t) dt =
(−1)H

2
. (11)

Given the above, we have

Pe|H, t0 = Q

(
|(wH ∗ h) (t0)|√

N0/2 ‖h‖2

)
= Q

(√
1

2N0

)
,

Pe = EH,t0 [Pe|H, t0] = Q

(√
1

2N0

)
.

(b) eq. (10) still holds here, but now ‖h‖2 =
√

2 and E [Y |H, t0] is given by

(wH ∗ h) (t0) =

∫ t0+1

t0−1
wH(t) dt = (−1)H .

The error probability therefore becomes

Pe|H, t0 = Q

(
|(wH ∗ h) (t0)|√

N0/2 ‖h‖2

)
= Q

(√
1

N0

)
,

Pe = EH,t0 [Pe|H, t0] = Q

(√
1

N0

)
.
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(c) eq. (10) still holds here, but we will simplify terms differently:

‖h‖22 =

∫ 0

−∞
h2(t) dt+

∫ ∞
0

h2(t) dt = E− + E+,

(wH ∗ h) (0.5) =

∫
wH(t)h

(
1

2
− t
)
dt = (−1)H

∫ 1
2

− 1
2

h

(
1

2
− t
)
dt

= (−1)H
∫ 1

0

h(α) dα = (−1)HA+,

(wH ∗ h) (−0.5) =

∫
wH(t)h

(
−1

2
− t
)
dt = (−1)H

∫ 1
2

− 1
2

h

(
−1

2
− t
)
dt

= (−1)H
∫ 0

−1
h(α) dα = (−1)HA−.

The error probability therefore becomes

Pe|H, t0 = Q

(
|(wH ∗ h) (t0)|√

N0/2 ‖h‖2

)
=


Q

(√
2A2

+

N0(E−+E+)

)
, t0 = 0.5

Q

(√
2A2

−
N0(E−+E+)

)
, t0 = −0.5

,

Pe = EH,t0 [Pe|H, t0] =
1

2
Q

(√
2A2

+

N0 (E− + E+)

)
+

1

2
Q

(√
2A2
−

N0 (E− + E+)

)
.

(d)

A2
+ =

(∫ 1

0

h(t) · 1 dt
)2

≤
∫ 1

0

h2(t) dt

∫ 1

0

dt ≤
∫ ∞
0

h2(t) dt = E+,

where the first inequality is due to the Cauchy-Schwarz theorem. A similar argument
applied to (A−, E−) also implies A2

− ≤ E−.

(e)

Pe
(c)
=

1

2
Q

(√
A2

+

σ2 (E− + E+)

)
+

1

2
Q

(√
A2
−

σ2 (E− + E+)

)
≥ Q

(√
A2
− + A2

+

2σ2 (E− + E+)

)
(d)

≥ Q

(√
1

2σ2

)
= Q

(√
1

N0

)
.

As the lower bound is achieved by the filter used in (b), the former is optimal.
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