Problem Set 1 - Due Friday, October 11, before class starts For the Exercise Sessions on Sep 27 and Oct 4

Last name	First name	SCIPER Nr	Points

Problem 1: Divergence and L_{1}

Suppose p and q are two probability mass functions on a finite set \mathcal{U}. (I.e., for all $u \in \mathcal{U}, p(u) \geq 0$ and $\sum_{u \in \mathcal{U}} p(u)=1$; similarly for q.)
(a) Show that the L_{1} distance $\|p-q\|_{1}:=\sum_{u \in \mathcal{U}}|p(u)-q(u)|$ between p and q satisfies

$$
\|p-q\|_{1}=2 \max _{\mathcal{S}: \mathcal{S} \subset \mathcal{U}} p(\mathcal{S})-q(\mathcal{S})
$$

with $p(\mathcal{S})=\sum_{u \in \mathcal{S}} p(u)$ (and similarly for q), and the maximum is taken over all subsets \mathcal{S} of \mathcal{U}.
For α and β in $[0,1]$, define the function $d_{2}(\alpha \| \beta):=\alpha \log \frac{\alpha}{\beta}+(1-\alpha) \log \frac{1-\alpha}{1-\beta}$. Note that $d_{2}(\alpha \| \beta)$ is the divergence of the distribution $(\alpha, 1-\alpha)$ from the distribution $(\beta, 1-\beta)$.
(b) Show that the first and second derivatives of d_{2} with respect to its first argument α satisfy $d_{2}^{\prime}(\beta \| \beta)=0$ and $d_{2}^{\prime \prime}(\alpha \| \beta)=\frac{\log e}{\alpha(1-\alpha)} \geq 4 \log e$.
(c) By Taylor's theorem conclude that

$$
d_{2}(\alpha \| \beta) \geq 2(\log e)(\alpha-\beta)^{2} .
$$

(d) Show that for any $\mathcal{S} \subset \mathcal{U}$

$$
D(p \| q) \geq d_{2}(p(\mathcal{S}) \| q(\mathcal{S}))
$$

[Hint: use the data processing theorem for divergence.]
(e) Combine (a), (c) and (d) to conclude that

$$
D(p \| q) \geq \frac{\log e}{2}\|p-q\|_{1}^{2} .
$$

(f) Show, by example, that $D(p \| q)$ can be $+\infty$ even when $\|p-q\|_{1}$ is arbitrarily small. [Hint: considering $\mathcal{U}=\{0,1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds $D(p \| q)$ in terms of $\|p-q\|_{1}$.

Problem 2: Other Divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1)=0$. Define the f-divergence of a distribution p from a distribution q as

$$
D_{f}(p \| q):=\sum_{u} q(u) f(p(u) / q(u))
$$

In the sum above we take $f(0):=\lim _{t \rightarrow 0} f(t), 0 f(0 / 0):=0$, and $0 f(a / 0):=\lim _{t \rightarrow 0} t f(a / t)=$ $a \lim _{t \rightarrow 0} t f(1 / t)$.
(a) Show that for any non-negative $a_{1}, a_{2}, b_{1}, b_{2}$ and with $A=a_{1}+a_{2}, B=b_{1}+b_{2}$,

$$
b_{1} f\left(a_{1} / b_{1}\right)+b_{2} f\left(a_{2} / b_{2}\right) \geq B f(A / B) ;
$$

and that in general, for any non-negative $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$, and $A=\sum_{i} a_{i}, B=\sum_{i} b_{i}$, we have

$$
\sum_{i} b_{i} f\left(a_{i} / b_{i}\right) \geq B f(A / B) .
$$

[Hint: since f is convex, for any $\lambda \in[0,1]$ and any $x_{1}, x_{2}>0 \quad \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+\right.$ $\left.(1-\lambda) x_{2}\right)$; consider $\left.\lambda=b_{1} / B.\right]$
(b) Show that $D_{f}(p \| q) \geq 0$.
(c) Show that D_{f} satisfies the data processing inequality: for any transition probability kernel $W(v \mid u)$ from \mathcal{U} to \mathcal{V}, and any two distributions p and q on \mathcal{U}

$$
D_{f}(p \| q) \geq D_{f}(\tilde{p} \| \tilde{q})
$$

where \tilde{p} and \tilde{q} are probability distributions on \mathcal{V} defined via $\tilde{p}(v):=\sum_{u} W(v \mid u) p(u)$, and $\tilde{q}(v):=$ $\sum_{u} W(v \mid u) q(u)$,
(d) Show that each of the following are f-divergences.
i. $D(p \| q):=\sum_{u} p(u) \log (p(u) / q(u))$. [Warning: \log is not the right choice for f.]
ii. $R(p \| q):=D(q \| p)$.
iii. $1-\sum_{u} \sqrt{p(u) q(u)}$
iv. $\|p-q\|_{1}$.
v. $\sum_{u}(p(u)-q(u))^{2} / q(u)$

Problem 3: Entropy and Combinatorics

Suppose X, Y and Z are random variables.
(a) Show that $H(X)+H(Y)+H(Z) \geq \frac{1}{2}[H(X Y)+H(Y Z)+H(Z X)]$.
(b) Show that $H(X Y)+H(Y Z) \geq H(X Y Z)+H(Y)$.
(c) Show that

$$
2[H(X Y)+H(Y Z)+H(Z X)] \geq 3 H(X Y Z)+H(X)+H(Y)+H(Z)
$$

(d) Show that $H(X Y)+H(Y Z)+H(Z X) \geq 2 H(X Y Z)$.
(e) Suppose n points in three dimensions are arranged so that their their projections to the $x y, y z$ and $z x$ planes give $n_{x y}, n_{y z}$ and $n_{z x}$ points. Clearly $n_{x y} \leq n, n_{y z} \leq n, n_{z x} \leq n$. Use part (d) show that

$$
n_{x y} n_{y z} n_{z x} \geq n^{2} .
$$

Problem 4: Generating fair coin flips from biased coins

Suppose X_{1}, X_{2}, \ldots are the outcomes of independent flips of a biased coin. Let $\operatorname{Pr}\left(X_{i}=1\right)=p$, $\operatorname{Pr}\left(X_{i}=0\right)=1-p$, with p unknown. By processing this sequence we would like to obtain a sequence Z_{1}, Z_{2}, \ldots of fair coin flips.

Consider the following method: We process the X sequence in sucssive pairs, $\left(X_{1} X_{2}\right),\left(X_{3} X_{4}\right),\left(X_{5} X_{6}\right)$, mapping (01) to 0 , (10) to 1 , and the other outcomes (00) and (11) to the empty string. After processing X_{1}, X_{2}, we will obtain either nothing, or a bit Z_{1}.
(a) Show that, if a bit is obtained, it is fair, i.e., $\operatorname{Pr}\left(Z_{1}=0\right)=\operatorname{Pr}\left(Z_{1}=1\right)=1 / 2$.

In general we can process the X sequence in successive n-tuples via a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$ where $\{0,1\}^{*}$ denote the set of all finite length binary sequences (including the empty string λ). [The case in (a) is the function $f(00)=f(11)=\lambda, f(01)=0, f(10)=1$. The function f is chosen such that $\left(Z_{1}, \ldots, Z_{K}\right)=f\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d., and fair (here K may depend on $\left(X_{1}, \ldots, X_{K}\right)$.
(b) With $h_{2}(p)=-p \log p-(1-p) \log (1-p)$, prove the following chain of (in)equalities.

$$
\begin{aligned}
n h_{2}(p) & =H\left(X_{1}, \ldots, X_{n}\right) \\
& \geq H\left(Z_{1}, \ldots, Z_{K}, K\right) \\
& =H(K)+H\left(Z_{1} \ldots, Z_{K} \mid K\right) \\
& =H(K)+E[K] \\
& \geq E[K] .
\end{aligned}
$$

Consequently, on the average no more than $n h_{2}(p)$ fair bits can be obtained from $\left(X_{1}, \ldots, X_{n}\right)$.
(c) Find a good f for $n=4$.

Problem 5: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in \mathcal{U}, with probabilitis $p(u)$, consider the distribution $p_{s}(u)=p(u)^{s} / Z(s)$ with $Z(s)=\sum_{u} p(u)^{s}$.
(a) Show that for any distribution q on \mathcal{U},

$$
(1-s) H(q)-s D(q \| p)=-D\left(q \| p_{s}\right)+\log Z(s)
$$

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q=p_{s}$ with the value $\log Z(s)$,

The quantity

$$
H_{s}(p):=\frac{1}{1-s} \log Z(s)=\frac{1}{1-s} \log \sum_{u} p(u)^{s}
$$

is known as the Rényi entropy of order s of the random variable U. When convenient, we will also write $H_{s}(U)$ instead of $H_{s}(p)$.
(c) Show that if U and V are independent random variables

$$
H_{s}(U V):=H_{s}(U)+H_{s}(V)
$$

[Here $U V$ denotes the pair formed by the two random variables - not their product. E.g., if $\mathcal{U}=\{0,1\}$ and $\mathcal{V}=\{a, b\}, U V$ takes values in $\{0 a, 0 b, 1 a, 1 b\}$.

Problem 6: Guessing and Rényi entropy

Suppose X is a random variable taking K values $\left\{a_{1}, \ldots, a_{K}\right\}$ with $p_{i}=\operatorname{Pr}\left\{X=a_{i}\right\}$. We wish to guess X by asking a sequence of binary questions of the type 'Is $X=a_{i}$?' until we are answered 'yes'. (Think of guessing a password).
A guessing strategy is an ordering of the K possible values of X; we first ask if X is the first value; then if it is the second value, etc. Thus the strategy is described by a function $G(x) \in\{1, \ldots, K\}$ that gives the position (first, second, $\ldots K$ th) of x in the ordering. I.e., when $X=x$, we ask $G(x)$ questions to guess the value of X. Call G the guessing function of the strategy.

For the rest of the problem suppose $p_{1} \geq p_{2} \geq \cdots \geq p_{K}$.
(a) Show that for any guessing function G, the probability of asking fewer than i questions satisfies

$$
\operatorname{Pr}(G(X) \leq i) \leq \sum_{j=1}^{i} p_{j}
$$

and equality holds for the guessing function G^{*} with $G^{*}\left(a_{i}\right)=i, i=1, \ldots, K$; this is the strategy that first guesses the most probable value a_{1}, then the next most probable value a_{2}, etc.
(b) Show that for any increasing function $f:\{1, \ldots, K\} \rightarrow \mathbb{R}, E[f(G(X))]$ is minimized by choosing $G=G^{*}$. [Hint: $E[f(G(X))]=\sum_{i=1}^{K} f(i) \operatorname{Pr}(G=i)$. Write $\operatorname{Pr}(G=i)=\operatorname{Pr}(G \leq i)-\operatorname{Pr}(G \leq i-1)$, to write the expectation in terms of $\sum_{i}[f(i)-f(i+1)] \operatorname{Pr}(G \leq i)$, and use (a).]
(c) For any i and $s \geq 0$ prove the inequalities

$$
i \leq \sum_{j=1}^{i}\left(p_{j} / p_{i}\right)^{s} \leq \sum_{j}\left(p_{j} / p_{i}\right)^{s}
$$

(d) For any $\rho \geq 0$, show that

$$
E\left[G^{*}(X)^{\rho}\right] \leq\left(\sum_{i} p_{i}^{1-s \rho}\right)\left(\sum_{j} p_{j}^{s}\right)^{\rho}
$$

for any $s \geq 0$. [Hint: write $E\left[G^{*}(X)^{\rho}\right]=\sum_{i} p_{i} i^{\rho}$, and use (c) to upper bound i^{ρ}]
(e) By a choosing s carefully, show that

$$
E\left[G^{*}(X)^{\rho}\right] \leq\left(\sum_{i} p_{i}^{1 /(1+\rho)}\right)^{1+\rho}=\exp \left[\rho H_{1 /(1+\rho)}(X)\right]
$$

(f) Suppose U_{1}, \ldots, U_{n} are i.i.d., each with distribution p, and $X=\left(U_{1}, \ldots, U_{n}\right)$. (I.e., we are trying to guess a password that is made of n independently chosen letters.) Show that

$$
\frac{1}{n \rho} \log E\left[G^{*}\left(U_{1}, \ldots, U_{n}\right)^{\rho}\right] \leq H_{1 /(1+\rho)}\left(U_{1}\right)
$$

[Hint: first observe that $H_{\alpha}(X)=n H_{\alpha}\left(U_{1}\right)$. In other words, the ρ-th moment of the number of guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of the letters.
It is possible a lower bound to $E\left[G\left(U_{1}, \ldots, U_{n}\right)^{\rho}\right]$ that establishes that the exponential upper bound we found here is asympototically tight.

