Information Theory and Signal Processing Ecole Polytechnique Fédérale, Lausanne: Fall 2019
Gastpar, Telatar, Urbanke October, 2019

Problem Set 1 — Due Friday, October 11, before class starts
For the Exercise Sessions on Sep 27 and Oct 4

Last name First name SCIPER Nr Points

Problem 1: Divergence and L,

Suppose p and ¢ are two probability mass functions on a finite set ¢. (L.e., for all v € U, p(u) > 0
and > o, p(u) = 1; similarly for ¢.)

(a) Show that the L; distance ||p —qll1 :=>_, [P(v) — q(u)| between p and ¢ satisfies
lp =gl = 2 max p(S) —a(S)
with p(S) = > ,csP(u) (and similarly for ¢ ), and the maximum is taken over all subsets S of U.

For a and f in [0,1], define the function dy(a[|B) := alog § + (1 — a)log 1:—% Note that da(a|B) is
the divergence of the distribution («,1 — «) from the distribution (8,1 — 3).

(b) Show that the first and second derivatives of dy with respect to its first argument « satisfy

d5(B]18) = 0 and df(a]|B) = &% > 4loge.

(¢) By Taylor’s theorem conclude that
dz(0|B) > 2(log e) (o — ).

(d) Show that for any S C U
D(pllq) = dz(p(S)la(S))

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

1
D(pllq) > “5<lp — q|3.

(f) Show, by example, that D(p|lq¢) can be +oo even when |p — ¢||; is arbitrarily small. [Hint:
considering U = {0,1} is sufficient.] Consequently, there is no generally valid inequality that upper
bounds D(p||q) in terms of ||p — ¢ql|1 -



Problem 2: Other Divergences

Suppose f is a convex function defined on (0,00) with f(1) = 0. Define the f-divergence of a distri-
bution p from a distribution ¢ as

Ds(pllg) == q(u)f(p(w)/q(u)).

In the sum above we take f(0) := lim;— f(¢), 0f(0/0) := 0, and 0f(a/0) := limy_otf(a/t) =
alim; o tf(1/t).
(a) Show that for any non-negative aj, ag, by, ba and with A =ay +as, B =by + bs,
bif(ai/br) +baf(as/ba) > Bf(A/B);

and that in general, for any non-negative ai,...,ax, b1,...,by, and A =>".a;, B=73 . b;, we
have

S buf(ai/b) = BF(A/B).
[Hint: since f is convex, for any A € [0,1] and any z1,z2 > 0 Af(xz1) + (1 — N)f(z2) > f(Axy +
(1 — XN)x2); consider A =b;/B ]
(b) Show that Dy (pllg) > 0.

(c) Show that Dy satisfies the data processing inequality: for any transition probability kernel W (v|u)
from U to V, and any two distributions p and ¢ on U

Dy(plle) = Dr(pllg)
where p and ¢ are probability distributions on V defined via p(v) := >, W (v|u)p(u), and G(v) :=
2w Wvlu)g(u),
(d) Show that each of the following are f-divergences.

i. D(pllg) == >, p(u)log(p(u)/q(u)). [Warning: log is not the right choice for f.]
ii. R(pllq) := D(gllp) -
i 1=, v/p(u)q(u)
iv. |lp—all-

vo 2 (p(w) = q(u)?/q(u)
Problem 3: Entropy and Combinatorics

Suppose X, Y and Z are random variables.

(a) Show that H(X)+H(Y)+ H(Z) > $[H(XY)+H(YZ)+ H(ZX)].
(b) Show that H(XY)+ H(YZ) > H(XYZ)+ H(Y).
(c¢) Show that
2[H(XY)+ H(YZ)+ H(ZX)] 23H(XYZ)+ H(X)+ H(Y)+ H(Z).
(d) Show that H(XY)+ H(YZ)+ H(ZX) >2H(XYZ).

(e) Suppose n points in three dimensions are arranged so that their their projections to the zy, yz
and zz planes give ngy, ny, and n., points. Clearly ngy <n, ny. <n, n,; <n. Use part (d)
show that

NgyMy 2Nz = n?.



Problem 4: Generating fair coin flips from biased coins

Suppose Xi,Xs,... are the outcomes of independent flips of a biased coin. Let Pr(X; = 1) = p,
Pr(X; =0) =1—p, with p unknown. By processing this sequence we would like to obtain a sequence
71,2, ... of fair coin flips.

Consider the following method: We process the X sequence in sucssive pairs, (X1Xs2), (X3X4), (X5X6),
mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the empty string. After
processing X7, Xo, we will obtain either nothing, or a bit Z; .

(a) Show that, if a bit is obtained, it is fair, i.e., Pr(Z; =0) =Pr(Z; =1) = 1/2.

In general we can process the X sequence in successive n-tuples via a function f : {0,1}" — {0,1}*
where {0,1}* denote the set of all finite length binary sequences (including the empty string ). [The
case in (a) is the function f(00) = f(11) = A, f(01) = 0, f(10) = 1. The function f is chosen such
that (Z1,...,Zk) = f(X1,...,X,) are i.i.d., and fair (here K may depend on (Xi,...,Xk).

(b) With ha(p) = —plogp — (1 — p)log(1l — p), prove the following chain of (in)equalities.

Consequently, on the average no more than nho(p) fair bits can be obtained from (Xi,...,X,).

(c¢) Find a good f for n=4.

Problem 5: Extremal characterization for Rényi entropy

Given s > 0, and a random variable U taking values in U, with probabilitis p(u), consider the distri-
bution p(u) = p(u)®/Z(s) with Z(s) =", p(u)®.

(a) Show that for any distribution ¢ on U,
(1—s)H(q) — sD(qllp) = —D(qllps) + log Z(s).

(b) Given s and p, conclude that the left hand side above is maximized by the choice by ¢ = ps with
the value log Z(s),

The quantity . .
H,(p) i= ——log Z(s) = —— log 3_p(u)’

is known as the Rényi entropy of order s of the random variable U . When convenient, we will also write
H,(U) instead of Hy(p).

(c) Show that if U and V are independent random variables
H,(UV) = H;(U)+ Hy (V).

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if
U={0,1} and V = {a,b}, UV takes values in {0a,0b, la, 1b} ]



Problem 6: Guessing and Rényi entropy

Suppose X is a random variable taking K values {aj,...,ax} with p, = Pr{X = a;}. We wish to
guess X by asking a sequence of binary questions of the type ‘Is X = a; 7’ until we are answered ‘yes’.
(Think of guessing a password).

A guessing strategy is an ordering of the K possible values of X ; we first ask if X is the first value; then
if it is the second value, etc. Thus the strategy is described by a function G(x) € {1,...,K} that gives
the position (first, second, ... K th) of z in the ordering. Le., when X =z, we ask G(z) questions to
guess the value of X . Call G the guessing function of the strategy.

For the rest of the problem suppose p; > ps > -+ > pk .

(a) Show that for any guessing function G, the probability of asking fewer than 7 questions satisfies

Pr(G(X) <i) < ij

and equality holds for the guessing function G* with G*(a;) =i, i = 1,..., K ; this is the strategy
that first guesses the most probable value a;, then the next most probable value as, etc.

(b) Show that for any increasing function f:{1,...,K} - R, E[f(G(X))] is minimized by choosing
G =G*. Hint: E[f(G(X))] =K, f(i) Pr(G =1). Write Pr(G = i) = Pr(G < i)—Pr(G <i-1),
to write the expectation in terms of ) [f(z) — f(i + 1)] Pr(G <), and use (a).]

(c) For any ¢ and s > 0 prove the inequalities

i < Z(pj/pz <> wi/pi)°

j
(d) For any p > 0, show that
p
e ert = (o) (£01)
J
for any s > 0. [Hint: write E[G*(X)?] =), psi”, and use (c) to upper bound i” |

(e) By a choosing s carefully, show that

1+p
E[G*(X)?] < (Zpi/““)) = exp[pH1(14p)(X)].

i

(f) Suppose Uy, ..., U, areii.d., each with distribution p, and X = (Uy,...,U,). (L.e., we are trying
to guess a password that is made of n independently chosen letters.) Show that

1 *

n7p IOgE[G (Ul, ey Un)p] S Hl/(1+p)(U1)
[Hint: first observe that H,(X) = nH,(U1). In other words, the p-th moment of the number of
guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of
the letters.

It is possible a lower bound to E [G(Ul7 ..., Up)P] that establishes that the exponential upper bound
we found here is asympototically tight.



