ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 3
Information Theory and Coding
Solutions to homework 1
Sep. 23, 2019

Problem 1. Note that $E_{0}=E_{1} \cup E_{2} \cup E_{3}$.
(a) (1) For disjoint events, $P\left(E_{0}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)$, so $P\left(E_{0}\right)=3 / 4$.
(2) For independent events, $1-P\left(E_{0}\right)$ is the probability that none of the events occur, which is the product of the probabilities that each one doesn't occur. Thus $1-P\left(E_{0}\right)=(3 / 4)^{3}$ and $P\left(E_{0}\right)=37 / 64$.
(3) If $E_{1}=E_{2}=E_{3}$, then $E_{0}=E_{1}$ and $P\left(E_{0}\right)=1 / 4$.
(b) (1) From the Venn diagram in Fig. 1, $P\left(E_{0}\right)$ is clearly maximized when the events are disjoint, so $\max P\left(E_{0}\right)=3 / 4$.

Figure 1: Venn Diagram for problem 1 (b)(1)
(2) The intersection of each pair of sets has probability $1 / 16$. As seen in Fig. 2, $P\left(E_{0}\right)$ is maximized if all these pairwise intersections are identical, in which case $P\left(E_{0}\right)=3(1 / 4-1 / 16)+1 / 16=5 / 8$. One can also use the formula $P\left(E_{0}\right)=$ $P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)-P\left(E_{1} \cap E_{2}\right)-P\left(E_{1} \cap E_{3}\right)-P\left(E_{2} \cap E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right)$, and notice that all the terms except the last is fixed by the problem, and the last term cannot be made more than $\min _{i, j} P\left(E_{i} \cap E_{j}\right)=1 / 16$.

Figure 2: Venn Diagram for problem 1 (b)(2)
(c) Same considerations as in (b)(2) yields the upper bound $P\left(E_{0}\right) \leq 3 p-2 p^{2}$ As $P\left(E_{0}\right)=$ 1 , we find that $p \geq 1 / 2$.

Problem 2. (a) Since the die is fair, the probability of a toss being 6 is $1 / 6$. Then, $P\left(N_{1}=k\right)$ is simply the probability that the child does not observe 6 for the first $k-1$ tosses and observes 6 at $k^{t h}$ toss. Hence, $P\left(N_{1}=k\right)=(5 / 6)^{k-1} 1 / 6$,
(b) $E\left[N_{1}\right]=\sum_{k=1}^{\infty} P\left(N_{1}=k\right) k=1 / 6 \sum_{k=1}^{\infty}(5 / 6)^{k-1} k=6^{2} \cdot 1 / 6=6$. Here, we used the hint $\sum_{k=1}^{\infty} x^{k-1} k=1 /(1-x)^{2}$.
(c) The only way $\tilde{N}=k, k \geq m$ is when (i) $k^{\text {th }}$ toss is a 6 and (ii) in the previous $k-1$ tosses exactly $m-16$'s and $k-m$ non- 6 's are observed. There are $\binom{k-1}{m-1}$ distinct ways for (ii) to happen each with probability $(5 / 6)^{k-m}(1 / 6)^{m}$. Consequently, $P(\tilde{N}=k)=\binom{k-1}{m-1}(5 / 6)^{k-m}(1 / 6)^{m}$
To find $E[\tilde{N}]$, consider new random variables $N_{i}, i \in\{1,2, \ldots, m\}$ which denotes the number of tosses after the $i-1^{\text {th }} 6$ is observed until the $i^{\text {th }} 6$ occurs. Since $\tilde{N}=N_{1}+N_{2}+\ldots+N_{m}$, and N_{i} 's are independent and identically distributed, we have $E[\tilde{N}]=m E\left[N_{1}\right]=6 m$.
(d) Using Bayes' Rule, we have

$$
\begin{gathered}
P(\text { Fair } \mid N=k)=\frac{P(N=k \mid \text { Fair }) P(\text { Fair })}{P(N=k \mid \text { Loaded }) P(\text { Loaded })+P(N=k \mid \text { Fair }) P(\text { Fair })} \\
=\frac{(5 / 6)^{k-1} 1 / 6}{(5 / 6)^{k-1} 1 / 6+\left(1-1 / 6^{5}\right)^{k-1} 1 / 6^{5}}
\end{gathered}
$$

The statement $P($ Fair $\mid N=k)<P($ Loaded $\mid N=k)$ is equivalent to

$$
\begin{array}{r}
(5 / 6)^{k-1} 1 / 6<\left(1-1 / 6^{5}\right)^{k-1} 1 / 6^{5} \\
(k-1) \ln (6 / 5)+\ln 6>5 \ln 6+(k-1) \ln \left(6^{5} / 6^{5}-1\right) \\
(k-1) \ln \left(\frac{6\left(6^{5}-1\right)}{5.6^{5}}\right)+\ln 6>5 \ln 6 \\
k>4 \ln 6 /\left(\ln \left(6\left(6^{5}-1\right)\right)-\ln \left(5.6^{5}\right)\right)+1 \approx 40.3
\end{array}
$$

- An alternative way to find $P(\tilde{N}=k)$:

Recalling that $\tilde{N}=N_{1}+N_{2}+\ldots+N_{m}$, and N_{i} 's are i.i.d, the distribution of \tilde{N} is the m-fold convolution of the distribution of N_{1}. To find the m-fold convolution, we can take the easier z-transform approach. (For convenience, let $p=1 / 6$ and $q=5 / 6$) Define the z-transform of $P_{N_{1}}$ as $\psi_{N_{1}}(z)=E\left[z^{-N_{1}}\right]=\sum_{k=1}^{\infty} P\left(N_{1}=k\right) z^{-k}=$ $\sum_{k=1}^{\infty} p q^{k-1} z^{-k}$

$$
=\frac{p z^{-1}}{1-q z^{-1}}
$$

As $\tilde{N}=N_{1}+\cdots+N_{m}$, the z-transform of \tilde{N} will be

$$
\begin{gather*}
\psi_{\tilde{N}}(z)=E\left[z^{-\left(N_{1}+N_{2}+\ldots+N_{m}\right)}\right]=E\left[z^{-N_{1}}\right] E\left[z^{-N_{2}}\right] \ldots E\left[z^{-N_{1} m}\right]=\left(\psi_{N_{1}}(z)\right)^{m} \tag{1}\\
=\left(\frac{p z^{-1}}{1-q z^{-1}}\right)^{m}=p^{m} z^{-m} \frac{1}{\left(1-q z^{-1}\right)^{m}}
\end{gather*}
$$

From geometric series, we know that $\sum_{k=0}^{\infty} r^{k}=1 / 1-r$. Taking the derivative of both sides with respect to $r, m-1$ times, one can obtain

$$
\sum_{k=m-1}^{\infty} \frac{k!}{(k-m+1)!} r^{k-m+1}=\sum_{k=0}^{\infty} \frac{(k+m-1)!}{k!} r^{k}=(m-1)!\frac{1}{(1-r)^{m}}
$$

Thus,

$$
\sum_{k=0}^{\infty}\binom{k+m-1}{m-1} r^{k}=\frac{1}{(1-r)^{m}}
$$

Here, if we substitute r with $q z^{-1}$, we get

$$
\sum_{k=0}^{\infty}\binom{k+m-1}{m-1}\left(q z^{-1}\right)^{k}=\frac{1}{\left(1-q z^{-1}\right)^{m}}
$$

and substituting in (1), we obtain

$$
\psi_{\tilde{N}}(z)=\sum_{k=0}^{\infty}\binom{k+m-1}{m-1} q^{k} z^{-(m+k)} p^{m}=\sum_{k=m}^{\infty}\binom{k-1}{m-1} q^{k-m} z^{-k} p^{m}
$$

Since by definition, $\psi_{\tilde{N}}(z)=\sum_{k=m}^{\infty} P(\tilde{N}=k) z^{-k}$, it can be seen that $P(\tilde{N}=k)=\binom{k-1}{m-1} q^{k-m} p^{m}, \forall k \geq m$

Problem 3. Since A, B, C, D form a Markov chain their probability distribution is given by

$$
\begin{equation*}
p(a) p(b \mid a) p(c \mid b) p(d \mid c) \tag{2}
\end{equation*}
$$

(a) Yes: Summing (2) over d shows that A, B, C have the probability distribution $p(a) p(b \mid a) p(c \mid b)$.
(b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B, C, D and using part (a) we get that D, C, B is a Markov chain. Reversing again we get the desired result.
(c) Yes: Since A, B, C, D is a Markov chain, given C, D is independent of B, and thus $p(d \mid c)=p(d \mid(b, c))$. So (2) can be written as

$$
p(a,(b, c), d)=p(a) p((b, c) \mid a) p(d \mid(b, c)) .
$$

Problem 4. No. Take for example $A=D$ and let A be independent of the pair (B, C). Then both A, B, C and B, C, A (same as B, C, D) are Markov chains. But A, B, C, D is not: A is not independent of D when B and C are given.

Problem 5.

(a)

$$
\begin{aligned}
E[X+Y] & =\sum_{x, y}(x+y) P_{X Y}(x, y) \\
& =\sum_{x, y} x P_{X Y}(x, y)+\sum_{x, y} y P_{X Y}(x, y) \\
& =\sum_{x} x P_{X}(x)+\sum_{y} y P_{Y}(y) \\
& =E[X]+E[Y] .
\end{aligned}
$$

Note that independence is not necessary here and that the argument extends to nondiscrete variables if the expectation exists.
(b)

$$
\begin{aligned}
E[X Y] & =\sum_{x, y} x y P_{X Y}(x, y) \\
& =\sum_{x, y} x y P_{X}(x) P_{Y}(y) \\
& =\sum_{x} x P_{X}(x) \sum_{y} y P_{Y}(y) \\
& =E[X] E[Y] .
\end{aligned}
$$

Note that the statistical independence was used on the second line. Let X and Y take on only the values ± 1 and 0 . An example of uncorrelated but dependent variables is

$$
P_{X Y}(1,0)=P_{X Y}(0,1)=P_{X Y}(-1,0)=P_{X Y}(0,-1)=\frac{1}{4} .
$$

An example of correlated and dependent variables is

$$
P_{X Y}(1,1)=P_{X Y}(-1,-1)=\frac{1}{2} .
$$

(c) Using (a), we have

$$
\begin{aligned}
& \sigma_{X+Y}^{2}=E\left[(X-E[X]+Y-E[Y])^{2}\right] \\
&=E\left[(X-E[X])^{2}\right]+2 E[(X-E[X])(Y-E[Y])]+E\left[(Y-E[Y])^{2}\right]
\end{aligned}
$$

The middle term, from (a), is $2(E[X Y]-E[X] E[Y])$. For uncorrelated variables that is zero, leaving us with $\sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$.

Problem 6. We solve the problem for a general vehicle with n wheels.
(a) Out of n ! possible orderings $(n-1)$! has the tyre 1 in its original place. Thus tyre 1 is installed in its original position with probability $1 / n$.
(b) All tyres end up in their original position in only 1 of the n ! orders. Thus the probability of this event is $1 / n!$.
(c) Let X_{i} be the indicator random variable that tyre i is installed in its original position, so that the number of tyres installed in their original positions is $N=\sum_{i=1}^{n} X_{i}$. By (a), $E\left[X_{i}\right]=1 / n$. By the linearity of expectation, $E[N]=n(1 / n)=1$. Note that the linearity of the expectation holds even if the X_{i} 's are not independent (as it is in this case).
(e) Let A_{i} be the event that the i th tyre remains in its original position. Then, the event we are interested in is the complement of the event $\bigcup_{i} A_{i}$ and thus has probability $1-\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)$. Furthermore, by the inclusion/exclusion formula,

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \operatorname{Pr}\left(A_{i}\right)-\sum_{i_{1}<i_{2}} \operatorname{Pr}\left(A_{i_{1}} \cap A_{i_{2}}\right)+\sum_{i_{1}<i_{2}<i_{3}} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\ldots
$$

The j th sum above consists of $\binom{n}{j}$ terms, each term having the value $P\left(A_{1} \cap \cdots \cap A_{j}\right)$. Note that this is the probability of the event that tyres 1 through j have remained in their original positions, and equals $(n-j)!/ n!$. Consequently,

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j} \frac{(n-j)!}{n!}=\sum_{j=1}^{n}(-1)^{j-1} 1 / j!
$$

and the event that no tyre remains in its original position has probability

$$
1-\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!}
$$

(For the case $n=4$, the value is $3 / 8$.)

Problem 7.

(a) Let A_{i} denote the event that $X_{i} \neq X$. The event that X does not appear in the inventory is thus

$$
A=A_{1} \cap \ldots A_{n} .
$$

Note that the events A_{1}, \ldots, A_{n} are not independent-because they involve the common random variable X. However, they become independent when conditioned on the value of X, with $P\left(A_{i} \mid X=x\right)=1-p(x)$. Thus,

$$
P(A \mid X=x)=(1-p(x))^{n} .
$$

Consequently $P(A)=\sum_{x} p(x)(1-p(x))^{n} .$.
(b) With p the uniform distribution on n items, the above value for $P(A)$ equals ($1-$ $1 / n)^{n}$.
(c) For n large, $(1-1 / n)^{n}$ approaches $1 / e \approx 37 \%$.

