Problem Set 2 — *Due Friday, October 25, before class starts* For the Exercise Sessions on Oct 14 and 18

Last name	First name	SCIPER Nr	Points

Problem 1: Elias coding

Let 0^n denote a sequence of n zeros. Consider the code (the subscript U a mnemonic for 'Unary'), $\mathcal{C}_U: \{1, 2, \ldots\} \to \{0, 1\}^*$ for the positive integers defined as $\mathcal{C}_U(n) = 0^{n-1}$.

(a) Is C_U injective? Is it prefix-free?

Consider the code (the subscript *B* a mnenonic for 'Binary'), $C_B : \{1, 2, ...\} \rightarrow \{0, 1\}^*$ where $C_B(n)$ is the binary expansion of *n*. I.e., $C_B(1) = 1$, $C_B(2) = 10$, $C_B(3) = 11$, $C_B(4) = 100$, Note that

$$\operatorname{length} \mathcal{C}_B(n) = \lceil \log_2(n+1) \rceil = 1 + \lfloor \log_2 n \rfloor.$$

(b) Is C_B injective? Is it prefix-free?

With $k(n) = \text{length } \mathcal{C}_B(n)$, define $\mathcal{C}_0(n) = \mathcal{C}_U(k(n))\mathcal{C}_B(n)$.

- (c) Show that C_0 is a prefix-free code for the positive integers. To do so, you may find it easier to describe how you would recover n_1, n_2, \ldots from the concatenation of their codewords $C_0(n_1)C_0(n_2)\ldots$.
- (d) What is length($\mathcal{C}_0(n)$)?

Now consider $C_1(n) = C_0(k(n))C_B(n)$.

(e) Show that C_1 is a prefix-free code for the positive integers, and show that $\operatorname{length}(C_1(n)) = 2 + 2\lfloor \log(1 + \lfloor \log n \rfloor) \rfloor + \lfloor \log n \rfloor \le 2 + 2\log(1 + \log n) + \log n$.

Suppose U is a random variable taking values in the positive integers with $Pr(U=1) \ge Pr(U=2) \ge \dots$

(f) Show that $E[\log U] \leq H(U)$, [Hint: first show $i \Pr(U = i) \leq 1$], and conclude that

$$E[\operatorname{length} \mathcal{C}_1(U)] \le H(U) + 2\log(1 + H(U)) + 2$$

Problem 2: Universal codes

Suppose we have an alphabet \mathcal{U} , and let Π denote the set of distributions on \mathcal{U} . Suppose we are given a family of S of distributions on \mathcal{U} , i.e., $S \subset \Pi$. For now, assume that S is finite.

Define the distribution $Q_S \in \Pi$

$$Q_S(u) = Z^{-1} \max_{P \in S} P(u)$$

where the normalizing constant $Z = Z(S) = \sum_{u} \max_{P \in S} P(u)$ ensures that Q_S is a distribution.

- (a) Show that $D(P||Q) \le \log Z \le \log |S|$ for every $P \in S$.
- (b) For any S, show that there is a prefix-free code $\mathcal{C} : \mathcal{U} \to \{0,1\}^*$ such that for any random variable U with distribution $P \in S$,

$$E[\operatorname{length} \mathcal{C}(U)] \le H(U) + \log Z + 1.$$

(Note that C is designed on the knowledge of S alone, it cannot change on the basis of the choice of P.) [Hint: consider $L(u) = -\log_2 Q_S(u)$ as an 'almost' length function.]

(c) Now suppose that S is not necessarily finite, but there is a finite $S_0 \subset \Pi$ such that for each $u \in \mathcal{U}$, $\sup_{P \in S} P(u) \leq \max_{P \in S_0} P(u)$. Show that $Z(S) \leq |S_0|$.

Now suppose $\mathcal{U} = \{0, 1\}^m$. For $\theta \in [0, 1]$ and $(x_1, \ldots, x_m) \in \mathcal{U}$, let

$$P_{\theta}(x_1, \dots, x_n) = \prod_i \theta^{x_i} (1-\theta)^{1-x_i}$$

(This is a fancy way to say that the random variable $U = (X_1, \ldots, X_n)$ has i.i.d. Bernoulli θ components). Let $S = \{P_\theta : \theta \in [0, 1]\}$.

(d) Show that for $u = (x_1, ..., x_m) \in \{0, 1\}^m$

$$\max_{\theta} P_{\theta}(x_1, \dots, x_m) = P_{k/m}(x_1, \dots, x_m)$$

where $k = \sum_{i} x_i$.

(e) Show that there is a prefix-free code $\mathcal{C} : \{0,1\}^m \to \{0,1\}^*$ such that whenever X_1, \ldots, X_n are i.i.d. Bernoulli,

$$\frac{1}{m}E[\operatorname{length} \mathcal{C}(X_1,\ldots,X_m)] \le H(X_1) + \frac{1 + \log_2(1+m)}{m}.$$

Problem 3: Prediction and coding

After observing a binary sequence u_1, \ldots, u_i , that contains $n_0(u^i)$ zeros and $n_1(u^i)$ ones, we are asked to estimate the probability that the next observation, u_{i+1} will be 0. One class of estimators are of the form

$$\hat{P}_{U_{i+1}|U^{i}}(0|u^{i}) = \frac{n_{0}(u^{i}) + \alpha}{n_{0}(u^{i}) + n_{1}(u^{i}) + 2\alpha} \quad \hat{P}_{U_{i+1}|U^{i}}(1|u^{i}) = \frac{n_{1}(u^{i}) + \alpha}{n_{0}(u^{i}) + n_{1}(u^{i}) + 2\alpha}.$$

We will consider the case $\alpha = 1/2$, this is known as the Krichevsky–Trofimov estimator. Note that for i = 0 we get $\hat{P}_{U_1}(0) = \hat{P}_{U_1}(1) = 1/2$.

Consider now the joint distribution $\hat{P}(u^n)$ on $\{0,1\}^n$ induced by this estimator,

$$\hat{P}(u^n) = \prod_{i=1}^n \hat{P}_{U_i|U^{i-1}}(u_i|u^{i-1}).$$

(a) Show, by induction on n that, for any n and any $u^n \in \{0, 1\}^n$,

$$\hat{P}(u_1,\ldots,u_n) \ge \frac{1}{2\sqrt{n}} \left(\frac{n_0}{n}\right)^{n_0} \left(\frac{n_1}{n}\right)^{n_1},$$

where $n_0 = n_0(u^n)$ and $n_1 = n_1(u^n)$. [Hint: if $0 \le m \le n$, then $(1 + 1/n)^{n+1/2} \ge \frac{m+1}{m+1/2}(1 + 1/m)^m$]

(b) Conclude that there is a prefix-free code $\mathcal{C}: \mathcal{U} \to \{0,1\}^*$ such that

$$\operatorname{length} \mathcal{C}(u_1, \dots, u_n) \le nh_2\left(\frac{n_0(u^n)}{n}\right) + \frac{1}{2}\log n + 2,$$

with $h_2(x) = -x \log x - (1-x) \log(1-x)$.

(c) Show that if U_1, \ldots, U_n are i.i.d. Bernoulli, then

$$\frac{1}{n}E[\operatorname{length} \mathcal{C}(U_1,\ldots,U_n)] \le H(U_1) + \frac{1}{2n}\log n + \frac{2}{n}$$

Problem 4: Lower bound on Expected Length

Suppose U is a random variable taking values in $\{1, 2, ...\}$. Set $L = \lfloor \log_2 U \rfloor$. (I.e., L = j if and only if $2^j \leq U < 2^{j+1}$; j = 0, 1, 2, ...

- (a) Show that $H(U|L = j) \le j, \ j = 0, 1, \dots$
- (b) Show that $H(U|L) \leq E[L]$.
- (c) Show that $H(U) \leq E[L] + H(L)$.
- (d) Suppose that $\Pr(U=1) \ge \Pr(U=2) \ge \dots$. Show that $1 \ge i \Pr(U=i)$.
- (e) With U as in (d), and using the result of (d), show that $E[\log_2 U] \leq H(U)$ and conclude that $E[L] \leq H(U)$.
- (f) Suppose that N is a random variable taking values in $\{0, 1, ...\}$ with distribution p_N and $E[N] = \mu$. Let G be a geometric random variable with mean μ , i.e., $p_G(n) = \mu^n / (1+\mu)^{1+n}$, $n \ge 0$. Show that $H(G) - H(N) = D(p_N || p_G)$, and conclude that $H(N) \le g(\mu)$ with $g(x) = (1+x)\log(1+x) - x\log x$. [Hint: Let $f(n, \mu) = -\log p_G(n) = (n+1)\log(1+\mu)$, $p\log(\mu)$. First show that $E[f(C, \mu)] = -\log p_G(n) = (n+1)\log(1+\mu)$.

[Hint: Let $f(n,\mu) = -\log p_G(n) = (n+1)\log(1+\mu) - n\log(\mu)$. First show that $E[f(G,\mu)] = E[f(N,\mu)]$, and consequently $H(G) = \sum_n p_N(n)\log(1/p_G(n))$.]

(g) Show that for U as in (d) and g(x) as in (f),

$$E[L] \ge H(U) - g(H(U)).$$

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet \mathcal{U} , and $c: \mathcal{U} \to \{0,1\}^*$ is an injective code. Show that

$$E[\operatorname{length} c(U)] \ge H(U) - g(H(U)).$$

[Hint: the best injective code will label $\mathcal{U} = \{a_1, a_2, a_3, ...\}$ so that $\Pr(U = a_1) \ge \Pr(U = a_2) \ge \ldots$, and assign the binary sequences $\lambda, 0, 1, 00, 01, 10, 11, \ldots$ to the letters a_1, a_2, \ldots in that order. Now observe that the *i*'th binary sequence in the list $\lambda, 0, 1, 00, 01, \ldots$ is of length $\lfloor \log_2 i \rfloor$.]

Problem 5: Code Extension

Suppose $|\mathcal{U}| \geq 2$. For $n \geq 1$ and a code $c : \mathcal{U} \to \{0,1\}^*$ we define its *n*-extension $c^n : \mathcal{U}^n \to \{0,1\}^*$ via $c^n(u^n) = c(u_1) \dots c(u_n)$. In other words $c^n(u^n)$ is the concatenation of the binary strings $c(u_1), \dots, c(u_n)$. A code *c* is said to be uniquely decodeable if for any u^k and \tilde{u}^m with $u^k \neq \tilde{u}^m$, $c^k(u^k) \neq c^m(\tilde{u}^m)$.

- (a) Show that if c is uniquely decodable, then for all $n \ge 1$, c^n is injective.
- (b) Show that if c is not uniquely decodable, there are u^k and \tilde{u}^m with $u_1 \neq \tilde{u}_1$ and $c^k(u^k) = c^m(\tilde{u}^m)$.
- (c) Show that if c is not uniquely decodable, then there is an n for which c^n is not injective. [Hint: try n = k + m.]