Problem Set 2 - Due Friday, October 25, before class starts For the Exercise Sessions on Oct 14 and 18

Last name	First name	SCIPER Nr	Points

Problem 1: Elias coding

Let 0^{n} denote a sequence of n zeros. Consider the code (the subscript U a mnemonic for 'Unary'), $\mathcal{C}_{U}:\{1,2, \ldots\} \rightarrow\{0,1\}^{*}$ for the positive integers defined as $\mathcal{C}_{U}(n)=0^{n-1}$.
(a) Is \mathcal{C}_{U} injective? Is it prefix-free?

Consider the code (the subscript B a mnenonic for 'Binary'), $\mathcal{C}_{B}:\{1,2, \ldots\} \rightarrow\{0,1\}^{*}$ where $\mathcal{C}_{B}(n)$ is the binary expansion of n. I.e., $\mathcal{C}_{B}(1)=1, \mathcal{C}_{B}(2)=10, \mathcal{C}_{B}(3)=11, \mathcal{C}_{B}(4)=100, \ldots$ Note that

$$
\operatorname{length} \mathcal{C}_{B}(n)=\left\lceil\log _{2}(n+1)\right\rceil=1+\left\lfloor\log _{2} n\right\rfloor
$$

(b) Is \mathcal{C}_{B} injective? Is it prefix-free?

With $k(n)=\operatorname{length} \mathcal{C}_{B}(n)$, define $\mathcal{C}_{0}(n)=\mathcal{C}_{U}(k(n)) \mathcal{C}_{B}(n)$.
(c) Show that \mathcal{C}_{0} is a prefix-free code for the positive integers. To do so, you may find it easier to describe how you would recover n_{1}, n_{2}, \ldots from the concatenation of their codewords $\mathcal{C}_{0}\left(n_{1}\right) \mathcal{C}_{0}\left(n_{2}\right) \ldots$.
(d) What is length $\left(\mathcal{C}_{0}(n)\right)$?

Now consider $\mathcal{C}_{1}(n)=\mathcal{C}_{0}(k(n)) \mathcal{C}_{B}(n)$.
(e) Show that \mathcal{C}_{1} is a prefix-free code for the positive integers, and show that length $\left(\mathcal{C}_{1}(n)\right)=2+$ $2\lfloor\log (1+\lfloor\log n\rfloor)\rfloor+\lfloor\log n\rfloor \leq 2+2 \log (1+\log n)+\log n$.

Suppose U is a random variable taking values in the positive integers with $\operatorname{Pr}(U=1) \geq \operatorname{Pr}(U=2) \geq \ldots$.
(f) Show that $E[\log U] \leq H(U)$, [Hint: first show $i \operatorname{Pr}(U=i) \leq 1$], and conclude that

$$
E\left[\operatorname{length} \mathcal{C}_{1}(U)\right] \leq H(U)+2 \log (1+H(U))+2
$$

Problem 2: Universal codes

Suppose we have an alphabet \mathcal{U}, and let Π denote the set of distributions on \mathcal{U}. Suppose we are given a family of S of distributions on \mathcal{U}, i.e., $S \subset \Pi$. For now, assume that S is finite.

Define the distribution $Q_{S} \in \Pi$

$$
Q_{S}(u)=Z^{-1} \max _{P \in S} P(u)
$$

where the normalizing constant $Z=Z(S)=\sum_{u} \max _{P \in S} P(u)$ ensures that Q_{S} is a distribution.
(a) Show that $D(P \| Q) \leq \log Z \leq \log |S|$ for every $P \in S$.
(b) For any S, show that there is a prefix-free code $\mathcal{C}: \mathcal{U} \rightarrow\{0,1\}^{*}$ such that for any random variable U with distribution $P \in S$,

$$
E[\text { length } \mathcal{C}(U)] \leq H(U)+\log Z+1
$$

(Note that \mathcal{C} is designed on the knowledge of S alone, it cannot change on the basis of the choice of P.) [Hint: consider $L(u)=-\log _{2} Q_{S}(u)$ as an 'almost' length function.]
(c) Now suppose that S is not necessarily finite, but there is a finite $S_{0} \subset \Pi$ such that for each $u \in \mathcal{U}$, $\sup _{P \in S} P(u) \leq \max _{P \in S_{0}} P(u)$. Show that $Z(S) \leq\left|S_{0}\right|$.

Now suppose $\mathcal{U}=\{0,1\}^{m}$. For $\theta \in[0,1]$ and $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{U}$, let

$$
P_{\theta}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

(This is a fancy way to say that the random variable $U=\left(X_{1}, \ldots, X_{n}\right)$ has i.i.d. Bernoulli θ components). Let $S=\left\{P_{\theta}: \theta \in[0,1]\right\}$.
(d) Show that for $u=\left(x_{1}, \ldots, x_{m}\right) \in\{0,1\}^{m}$

$$
\max _{\theta} P_{\theta}\left(x_{1}, \ldots, x_{m}\right)=P_{k / m}\left(x_{1}, \ldots, x_{m}\right)
$$

where $k=\sum_{i} x_{i}$.
(e) Show that there is a prefix-free code $\mathcal{C}:\{0,1\}^{m} \rightarrow\{0,1\}^{*}$ such that whenever X_{1}, \ldots, X_{n} are i.i.d. Bernoulli,

$$
\frac{1}{m} E\left[\operatorname{length} \mathcal{C}\left(X_{1}, \ldots, X_{m}\right)\right] \leq H\left(X_{1}\right)+\frac{1+\log _{2}(1+m)}{m}
$$

Problem 3: Prediction and coding

After observing a binary sequence u_{1}, \ldots, u_{i}, that contains $n_{0}\left(u^{i}\right)$ zeros and $n_{1}\left(u^{i}\right)$ ones, we are asked to estimate the probability that the next observation, u_{i+1} will be 0 . One class of estimators are of the form

$$
\hat{P}_{U_{i+1} \mid U^{i}}\left(0 \mid u^{i}\right)=\frac{n_{0}\left(u^{i}\right)+\alpha}{n_{0}\left(u^{i}\right)+n_{1}\left(u^{i}\right)+2 \alpha} \quad \hat{P}_{U_{i+1} \mid U^{i}}\left(1 \mid u^{i}\right)=\frac{n_{1}\left(u^{i}\right)+\alpha}{n_{0}\left(u^{i}\right)+n_{1}\left(u^{i}\right)+2 \alpha} .
$$

We will consider the case $\alpha=1 / 2$, this is known as the Krichevsky-Trofimov estimator. Note that for $i=0$ we get $\hat{P}_{U_{1}}(0)=\hat{P}_{U_{1}}(1)=1 / 2$.
Consider now the joint distribution $\hat{P}\left(u^{n}\right)$ on $\{0,1\}^{n}$ induced by this estimator,

$$
\hat{P}\left(u^{n}\right)=\prod_{i=1}^{n} \hat{P}_{U_{i} \mid U^{i-1}}\left(u_{i} \mid u^{i-1}\right)
$$

(a) Show, by induction on n that, for any n and any $u^{n} \in\{0,1\}^{n}$,

$$
\hat{P}\left(u_{1}, \ldots, u_{n}\right) \geq \frac{1}{2 \sqrt{n}}\left(\frac{n_{0}}{n}\right)^{n_{0}}\left(\frac{n_{1}}{n}\right)^{n_{1}}
$$

where $n_{0}=n_{0}\left(u^{n}\right)$ and $n_{1}=n_{1}\left(u^{n}\right)$.
[Hint: if $0 \leq m \leq n$, then $(1+1 / n)^{n+1 / 2} \geq \frac{m+1}{m+1 / 2}(1+1 / m)^{m}$]
(b) Conclude that there is a prefix-free code $\mathcal{C}: \mathcal{U} \rightarrow\{0,1\}^{*}$ such that

$$
\text { length } \mathcal{C}\left(u_{1}, \ldots, u_{n}\right) \leq n h_{2}\left(\frac{n_{0}\left(u^{n}\right)}{n}\right)+\frac{1}{2} \log n+2
$$

with $h_{2}(x)=-x \log x-(1-x) \log (1-x)$.
(c) Show that if U_{1}, \ldots, U_{n} are i.i.d. Bernoulli, then

$$
\frac{1}{n} E\left[\operatorname{length} \mathcal{C}\left(U_{1}, \ldots, U_{n}\right)\right] \leq H\left(U_{1}\right)+\frac{1}{2 n} \log n+\frac{2}{n}
$$

Problem 4: Lower bound on Expected Length

Suppose U is a random variable taking values in $\{1,2, \ldots\}$. Set $L=\left\lfloor\log _{2} U\right\rfloor$. (I.e., $L=j$ if and only if $2^{j} \leq U<2^{j+1} ; j=0,1,2, \ldots$.
(a) Show that $H(U \mid L=j) \leq j, j=0,1, \ldots$.
(b) Show that $H(U \mid L) \leq E[L]$.
(c) Show that $H(U) \leq E[L]+H(L)$.
(d) Suppose that $\operatorname{Pr}(U=1) \geq \operatorname{Pr}(U=2) \geq \ldots$. Show that $1 \geq i \operatorname{Pr}(U=i)$.
(e) With U as in (d), and using the result of (d), show that $E\left[\log _{2} U\right] \leq H(U)$ and conclude that $E[L] \leq H(U)$.
(f) Suppose that N is a random variable taking values in $\{0,1, \ldots\}$ with distribution p_{N} and $E[N]=$ μ. Let G be a geometric random variable with mean μ, i.e., $p_{G}(n)=\mu^{n} /(1+\mu)^{1+n}, n \geq 0$.
Show that $H(G)-H(N)=D\left(p_{N} \| p_{G}\right)$, and conclude that $H(N) \leq g(\mu)$ with $g(x)=(1+x) \log (1+$ $x)-x \log x$.
[Hint: Let $f(n, \mu)=-\log p_{G}(n)=(n+1) \log (1+\mu)-n \log (\mu)$. First show that $E[f(G, \mu)]=$ $E[f(N, \mu)]$, and consequently $\left.H(G)=\sum_{n} p_{N}(n) \log \left(1 / p_{G}(n)\right).\right]$
(g) Show that for U as in (d) and $g(x)$ as in (f),

$$
E[L] \geq H(U)-g(H(U))
$$

[Hint: combine (f), (e), (c).]
(h) Now suppose U is a random variable taking values on an alphabet \mathcal{U}, and $c: \mathcal{U} \rightarrow\{0,1\}^{*}$ is an injective code. Show that

$$
E[\text { length } c(U)] \geq H(U)-g(H(U))
$$

[Hint: the best injective code will label $\mathcal{U}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ so that $\operatorname{Pr}\left(U=a_{1}\right) \geq \operatorname{Pr}\left(U=a_{2}\right) \geq$ \ldots, and assign the binary sequences $\lambda, 0,1,00,01,10,11, \ldots$ to the letters a_{1}, a_{2}, \ldots in that order. Now observe that the i 'th binary sequence in the list $\lambda, 0,1,00,01, \ldots$ is of length $\left\lfloor\log _{2} i\right\rfloor$.]

Problem 5: Code Extension

Suppose $|\mathcal{U}| \geq 2$. For $n \geq 1$ and a code $c: \mathcal{U} \rightarrow\{0,1\}^{*}$ we define its n-extension $c^{n}: \mathcal{U}^{n} \rightarrow\{0,1\} *$ via $c^{n}\left(u^{n}\right)=c\left(u_{1}\right) \ldots c\left(u_{n}\right)$. In other words $c^{n}\left(u^{n}\right)$ is the concatenation of the binary strings $c\left(u_{1}\right), \ldots$, $c\left(u_{n}\right)$. A code c is said to be uniquely decodeable if for any u^{k} and \tilde{u}^{m} with $u^{k} \neq \tilde{u}^{m}, c^{k}\left(u^{k}\right) \neq c^{m}\left(\tilde{u}^{m}\right)$.
(a) Show that if c is uniquely decodable, then for all $n \geq 1, c^{n}$ is injective.
(b) Show that if c is not uniquely decodable, there are u^{k} and \tilde{u}^{m} with $u_{1} \neq \tilde{u}_{1}$ and $c^{k}\left(u^{k}\right)=c^{m}\left(\tilde{u}^{m}\right)$.
(c) Show that if c is not uniquely decodable, then there is an n for which c^{n} is not injective. [Hint: try $n=k+m$.]

