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Problem Set 1 — Due Friday, October 11, before class starts
For the Exercise Sessions on Sep 27 and Oct 4

Last name First name SCIPER Nr Points

Problem 1: Divergence and L1

Suppose p and q are two probability mass functions on a finite set U . (I.e., for all u ∈ U , p(u) ≥ 0
and

∑
u∈U p(u) = 1 ; similarly for q .)

(a) Show that the L1 distance ‖p− q‖1 :=
∑
u∈U |p(u)− q(u)| between p and q satisfies

‖p− q‖1 = 2 max
S:S⊂U

p(S)− q(S)

with p(S) =
∑
u∈S p(u) (and similarly for q ), and the maximum is taken over all subsets S of U .

For α and β in [0, 1] , define the function d2(α‖β) := α log α
β + (1− α) log 1−α

1−β . Note that d2(α‖β) is

the divergence of the distribution (α, 1− α) from the distribution (β, 1− β) .

(b) Show that the first and second derivatives of d2 with respect to its first argument α satisfy
d′2(β‖β) = 0 and d′′2(α‖β) = log e

α(1−α) ≥ 4 log e .

(c) By Taylor’s theorem conclude that

d2(α‖β) ≥ 2(log e)(α− β)2.

(d) Show that for any S ⊂ U
D(p‖q) ≥ d2(p(S)‖q(S))

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

D(p‖q) ≥ log e
2 ‖p− q‖

2
1.

(f) Show, by example, that D(p‖q) can be +∞ even when ‖p − q‖1 is arbitrarily small. [Hint:
considering U = {0, 1} is sufficient.] Consequently, there is no generally valid inequality that upper
bounds D(p‖q) in terms of ‖p− q‖1 .
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Problem 2: Other Divergences

Suppose f is a convex function defined on (0,∞) with f(1) = 0 . Define the f -divergence of a distri-
bution p from a distribution q as

Df (p‖q) :=
∑
u

q(u)f(p(u)/q(u)).

In the sum above we take f(0) := limt→0 f(t) , 0f(0/0) := 0 , and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t) .

(a) Show that for any non-negative a1 , a2 , b1 , b2 and with A = a1 + a2 , B = b1 + b2 ,

b1f(a1/b1) + b2f(a2/b2) ≥ Bf(A/B);

and that in general, for any non-negative a1, . . . , ak , b1, . . . , bk , and A =
∑
i ai , B =

∑
i bi , we

have ∑
i

bif(ai/bi) ≥ Bf(A/B).

[Hint: since f is convex, for any λ ∈ [0, 1] and any x1, x2 > 0 λf(x1) + (1 − λ)f(x2) ≥ f(λx1 +
(1− λ)x2) ; consider λ = b1/B .]

(b) Show that Df (p‖q) ≥ 0 .

(c) Show that Df satisfies the data processing inequality: for any transition probability kernel W (v|u)
from U to V , and any two distributions p and q on U

Df (p‖q) ≥ Df (p̃‖q̃)

where p̃ and q̃ are probability distributions on V defined via p̃(v) :=
∑
uW (v|u)p(u) , and q̃(v) :=∑

uW (v|u)q(u) ,

(d) Show that each of the following are f -divergences.

i. D(p‖q) :=
∑
u p(u) log(p(u)/q(u)) . [Warning: log is not the right choice for f .]

ii. R(p‖q) := D(q‖p) .

iii. 1−
∑
u

√
p(u)q(u)

iv. ‖p− q‖1 .

v.
∑
u(p(u)− q(u))2/q(u)

Problem 3: Entropy and Combinatorics

Suppose X , Y and Z are random variables.

(a) Show that H(X) +H(Y ) +H(Z) ≥ 1
2

[
H(XY ) +H(Y Z) +H(ZX)

]
.

(b) Show that H(XY ) +H(Y Z) ≥ H(XY Z) +H(Y ) .

(c) Show that

2
[
H(XY ) +H(Y Z) +H(ZX)

]
≥ 3H(XY Z) +H(X) +H(Y ) +H(Z).

(d) Show that H(XY ) +H(Y Z) +H(ZX) ≥ 2H(XY Z) .

(e) Suppose n points in three dimensions are arranged so that their their projections to the xy , yz
and zx planes give nxy , nyz and nzx points. Clearly nxy ≤ n , nyz ≤ n , nzx ≤ n . Use part (d)
show that

nxynyznzx ≥ n2.
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Problem 4: Generating fair coin flips from biased coins

Suppose X1, X2, . . . are the outcomes of independent flips of a biased coin. Let Pr(Xi = 1) = p ,
Pr(Xi = 0) = 1 − p , with p unknown. By processing this sequence we would like to obtain a sequence
Z1, Z2, . . . of fair coin flips.

Consider the following method: We process the X sequence in sucssive pairs, (X1X2) , (X3X4) , (X5X6) ,
mapping (01) to 0 , (10) to 1 , and the other outcomes (00) and (11) to the empty string. After
processing X1, X2 , we will obtain either nothing, or a bit Z1 .

(a) Show that, if a bit is obtained, it is fair, i.e., Pr(Z1 = 0) = Pr(Z1 = 1) = 1/2 .

In general we can process the X sequence in successive n -tuples via a function f : {0, 1}n → {0, 1}∗
where {0, 1}∗ denote the set of all finite length binary sequences (including the empty string λ ). [The
case in (a) is the function f(00) = f(11) = λ , f(01) = 0 , f(10) = 1 . The function f is chosen such
that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d., and fair (here K may depend on (X1, . . . , XK) .

(b) With h2(p) = −p log p− (1− p) log(1− p) , prove the following chain of (in)equalities.

nh2(p) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK ,K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nh2(p) fair bits can be obtained from (X1, . . . , Xn) .

(c) Find a good f for n = 4 .

Problem 5: Extremal characterization for Rényi entropy

Given s ≥ 0 , and a random variable U taking values in U , with probabilitis p(u) , consider the distri-
bution ps(u) = p(u)s/Z(s) with Z(s) =

∑
u p(u)s .

(a) Show that for any distribution q on U ,

(1− s)H(q)− sD(q‖p) = −D(q‖ps) + logZ(s).

(b) Given s and p , conclude that the left hand side above is maximized by the choice by q = ps with
the value logZ(s) ,

The quantity

Hs(p) :=
1

1− s
logZ(s) =

1

1− s
log
∑
u

p(u)s

is known as the Rényi entropy of order s of the random variable U . When convenient, we will also write
Hs(U) instead of Hs(p) .

(c) Show that if U and V are independent random variables

Hs(UV ) := Hs(U) +Hs(V ).

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if
U = {0, 1} and V = {a, b} , UV takes values in {0a, 0b, 1a, 1b} .]
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Problem 6: Guessing and Rényi entropy

Suppose X is a random variable taking K values {a1, . . . , aK} with pi = Pr{X = ai} . We wish to
guess X by asking a sequence of binary questions of the type ‘Is X = ai ?’ until we are answered ‘yes’.
(Think of guessing a password).

A guessing strategy is an ordering of the K possible values of X ; we first ask if X is the first value; then
if it is the second value, etc. Thus the strategy is described by a function G(x) ∈ {1, . . . ,K} that gives
the position (first, second, ... K th) of x in the ordering. I.e., when X = x , we ask G(x) questions to
guess the value of X . Call G the guessing function of the strategy.

For the rest of the problem suppose p1 ≥ p2 ≥ · · · ≥ pK .

(a) Show that for any guessing function G , the probability of asking fewer than i questions satisfies

Pr(G(X) ≤ i) ≤
i∑

j=1

pj

and equality holds for the guessing function G∗ with G∗(ai) = i , i = 1, . . . ,K ; this is the strategy
that first guesses the most probable value a1 , then the next most probable value a2 , etc.

(b) Show that for any increasing function f : {1, . . . ,K} → R , E[f(G(X))] is minimized by choosing

G = G∗ . [Hint: E[f(G(X))] =
∑K
i=1 f(i) Pr(G = i) . Write Pr(G = i) = Pr(G ≤ i)−Pr(G ≤ i−1) ,

to write the expectation in terms of
∑
i[f(i)− f(i+ 1)] Pr(G ≤ i) , and use (a).]

(c) For any i and s ≥ 0 prove the inequalities

i ≤
i∑

j=1

(pj/pi)
s ≤

∑
j

(pj/pi)
s

(d) For any ρ ≥ 0 , show that

E[G∗(X)ρ] ≤
(∑

i

p1−sρi

)(∑
j

psj

)ρ
.

for any s ≥ 0 . [Hint: write E[G∗(X)ρ] =
∑
i pii

ρ , and use (c) to upper bound iρ ]

(e) By a choosing s carefully, show that

E[G∗(X)ρ] ≤
(∑

i

p
1/(1+ρ)
i

)1+ρ

= exp
[
ρH1/(1+ρ)(X)

]
.

(f) Suppose U1, . . . , Un are i.i.d., each with distribution p , and X = (U1, . . . , Un) . (I.e., we are trying
to guess a password that is made of n independently chosen letters.) Show that

1

nρ
logE[G∗(U1, . . . , Un)ρ] ≤ H1/(1+ρ)(U1)

[Hint: first observe that Hα(X) = nHα(U1) . In other words, the ρ -th moment of the number of
guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of
the letters.

It is possible a lower bound to E[G(U1, . . . , Un)ρ] that establishes that the exponential upper bound
we found here is asympototically tight.
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